CN109216485B - 红外探测器及其制备方法 - Google Patents
红外探测器及其制备方法 Download PDFInfo
- Publication number
- CN109216485B CN109216485B CN201710512668.8A CN201710512668A CN109216485B CN 109216485 B CN109216485 B CN 109216485B CN 201710512668 A CN201710512668 A CN 201710512668A CN 109216485 B CN109216485 B CN 109216485B
- Authority
- CN
- China
- Prior art keywords
- barrier layer
- layer
- substrate
- inas
- gasb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 10
- 230000004888 barrier function Effects 0.000 claims abstract description 107
- 239000004065 semiconductor Substances 0.000 claims abstract description 49
- 239000000758 substrate Substances 0.000 claims abstract description 42
- 238000010521 absorption reaction Methods 0.000 claims abstract description 39
- 238000000034 method Methods 0.000 claims abstract description 30
- 238000005530 etching Methods 0.000 claims abstract description 21
- 229910005542 GaSb Inorganic materials 0.000 claims description 48
- 229910000673 Indium arsenide Inorganic materials 0.000 claims description 48
- RPQDHPTXJYYUPQ-UHFFFAOYSA-N indium arsenide Chemical compound [In]#[As] RPQDHPTXJYYUPQ-UHFFFAOYSA-N 0.000 claims description 48
- 238000000151 deposition Methods 0.000 claims description 4
- 239000006096 absorbing agent Substances 0.000 claims description 3
- 238000002955 isolation Methods 0.000 abstract description 5
- 239000002019 doping agent Substances 0.000 description 6
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 229910000661 Mercury cadmium telluride Inorganic materials 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 238000001451 molecular beam epitaxy Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 3
- MCMSPRNYOJJPIZ-UHFFFAOYSA-N cadmium;mercury;tellurium Chemical compound [Cd]=[Te]=[Hg] MCMSPRNYOJJPIZ-UHFFFAOYSA-N 0.000 description 2
- 238000005137 deposition process Methods 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000001259 photo etching Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 238000005215 recombination Methods 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- 101100208382 Danio rerio tmsb gene Proteins 0.000 description 1
