CN105789364A - 一种无铝型ii类超晶格长波双势垒红外探测器 - Google Patents

一种无铝型ii类超晶格长波双势垒红外探测器 Download PDF

Info

Publication number
CN105789364A
CN105789364A CN201610351898.6A CN201610351898A CN105789364A CN 105789364 A CN105789364 A CN 105789364A CN 201610351898 A CN201610351898 A CN 201610351898A CN 105789364 A CN105789364 A CN 105789364A
Authority
CN
China
Prior art keywords
superlattices
long wave
cycle
contact layer
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201610351898.6A
Other languages
English (en)
Other versions
CN105789364B (zh
Inventor
周易
陈建新
王芳芳
徐志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongke aibisaisi (Changzhou) Photoelectric Technology Co.,Ltd.
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201610351898.6A priority Critical patent/CN105789364B/zh
Publication of CN105789364A publication Critical patent/CN105789364A/zh
Application granted granted Critical
Publication of CN105789364B publication Critical patent/CN105789364B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种无铝型II类超晶格双势垒长波红外探测器,其具体结构为GaSb衬底向上依次为超晶格长波N型接触层、超晶格空穴势垒层、超晶格长波吸收区、超晶格中波电子势垒层和超晶格长波P型接触层,上电极TiPtAu位于超晶格长波N型接触层上,下电极TiPtAu位于超晶格长波P型接触层上。本发明公开的结构利用无铝型双势垒的设计和引入获得暗电流小、探测率高,信噪比大的长波超晶格红外探测器。