- 241000700560 Molluscum contagiosum virus Species 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- 229910000070 arsenic hydride Inorganic materials 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010183 spectrum analysis Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000001931 thermography Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035236—Superlattices; Multiple quantum well structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0352—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
- H01L31/035236—Superlattices; Multiple quantum well structures
- H01L31/035263—Doping superlattices, e.g. nipi superlattices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明提供一种红外探测器及其制备方法,所述红外探测器包括衬底、第一电极、多个第二电极及从下而上依次设置于衬底上的吸收层、第一势垒层、第二势垒层,第一电极与衬底连接,第二势垒层包括阵列设置的多个半导体层,多个半导体层与多个第二电极一一对应,每个半导体层与一个第二电极连接。所述制备方法包括:提供一衬底;从下而上依次在衬底上生长形成吸收层、第一势垒层、第二势垒层;刻蚀第二势垒层,以形成阵列设置的多个半导体层;分别在衬底上沉积第一电极、在多个半导体层上沉积多个第二电极。所述红外探测器中只对第二势垒层进行刻蚀,在不破坏吸收层的情况下实现器件的电学隔离,简化了器件工艺、提高了器件的可靠性。
Description
技术领域
本发明涉及半导体技术领域,尤其涉及一种红外探测器及其制备方法。
背景技术
红外辐射探测是红外技术的重要组成部分,广泛应用于热成像、卫星遥感、气体监测、光通讯、光谱分析等领域。锑化物InAs/GaSb二类超晶格红外探测器由于具有均匀性好、俄歇复合率低、波长调节范围大等特点被认为是制备第三代红外探测器最理想的选择之一。相对于碲镉汞红外探测器(HgCdTe),它的均匀性重复性更好、成本更低、在甚长波段性能更好;相对于量子阱红外探测器(QWIP),它的量子效率更高、暗电流更小、工艺更简单。
现有的锑化物红外探测器均采用台面结构,也就是采用刻蚀手段实现探测器单元间的电学隔离。通常情况下刻蚀都要穿过探测器吸收层到达下接触层,即深刻蚀。由于锑化物材料体系加工工艺和钝化手段尚不成熟,在台面刻蚀中产生的侧壁损伤、表面氧化以及沾污等因素造成锑化物超晶格探测器表面漏电流较高,器件的暗电流控制较差,尤其是在长波甚长波段。这是目前制约锑化物红外探测器实用化的一个重要因素。
发明内容
为了解决上述问题,本发明提出一种红外探测器及其制备方法,能够在不破坏吸收层的情况下实现器件的电学隔离,简化了加工工艺、提高了器件的可靠性。
本发明提出的具体技术方案为:提供一种红外探测器,所述红外探测器包括衬底、第一电极、多个第二电极及从下而上依次设置于所述衬底上的吸收层、第一势垒层、第二势垒层,所述第一电极与所述衬底连接,所述第二势垒层包括阵列设置的多个半导体层,所述多个半导体层与所述多个第二电极一一对应,每个所述半导体层与一个所述第二电极连接。
进一步地,所述第一势垒层的顶部具有阵列设置的多个脊形部,所述多个脊形部与所述多个半导体层一一对应,每个所述脊形部上设置有一个所述半导体层。
进一步地,所述吸收层为n型掺杂的InAs/GaSb超晶格,所述吸收层中InAs层与GaSb层的交替周期为100~2000,和/或所述吸收层的厚度为1~8μm。
进一步地,所述第一势垒层为n型掺杂的InAs/GaSb超晶格,所述第一势垒层中InAs层与GaSb层的交替周期为20~500,和/或所述第一势垒层的厚度为0.1~2μm。
进一步地,所述第一势垒层的有效带宽大于所述吸收层的有效带宽。
进一步地,所述第二势垒层为p型掺杂的InAs/GaSb超晶格,所述第二势垒层中InAs层与GaSb层的交替周期为20~500,和/或所述第二势垒层的厚度为0.1~2μm。
进一步地,所述衬底的材质为GaSb或InAs。
本发明还提供了一种红外探测器的制备方法,所述制备方法包括:
提供一衬底;
从下而上依次在所述衬底上生长形成吸收层、第一势垒层、第二势垒层;
刻蚀所述第二势垒层,以形成阵列设置的多个半导体层;
分别在所述衬底上沉积第一电极、在所述多个半导体层上沉积多个第二电极,所述多个第二电极与所述多个半导体层一一对应。
进一步地,在刻蚀所述第二势垒层,以形成阵列设置的多个半导体层步骤之后,所述制备方法还包括:
刻蚀所述第一势垒层,以使得所述第一势垒层的顶部具有阵列设置的多个脊形部,所述多个脊形部与所述多个半导体层一一对应。
进一步地,在刻蚀所述第一势垒层后,所述制备方法还包括对所述多个脊形部、所述多个半导体层的侧面及所述第一势垒层位于相邻两个所述脊形部之间的区域进行钝化。
本发明提供的红外探测器包括衬底、第一电极、多个第二电极、吸收层、第一势垒层、第二势垒层,所述第二势垒层包括阵列设置的多个半导体层,所述多个半导体层与所述多个第二电极一一对应,每个所述半导体层与一个所述第二电极连接,所述红外探测器中只对第二势垒层进行刻蚀,在不破坏吸收层的情况下实现器件的电学隔离,简化了器件工艺、提高了器件的可靠性。
附图说明
通过结合附图进行的以下描述,本发明的实施例的上述和其它方面、特点和优点将变得更加清楚,附图中:
图1为红外探测器的结构示意图;
图2为红外探测器的的制备方法流程图。
具体实施方式
以下,将参照附图来详细描述本发明的实施例。然而,可以以许多不同的形式来实施本发明,并且本发明不应该被解释为局限于这里阐述的具体实施例。相反,提供这些实施例是为了解释本发明的原理及其实际应用,从而使本领域的其他技术人员能够理解本发明的各种实施例和适合于特定预期应用的各种修改。
实施例1
参照图1,本实施例提供的红外探测器包括衬底1、第一电极2、多个第二电极3及从下而上依次设置于衬底1上的吸收层4、第一势垒层5、第二势垒层6,第一电极2与衬底1连接,第二势垒层6包括阵列设置的多个半导体层61,多个半导体层61与多个第二电极3一一对应,每个半导体层61与一个第二电极3连接。其中,第二电极3设置于半导体层61的顶部。
具体的,衬底1的材质为n型的GaSb或InAs。吸收层4位于衬底1的上表面,其中,衬底1未被吸收层4完全覆盖,衬底1未被吸收层4覆盖的区域用于设置第一电极2,即吸收层4和第一电极2分别间隔的设置于衬底1的上表面。
吸收层4为n型掺杂的InAs/GaSb超晶格,掺杂浓度为1×1015~1×1018cm-3。吸收层4由InAs层与GaSb层交替排列而成,其中,InAs层与GaSb层的交替周期为100~2000。吸收层4的有效带宽对应的波长为3~25μm,其总厚度为1~8μm。
第一势垒层5位于吸收层4的上表面,第一势垒层5为n型掺杂的InAs/GaSb超晶格,掺杂浓度为1×1014~1×1018cm-3。第一势垒层5由InAs层与GaSb层交替排列而成,其中,InAs层与GaSb层的交替周期为20~500。第一势垒层5的厚度为0.1~2μm。第一势垒层5的有效带宽大于吸收层4的有效带宽。
第一势垒层5的顶部具有阵列设置的多个脊形部51,多个脊形部51与多个半导体层61一一对应,每个脊形部51上设置有一个半导体层61。
第二势垒层6为p型掺杂的InAs/GaSb超晶格,掺杂浓度为1×1017~1×1019cm-3。第二势垒层6由InAs层与GaSb层交替排列而成,其中,InAs层与GaSb层的交替周期为20~500。第二势垒层6的厚度为0.1~2μm。
本实施例中的红外探测器具有以下优点:
(1)采用浅刻蚀工艺,能够在不破坏吸收层4的情况下实现器件的电学隔离,简化了器件工艺、提高了器件可靠性;
(2)第一势垒层5和第二势垒层6均采用宽带的InAs/GaSb超晶格结构,能够有效抑制表面漏电流,减小少子的表面复合;
(3)第一势垒层5和第二势垒层6形成无Al的单异质结结构,能够有效抑制器件的本征暗电流,保证器件的量子效率。
实施例2
参照图2,本实施例提供了一种实施例1中红外探测器的制备方法,所述制备方法包括:
步骤S1、提供一衬底1,其中,衬底1的材质为n型的InAs。
步骤S2、使用金属有机物化学气相沉积(MOCVD)工艺作为生长工艺,生长源为TMGa、TMIn、TMSb和AsH3,n型掺杂源为SiH4,p型掺杂源为DEZn,生长温度约为600℃,反应室压力为200Torr。在高温处理除去衬底1表面的杂质后,从下而上在衬底1上依次生长:
(1)吸收层4,吸收层4为n型掺杂的InAs/GaSb超晶格,掺杂剂为Si,掺杂平均浓度为1×1016cm-3。吸收层4的总厚度为2.0μm,其中,InAs层的厚度为2.5nm,GaSb层的厚度为2.5nm,InAs层与GaSb层的交替周期为400;