Description

一种无铝型II类超晶格长波双势垒红外探测器
技术领域
本发明涉及一种红外探测器,具体涉及一种无铝型II类超晶格长波红外探测器的纵向器件结构,它应用于高性能长波红外焦平面探测器及成像系统核心元器件。
背景技术
生长在GaSb衬底上的InAs/GaSbII类超晶格是第三代红外焦平面探测器的优选材料,近年来,美国、德国、日本等国都在大力发展基于该II类超晶格的红外探测技术。InAs/GaSb异质材料体系具有十分特殊的能带排列结构,InAs禁带宽度小于InAs/GaSb的价带偏移,因此InAs的导带底在GaSb的价带顶之下,构成II类超晶格。这就导致电子和空穴在空间上是分离的,电子限制在InAs层中,而空穴限制在GaSb层中,其有效禁带宽度为电子微带至重空穴微带的能量差。InAs/GaSbII类超晶格的优势还在于能吸收正入射光,具有高的量子效率,低的俄歇复合和漏电流,易于实现高的工作温度。成熟的III-V族化合物的分子束外延生长技术为高性能II类超晶格的制备提供了技术支持。更为重要的是,II类超晶格材料体系给予探测器结构更多的可能性去设计多势垒结构,改善器件输运,并利用结构设计降低长波探测器的暗电流,提高器件性能。
目前InAs/GaSbII类超晶格探测器主要是PIN结构,红外辐射在吸收区I层中被吸收,产生光生载流子,扩散到耗尽区,被电极收集,形成光生电压。但对长波超晶格探测器,由于禁带宽度较窄,探测器的产生复合电流和隧穿电流大大影响了探测器的电学性能,提高了噪声。因此利用超晶格探测器能带结构灵活可调的特点,引入双势垒结构,可以一方面通过对耗尽区电场强度的抑制降低器件的产生复合电流和隧穿电流,从而大大提高该红外探测器的信噪比和探测率。
为了提高器件量子效率,长波超晶格探测器的吸收区一般进行P型补偿掺杂,器件的耗尽区将处于N型接触区和P型吸收区之间,因此势垒结构中空穴势垒设计将是抑制耗尽区电场强度的关键。传统的空穴势垒一般由InAs/AlSb多量子阱结构或者InAs/GaSb/AlSb/GaSb的M型结构形成,这两种结构都含有Al元素。Al元素在分子束外延生长中有较低的表面迁移率,且化学性质活泼,易与腔体中残留的氧和碳发生反应,从而降低器件的电学性能。
发明内容
本发明的目的是设计一种无铝型II类超晶格双势垒长波红外探测器结构,解决目前存在以下技术问题:
1.超晶格长波探测器PIN结构暗电流水平偏高的问题;
2.空穴势垒一般含Al元素,有较低的表面迁移率,且化学性质活泼,从而降低器件的电学性能的问题;
如附图1所示,本发明的II类超晶格结构为:由GaSb衬底6自下而上依次为超晶格长波N型接触层1、超晶格空穴势垒层2、超晶格长波吸收区3、超晶格中波电子势垒层4和超晶格长波P型接触层5,上电极TiPtAu7位于超晶格长波N型接触层1上,下电极TiPtAu8位于超晶格长波P型接触层5上。
所述的超晶格长波N型接触层1的结构为20-80周期长波超晶格,每周期由4-6nmInAs和2-4nmGaSb构成,N型掺杂浓度为1016-1017cm-3
所述的超晶格空穴势垒层2的结构为20-80周期中波超晶格,每周期由2-3nmInAs和1-2nmGaSb构成,N型掺杂浓度为1015-1016cm-3
所述的超晶格长波吸收区3的结构为100-800周期长波超晶格,每周期由4-6nmInAs和2-4nmGaSb构成,P型掺杂浓度为1015-1016cm-3
所述的超晶格中波电子势垒层4的结构为20-80周期中波超晶格,每周期由2-3nmInAs和2-4nmGaSb构成,P型掺杂浓度为1015-1016cm-3
所述的超晶格长波P型接触层5的结构为20-80周期长波超晶格,每周期由4-6nmInAs和2-4nmGaSb构成,P型掺杂浓度为1016-1017cm-3
本发明的优点在于:与传统的PIN器件结构相比,双势垒异质结构通过对耗尽区电场强度的抑制降低器件的产生复合电流和隧穿电流,从而大大提高该红外探测器的信噪比。特别是在结构中采用了全新的无铝型空穴势垒,与含铝的InAs/AlSb多量子阱结构的空穴势垒相比,在整个探测器材料分子束外延生长中无需Al元素参与。Al在分子束外延生长中有较低的表面迁移率,且化学性质活泼,易与腔体中残留的氧和碳发生反应,从而降低器件的电学性能。因此本发明公开的结构利用不同周期厚度的InAs/GaSb超晶格材料形成无铝的双势垒红外探测器,降低器件的暗电流,提高电学性能,获得高探测率的长波超晶格红外探测器。
附图说明:
图1是无铝超晶格长波双势垒探测器结构模型;其中,1是超晶格长波N型接触层、2是超晶格空穴势垒层、3是超晶格长波吸收区、4是超晶格中波电子势垒层,5是超晶格长波P型接触层,6是GaSb衬底,7是上电极TiPtAu,8是下电极TiPtAu。
具体实施方式
实施例1:
根据发明内容,我们制备了一种无铝长波双势垒超晶格红外探测器,具体结构如下:
超晶格长波N型接触层为20周期,每周期由4nmInAs和2nmGaSb构成,N型掺杂浓度为1016cm-3
超晶格空穴势垒层为20周期,每周期由2nmInAs和1nmGaSb构成,N型掺杂浓度为1015cm-3
超晶格长波吸收区为100周期,每周期由4nmInAs和2nmGaSb构成,P型掺杂浓度为1015cm-3
超晶格中波电子势垒层为20周期,每周期由2nmInAs和2nmGaSb构成,P型掺杂浓度为1015cm-3
超晶格长波P型接触层为20周期,每周期由4nmInAs和2nmGaSb构成,P型掺杂浓度为1016cm-3
实施例2:
根据发明内容,我们制备了第二种无铝长波双势垒超晶格红外探测器,具体结构如下:
超晶格长波N型接触层为80周期,每周期由6nmInAs和4nmGaSb构成,N型掺杂浓度为1017cm-3
超晶格空穴势垒层为80周期,每周期由3nmInAs和2nmGaSb构成,N型掺杂浓度为1016cm-3
超晶格长波吸收区为800周期,每周期由6nmInAs和4nmGaSb构成,P型掺杂浓度为1016cm-3
超晶格中波电子势垒层为80周期,每周期由3nmInAs和4nmGaSb构成,P型掺杂浓度为1016cm-3
超晶格长波P型接触层为80周期,每周期由6nmInAs和4nmGaSb构成,P型掺杂浓度为1017cm-3
实施例3:
根据发明内容,我们制备了第二种无铝长波双势垒超晶格红外探测器,具体结构如下:
超晶格长波N型接触层为50周期,每周期由4.5nmInAs和2.1nmGaSb构成,N型掺杂浓度为1×1017cm-3
超晶格空穴势垒层为50周期,每周期由2.4nmInAs和1.05nmGaSb构成,N型掺杂浓度为1×1016cm-3
超晶格长波吸收区为400周期,每周期由4.5nmInAs和2.1nmGaSb构成,P型掺杂浓度为5×1015cm-3
超晶格中波电子势垒层为50周期,每周期由2.1nmInAs和2.1nmGaSb构成,P型掺杂浓度为1×1016cm-3
超晶格长波P型接触层为50周期,每周期由4.5nmInAs和2.1nmGaSb构成,P型掺杂浓度为1×1017cm-3