(2)第一势垒层5,第一势垒层5为n型掺杂的InAs/GaSb超晶格,掺杂剂为Si,掺杂平均浓度为5×1015cm-3。第一势垒层5的总厚度为0.2μm,其中,InAs层的厚度为1.5nm,GaSb层的厚度为2.5nm,InAs层与GaSb层的交替周期为50;
(3)第二势垒层6,第二势垒层6为p型掺杂的InAs/GaSb超晶格,掺杂剂为Zn,掺杂平均浓度为5×1017cm-3。第二势垒层6的总厚度为0.2μm,其中,InAs层的厚度为1.5nm,GaSb层的厚度为2.5nm,InAs层与GaSb层的交替周期为50。
步骤S3、刻蚀第二势垒层6,以形成阵列设置的多个半导体层61。
其中,步骤S3还包括刻蚀第一势垒层5,以使得第一势垒层5的顶部具有阵列设置的多个脊形部51,多个脊形部51与多个半导体层61一一对应。采用感应耦合等离子体刻蚀(ICP)工艺对第二势垒层6进行刻蚀直至刻蚀至第一势垒层5,第一势垒层5的刻蚀深度为0.1μm,以形成阵列设置的多个半导体层61和阵列设置的多个脊形部51。
在刻蚀第二势垒层6后,步骤S3还包括对多个脊形部51、多个半导体层61的侧面及第一势垒层5位于相邻两个脊形部51之间的区域进行钝化。其中,采用等离子体增强化学气相沉积(PECVD)工艺在多个脊形部51、多个半导体层61的侧面、衬底1的表面及第一势垒层5位于相邻两个脊形部51之间的区域沉积SiO2钝化层,再使用标准光刻和反应离子刻蚀(RIE)工艺选择性刻蚀SiO2钝化层以暴露出衬底1和多个半导体层61。
步骤S4、分别在衬底1上沉积第一电极2、在多个半导体层61上沉积多个第二电极3,多个第二电极3与多个半导体层61一一对应。
本实施例中生长采用了工业化的MOCVD工艺,能够减小成本,提高性价比,吸收层4的截至波长为5μm,第一势垒层5和第二势垒层6有效带宽对应的波长为3μm,整体工艺流程比较适合做焦平面探测器阵列。
实施例3
参照图2,本实施例提供了一种实施例1中红外探测器的另一种制备方法,所述制备方法包括:
步骤S1、提供一衬底1,其中,衬底1的材质为n型的GaSb。
步骤S2、使用分子束外延(MBE)工艺作为生长工艺,生长源为固态单质源Ga、In、As和Sb,n型掺杂源为Si,p型掺杂源为Be,生长温度约为400℃。在衬底1除气去杂后,从下而上在衬底1上依次生长:
(1)吸收层4,吸收层4为n型掺杂的InAs/GaSb超晶格,掺杂剂为Si,掺杂平均浓度为1×1017cm-3。吸收层4的总厚度为5.4μm,其中,InAs层的厚度为4.8nm,GaSb层的厚度为2.4nm,InAs层与GaSb层的交替周期为750;
(2)第一势垒层5,第一势垒层5为n型掺杂的InAs/GaSb超晶格,掺杂剂为Si,掺杂平均浓度为5×1016cm-3。第一势垒层5的总厚度为1.2μm,其中,InAs层的厚度为2.4nm,GaSb层的厚度为2.4nm,InAs层与GaSb层的交替周期为250;
(3)第二势垒层6,第二势垒层6为p型掺杂的InAs/GaSb超晶格,掺杂剂为Be,掺杂平均浓度为2×1018cm-3。第二势垒层6的总厚度为1.2μm,其中,InAs层的厚度为2.4nm,GaSb层的厚度为2.4nm,InAs层与GaSb层的交替周期为250。
步骤S3、刻蚀第二势垒层6,以形成阵列设置的多个半导体层61。
其中,步骤S3还包括刻蚀第一势垒层5,以使得第一势垒层5的顶部具有阵列设置的多个脊形部51,多个脊形部51与多个半导体层61一一对应。采用湿法腐蚀工艺对第二势垒层6进行刻蚀直至刻蚀至第一势垒层5,第一势垒层5的刻蚀深度为0.8μm,以形成阵列设置的多个半导体层61和阵列设置的多个脊形部51。
在刻蚀第二势垒层6后,步骤S3还包括对多个脊形部51、多个半导体层61的侧面及第一势垒层5位于相邻两个脊形部51之间的区域进行钝化。其中,采用PECVD工艺在多个脊形部51、多个半导体层61的侧面、衬底1的表面及第一势垒层5位于相邻两个脊形部51之间的区域沉积Si3N4钝化层,再使用标准光刻和湿法腐蚀工艺选择性刻蚀Si3N4钝化层以暴露出衬底1和多个半导体层61。
步骤S4、分别在衬底1上沉积第一电极2、在多个半导体层61上沉积多个第二电极3,多个第二电极3与多个半导体层61一一对应。
本实施例中生长采用了较为常见的MBE工艺,吸收层4的截至波长为10μm,第一势垒层5和第二势垒层6有效带宽对应的波长为5μm,第一势垒层5和第二势垒层6能有效保护吸收层4。由于MBE工艺能形成陡峭界面,本实施例制备得到的红外探测器的性能较高。
需要说明的是,在本说明书中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。
Claims (8)
1.一种红外探测器,其特征在于,包括衬底、第一电极、多个第二电极及从下而上依次设置于所述衬底上的吸收层、第一势垒层、第二势垒层,所述第一电极与所述衬底连接,所述第二势垒层包括阵列设置的多个半导体层,所述多个半导体层与所述多个第二电极一一对应,每个所述半导体层与一个所述第二电极连接;所述第一势垒层的顶部具有阵列设置的多个脊形部,所述多个脊形部与所述多个半导体层一一对应,每个所述脊形部上设置有一个所述半导体层,所述吸收层为n型掺杂的InAs/GaSb超晶格,所述第一势垒层为n型掺杂的InAs/GaSb超晶格,所述第二势垒层为p型掺杂的InAs/GaSb超晶格。
2.根据权利要求1所述的红外探测器,其特征在于,所述吸收层中InAs层与GaSb层的交替周期为100~2000,和/或所述吸收层的厚度为1~8μm。
3.根据权利要求2所述的红外探测器,其特征在于,所述第一势垒层中InAs层与GaSb层的交替周期为20~500,和/或所述第一势垒层的厚度为0.1~2μm。
4.根据权利要求3所述的红外探测器,其特征在于,所述第一势垒层的有效带宽大于所述吸收层的有效带宽。
5.根据权利要求4所述的红外探测器,其特征在于,所述第二势垒层中InAs层与GaSb层的交替周期为20~500,和/或所述第二势垒层的厚度为0.1~2μm。
6.根据权利要求1-5任一项所述的红外探测器,其特征在于,所述衬底的材质为GaSb或InAs。
7.一种红外探测器的制备方法,其特征在于,包括:
提供一衬底;
从下而上依次在所述衬底上生长形成吸收层、第一势垒层、第二势垒层,所述吸收层为n型掺杂的InAs/GaSb超晶格,所述第一势垒层为n型掺杂的InAs/GaSb超晶格,所述第二势垒层为p型掺杂的InAs/GaSb超晶格;
刻蚀所述第二势垒层,以形成阵列设置的多个半导体层;
刻蚀所述第一势垒层,以使得所述第一势垒层的顶部具有阵列设置的多个脊形部,所述多个脊形部与所述多个半导体层一一对应;
分别在所述衬底上沉积第一电极、在所述多个半导体层上沉积多个第二电极,所述多个第二电极与所述多个半导体层一一对应。
8.根据权利要求7所述的制备方法,其特征在于,在刻蚀所述第一势垒层后,所述制备方法还包括对所述多个脊形部、所述多个半导体层的侧面及所述第一势垒层位于相邻两个所述脊形部之间的区域进行钝化。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710512668.8A CN109216485B (zh) | 2017-06-29 | 2017-06-29 | 红外探测器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710512668.8A CN109216485B (zh) | 2017-06-29 | 2017-06-29 | 红外探测器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN109216485A CN109216485A (zh) | 2019-01-15 |
CN109216485B true CN109216485B (zh) | 2020-11-27 |
Family
ID=64960540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710512668.8A Active CN109216485B (zh) | 2017-06-29 | 2017-06-29 | 红外探测器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN109216485B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9099371B1 (en) * | 2013-04-12 | 2015-08-04 | Lockheed Martin Corporation | Barrier photodetector with no contact layer |
CN105789364A (zh) * | 2016-05-25 | 2016-07-20 | 中国科学院上海技术物理研究所 | 一种无铝型ii类超晶格长波双势垒红外探测器 |
US9466746B1 (en) * | 2010-06-04 | 2016-10-11 | Hrl Laboratories, Llc | Compound-barrier infrared photodetector |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5581084A (en) * | 1995-06-07 | 1996-12-03 | Santa Barbara Research Center | Simultaneous two color IR detector having common middle layer metallic contact |