Claims (1)

1.一种无铝型II类超晶格长波双势垒红外探测器,其结构为:自GaSb衬底(6)向上依次是超晶格长波N型接触层(1)、超晶格空穴势垒层(2)、超晶格长波吸收区(3)、超晶格中波电子势垒层(4)和超晶格长波P型接触层(5),上电极TiPtAu(7)位于超晶格长波N型接触层(1)上,下电极TiPtAu(8)位于超晶格长波P型接触层(5)上,其特征在于:
所述的超晶格长波N型接触层(1)的结构为20-80周期长波超晶格,每周期由4-6nmInAs和2-4nmGaSb构成,N型掺杂浓度为1016-1017cm-3
所述的超晶格空穴势垒层(2)的结构为20-80周期中波超晶格,每周期由2-3nmInAs和1-2nmGaSb构成,N型掺杂浓度为1015-2×1016cm-3
所述的超晶格长波吸收区(3)的结构为100-800周期长波超晶格,每周期由4-6nmInAs和2-4nmGaSb构成,P型掺杂浓度为1015-1016cm-3
所述的超晶格中波电子势垒层(4)的结构为20-80周期中波超晶格,每周期由2-3nmInAs和2-4nmGaSb构成,P型掺杂浓度为1015-1016cm-3
所述的超晶格长波P型接触层(5)的结构为20-80周期长波超晶格,每周期由4-6nmInAs和2-4nmGaSb构成,P型掺杂浓度为1016-1017cm-3
所述的上电极(7)和下电极(8)为TiPtAu电极。
CN201610351898.6A 2016-05-25 2016-05-25 一种无铝型ii类超晶格长波双势垒红外探测器 Active CN105789364B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610351898.6A CN105789364B (zh) 2016-05-25 2016-05-25 一种无铝型ii类超晶格长波双势垒红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610351898.6A CN105789364B (zh) 2016-05-25 2016-05-25 一种无铝型ii类超晶格长波双势垒红外探测器

Publications (2)

Publication Number Publication Date
CN105789364A true CN105789364A (zh) 2016-07-20
CN105789364B CN105789364B (zh) 2018-07-06

Family

ID=56380515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610351898.6A Active CN105789364B (zh) 2016-05-25 2016-05-25 一种无铝型ii类超晶格长波双势垒红外探测器

Country Status (1)

Country Link
CN (1) CN105789364B (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417663A (zh) * 2018-04-10 2018-08-17 中国科学院上海技术物理研究所 一种用来测量超晶格材料少子横向扩散长度的器件结构
CN108417661A (zh) * 2018-04-18 2018-08-17 中国科学院上海技术物理研究所 一种基于带间级联结构的长波超晶格红外探测器
CN109148638A (zh) * 2017-06-28 2019-01-04 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制备方法
CN109216485A (zh) * 2017-06-29 2019-01-15 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制备方法
CN110896113A (zh) * 2018-09-12 2020-03-20 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN111129187A (zh) * 2018-10-30 2020-05-08 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN112582880A (zh) * 2020-12-11 2021-03-30 睿创微纳(无锡)技术有限公司 一种红外探测器
CN112701171A (zh) * 2019-10-23 2021-04-23 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制作方法
CN113035992A (zh) * 2021-02-26 2021-06-25 中国科学院半导体研究所 互补势垒超晶格长波红外探测器
CN114664960A (zh) * 2022-05-26 2022-06-24 苏州焜原光电有限公司 一种无应力层的二类超晶格红外探测器及制备方法
CN116705882A (zh) * 2023-08-08 2023-09-05 中科爱毕赛思(常州)光电科技有限公司 一种低缺陷超晶格红外探测器外延材料结构及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102569521A (zh) * 2012-02-02 2012-07-11 中国科学院半导体研究所 钝化InAs/GaSb二类超晶格红外探测器制作方法
CN102569484A (zh) * 2012-02-08 2012-07-11 中国科学院半导体研究所 InAs/GaSb二类超晶格红外探测器
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器
US9064992B1 (en) * 2011-01-18 2015-06-23 Hrl Laboratories, Llc Method of fabricating dual-band type-II superlattice detectors based on p-B-p design

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9064992B1 (en) * 2011-01-18 2015-06-23 Hrl Laboratories, Llc Method of fabricating dual-band type-II superlattice detectors based on p-B-p design
CN102569521A (zh) * 2012-02-02 2012-07-11 中国科学院半导体研究所 钝化InAs/GaSb二类超晶格红外探测器制作方法
CN102569484A (zh) * 2012-02-08 2012-07-11 中国科学院半导体研究所 InAs/GaSb二类超晶格红外探测器
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN104576805A (zh) * 2015-01-21 2015-04-29 哈尔滨工业大学 一种基于InAs/GaSbⅡ类超晶格材料的短波/中波/长波三色红外探测器

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148638A (zh) * 2017-06-28 2019-01-04 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制备方法
CN109148638B (zh) * 2017-06-28 2020-03-27 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制备方法
CN109216485A (zh) * 2017-06-29 2019-01-15 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制备方法
CN109216485B (zh) * 2017-06-29 2020-11-27 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制备方法
CN108417663A (zh) * 2018-04-10 2018-08-17 中国科学院上海技术物理研究所 一种用来测量超晶格材料少子横向扩散长度的器件结构
CN108417663B (zh) * 2018-04-10 2023-11-07 中国科学院上海技术物理研究所 一种用来测量超晶格材料少子横向扩散长度的器件结构
CN108417661B (zh) * 2018-04-18 2023-09-12 中国科学院上海技术物理研究所 一种基于带间级联结构的长波超晶格红外探测器
CN108417661A (zh) * 2018-04-18 2018-08-17 中国科学院上海技术物理研究所 一种基于带间级联结构的长波超晶格红外探测器
CN110896113A (zh) * 2018-09-12 2020-03-20 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN110896113B (zh) * 2018-09-12 2021-11-09 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN111129187A (zh) * 2018-10-30 2020-05-08 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN112701171A (zh) * 2019-10-23 2021-04-23 中国科学院苏州纳米技术与纳米仿生研究所 红外探测器及其制作方法
CN112582880A (zh) * 2020-12-11 2021-03-30 睿创微纳(无锡)技术有限公司 一种红外探测器
CN113035992A (zh) * 2021-02-26 2021-06-25 中国科学院半导体研究所 互补势垒超晶格长波红外探测器
CN114664960A (zh) * 2022-05-26 2022-06-24 苏州焜原光电有限公司 一种无应力层的二类超晶格红外探测器及制备方法
CN116705882A (zh) * 2023-08-08 2023-09-05 中科爱毕赛思(常州)光电科技有限公司 一种低缺陷超晶格红外探测器外延材料结构及制备方法

Also Published As

Publication number Publication date
CN105789364B (zh) 2018-07-06

Similar Documents

Publication Publication Date Title
CN105789364A (zh) 一种无铝型ii类超晶格长波双势垒红外探测器
Liu et al. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors
CN205810841U (zh) 无铝型ii类超晶格长波双势垒红外探测器
Ting et al. A high-performance long wavelength superlattice complementary barrier infrared detector
Jin et al. Dember effect induced photovoltage in perovskite pn heterojunctions
US10121922B2 (en) Tunneling barrier infrared detector devices
US20100006822A1 (en) Complementary barrier infrared detector (cbird)
Sablon et al. Effects of AlGaAs energy barriers on InAs/GaAs quantum dot solar cells
CN102265412A (zh) 光电探测器的数字合金吸收体
US9312410B2 (en) INAS/ALSB/GASB based type-II SL pin detector with P on N and N on P configurations
Hu et al. Polarity inversion and coupling of laser beam induced current in As-doped long-wavelength HgCdTe infrared detector pixel arrays: Experiment and simulation
TW200937657A (en) Type II quantum dot solar cells
CN102790100B (zh) 一种基于中间能带的InSb量子点多色红外探测器
WO2010093058A1 (ja) ヘテロ接合バイポーラフォトトランジスタ
Asahi et al. Suppression of thermal carrier escape and efficient photo-carrier generation by two-step photon absorption in InAs quantum dot intermediate-band solar cells using a dot-in-well structure
Zhang et al. A voltage‐controlled tunable two‐color infrared photodetector using GaAs/AlAs/GaAlAs and GaAs/GaAlAs stacked multiquantum wells
Soibel et al. Proton radiation effect on performance of InAs/GaSb complementary barrier infrared detector
Estacio et al. Strong enhancement of terahertz emission from GaAs in InAs/GaAs quantum dot structures
Yagi et al. Quantum well double barrier resonant tunneling structures for selective contacts of hot carrier solar cells
Uzgur et al. InGaAs nBn SWIR detector design with lattice-matched InAlGaAs barrier
He et al. Perovskite band engineering for high-performance X-ray detection
JP4694417B2 (ja) 量子ドット光半導体素子
Bansal et al. A Highly Efficient and Low Noise n+-ZnO/p-Si Heterojunction Based UV Detector
CN1953214A (zh) 隧道补偿多有源区红外探测器
Diao et al. Theoretical exploration of photoemission characteristics of GaAs nanowire array cathode based on photon-enhanced thermionic emission

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210112

Address after: 213022 No.23, middle Huashan Road, Xinbei District, Changzhou City, Jiangsu Province

Patentee after: Changzhou Zhongke Decai Technology Development Co.,Ltd.

Address before: 200083 No. 500, Yutian Road, Shanghai, Hongkou District

Patentee before: Shanghai Institute of Technical Physics, Chinese Academy of Sciences

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210621

Address after: 23 Huashan Middle Road, Xinbei District, Changzhou City, Jiangsu Province 213000

Patentee after: Zhongke aibisaisi (Changzhou) Photoelectric Technology Co.,Ltd.

Address before: 213022 No.23, middle Huashan Road, Xinbei District, Changzhou City, Jiangsu Province

Patentee before: Changzhou Zhongke Decai Technology Development Co.,Ltd.

TR01 Transfer of patent right