WO2001029896A1 (fr) * | 1999-10-18 | 2001-04-26 | Nippon Sheet Glass Co., Ltd. | Reseau d'elements recepteurs de lumiere et puce de reseau d'elements recepteurs de lumiere |
US8970706B2 (en) * | 2011-09-22 | 2015-03-03 | Basil Henry Scott | Dual pixel pitch imaging array with extended dynamic range |
CN205944121U (zh) * | 2016-04-22 | 2017-02-08 | 武汉光安伦光电技术有限公司 | 一种台面型探测器芯片 |
CN105914252B (zh) * | 2016-06-12 | 2017-06-27 | 中国科学院上海技术物理研究所 | 紫外红外双色焦平面探测器阵列及其性能设计和制备方法 |
-
2017
- 2017-06-29 CN CN201710512668.8A patent/CN109216485B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9466746B1 (en) * | 2010-06-04 | 2016-10-11 | Hrl Laboratories, Llc | Compound-barrier infrared photodetector |
US9099371B1 (en) * | 2013-04-12 | 2015-08-04 | Lockheed Martin Corporation | Barrier photodetector with no contact layer |
CN105789364A (zh) * | 2016-05-25 | 2016-07-20 | 中国科学院上海技术物理研究所 | 一种无铝型ii类超晶格长波双势垒红外探测器 |
Also Published As
Publication number | Publication date |
---|---|
CN109216485A (zh) | 2019-01-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9065006B2 (en) | Lateral photovoltaic device for near field use | |
CN108231926B (zh) | 一种红外探测器及其制备方法 | |
US8697554B2 (en) | Lateral collection architecture for SLS detectors | |
CN111129187B (zh) | 红外光探测器及其制作方法 | |
WO2011072032A1 (en) | Active pixel sensor with nanowire structured photodetectors | |
CN106558633B (zh) | 平面结构的锑化物二类超晶格红外探测器及其制备方法 | |
CN112786731A (zh) | 双色红外探测器及其制作方法 | |
CN112701171B (zh) | 红外探测器及其制作方法 | |
CN109148638B (zh) | 红外探测器及其制备方法 | |
CN108615783B (zh) | 一种肖特基紫外探测器及其制造方法 | |
CN110634891B (zh) | 红外探测器及其制备方法 | |
CN111799350B (zh) | 双色红外探测器及其制作方法 | |
CN110444628B (zh) | 红外探测器及其制作方法 | |
CN113410329B (zh) | 双色红外探测器及其制作方法 | |
CN108231923A (zh) | 一种红外探测器及其制备方法 | |
CN109216485B (zh) | 红外探测器及其制备方法 | |
CN110021678B (zh) | 红外光探测器及其制备方法 | |
CN111106203B (zh) | 红外探测器及其制作方法 | |
CN111799343B (zh) | 多色红外探测器及其制作方法 | |
CN110896113B (zh) | 红外光探测器及其制作方法 | |
CN215266335U (zh) | 双色红外探测器 | |
CN110518085B (zh) | 锑化物超晶格雪崩光电二极管及其制备方法 | |
CN221282132U (zh) | 红外探测器 | |
CN213716912U (zh) | 红外探测器 | |
US8633375B2 (en) | Solar cell and method for Manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |