CN111106203B - 红外探测器及其制作方法 - Google Patents

红外探测器及其制作方法 Download PDF

Info

Publication number
CN111106203B
CN111106203B CN201811271283.8A CN201811271283A CN111106203B CN 111106203 B CN111106203 B CN 111106203B CN 201811271283 A CN201811271283 A CN 201811271283A CN 111106203 B CN111106203 B CN 111106203B
Authority
CN
China
Prior art keywords
layer
type
inasp
inassb superlattice
inassb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811271283.8A
Other languages
English (en)
Other versions
CN111106203A (zh
Inventor
赵宇
吴启花
黄勇
熊敏
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201811271283.8A priority Critical patent/CN111106203B/zh
Publication of CN111106203A publication Critical patent/CN111106203A/zh
Application granted granted Critical
Publication of CN111106203B publication Critical patent/CN111106203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种红外探测器的制作方法,该制作方法包括:在N型衬底上形成探测器台面,探测器台面包括依序层叠形成在N型衬底上的N型InAsP/InAsSb超晶格吸收层、InPSb势垒层和N型InAsP/InAsSb超晶格接触层;在探测器台面的N型InAsP/InAsSb超晶格接触层上形成第一电极,且在N型衬底上形成与探测器台面对应的第二电极。本发明还公开了由上述制作方法制作的红外探测器。本发明解决了在红外探测器的制作过程中,难以形成异质结结构的问题。

Description

红外探测器及其制作方法
技术领域
本发明涉及半导体领域,尤其涉及一种红外探测器及其制作方法。
背景技术
红外辐射探测是红外技术的重要组成部分,广泛应用于热成像、卫星遥感、气体监测、光通讯、光谱分析等领域。锑化物二类超晶格红外探测器由于具有均匀性好、俄歇复合率低、波长调节范围大等特点被认为是制备第三代红外探测器最理想的选择之一。相对于碲镉汞红外探测器(HgCdTe),它的均匀性重复性更好、成本更低、在长波甚长波段性能更好;相对于量子阱红外探测器(QWIP),它的量子效率更高、暗电流更小、工艺更简单。
目前锑化物超晶格材料分为两种体系,一种是常规的InAs/GaSb超晶格,一种是无Ga的InAs/InAsSb超晶格。通常认为InAs/GaSb超晶格在长波波段(8μm-12μm)性能最佳而InAs/InAsSb超晶格在中波波段(3μm-5μm)性能最佳。对于中波无Ga的InAs/InAsSb超晶格探测器,最常见的结构是PIN同质结,但器件性能低于采用异质结的器件。目前文献报道的能够与中波无Ga的InAs/InAsSb超晶格构成异质结构的材料只有AlAsSb(铝砷锑)。但是含Al的材料容易在生长和加工过程中氧化,降低了器件的性能和可靠性。另外AlAsSb只适合分子束外延(MBE)生长,而另外一种在工业界具有统治地位的材料生长方式金属有机物化学气相沉积(MOCVD),却极难制备出高品质的含Al锑化物。这限制了中波InAs/InAsSb超晶格探测器的产业化。
因此,有必要研发一种新的异质结红外探测器的制作方法,能够兼容MBE和MOCVD两种生长方法,来简化InAs/InAsSb异质结红外探测器的制作流程,减少制作难度。
发明内容
为了达到上述的目的,本发明提供了一种红外探测器的制作方法,所述制作方法包括:
在N型衬底上形成探测器台面,所述探测器台面包括依序层叠形成在所述N型衬底上的N型InAsP/InAsSb超晶格吸收层、InPSb势垒层和N型InAsP/InAsSb超晶格接触层;
在所述探测器台面的N型InAsP/InAsSb超晶格接触层上形成第一电极,且在所述N型衬底上形成与所述探测器台面对应的第二电极。
优选地,在N型衬底上形成探测器台面的方法包括:
在N型衬底上依序形成层叠的第一N型InAsP/InAsSb超晶格层、InPSb层、第二N型InAsP/InAsSb超晶格层;
对所述第一N型InAsP/InAsSb超晶格层、所述InPSb层和所述第二N型InAsP/InAsSb超晶格层进行刻蚀处理以暴露所述N型衬底,从而形成所述探测器台面。
优选地,利用金属有机物化学气相沉积法在N型衬底上依序形成层叠的第一N型InAsP/InAsSb超晶格层、InPSb层、第二N型InAsP/InAsSb超晶格层。
优选地,采用感应耦合等离子刻蚀工艺对所述第一N型InAsP/InAsSb超晶格层、所述InPSb层和所述第二N型InAsP/InAsSb超晶格层进行刻蚀处理。
优选地,所述N型InAsP/InAsSb超晶格吸收层的带宽为0.25eV,其截止波长在5μm附近。
优选地,利用分子束外延沉积法在N型衬底上依序形成层叠的第一N型InAsP/InAsSb超晶格层、InPSb层、第二N型InAsP/InAsSb超晶格层。
优选地,采用湿法腐蚀工艺对所述第一N型InAsP/InAsSb超晶格层、所述InPSb层和所述第二N型InAsP/InAsSb超晶格层进行刻蚀处理。
优选地,所述N型InAsP/InAsSb超晶格吸收层的带宽为0.12eV,其截止波长在10μm附近。
优选地,所述InPSb势垒层的有效带宽大于所述N型InAsP/InAsSb超晶格吸收层的有效带宽,且大于所述N型InAsP/InAsSb超晶格接触层的有效带宽。
本发明还提供了一种由上述制作方法制作而成的红外探测器。
与现有技术相比,本发明的有益效果为:
(1)本发明采用了无Ga的InAsP/InAsSb超晶格作为吸收层,相比于InAs/InAsSb超晶格,增加P元素后能够提高红外光吸收系数、增加探测器的量子效率和器件设计的灵活性。
(2)本发明采用了无Al的InPSb势垒层,同时适合金属有机物化学气相沉积和分子束外延两种生长方法,并且避免了器件生长和加工过程的氧化问题,减小了异质结结构的形成难度。
(3)常规的InAs/InAsSb超晶格只能在GaSb衬底上做晶格匹配,本发明的红外探测器采用的InAsP/InAsSb超晶格吸收层可在N型InAs衬底和N型GaSb衬底上实现晶格匹配,增加了N型衬底的选择性。
(4)InAsP/InAsSb可形成多种能带结构,增加了材料设计和器件设计的可能性。
附图说明
图1至图3为本发明的工艺示意图;
图4为本发明红外探测器的各功能层的能带结构示意图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了与本发明关系不大的其他细节。
作为本发明红外探测器的一种实施方法,该方法包括:
步骤S1、在N型衬底1(优选为N型InAs衬底,掺杂浓度为1×1019cm-3)上形成探测器台面,所述探测器台面包括依序层叠形成在所述N型衬底1上的N型InAsP/InAsSb超晶格吸收层2、InPSb势垒层3和N型InAsP/InAsSb超晶格接触层4。
具体地,如图1所示,本步骤中对N型衬底1进行高温处理去除表面杂质后,利用金属有机物化学气相沉积法(MOCVD)在所述N型衬底1上依序形成层叠的第一N型InAsP/InAsSb超晶格层a、InPSb层b、第二N型InAsP/InAsSb超晶格层c。其中,生长源为TMIn、TMSb、AsH3和PH3,N型掺杂源为SiH4,生长温度为600℃,反应室压力为200Torr。其中,所述InPSb层b不进行掺杂,其厚度为0.25μm,带宽为0.73eV;所述第一N型InAsP/InAsSb超晶格层a包括2.5μm厚的InAsP/InAsSb超晶格,各层掺Si,掺杂浓度为5×1016cm-3,对应带宽为0.25eV;所述第二N型InAsP/InAsSb超晶格层c包括0.25μm厚的InAsP/InAsSb超晶格,各层掺Si,掺杂浓度为5×1016cm-3,对应带宽为0.25eV。
具体地,如图2所示,本步骤中生长所述第一N型InAsP/InAsSb超晶格层a、InPSb层b、第二N型InAsP/InAsSb超晶格层c后,采用感应耦合等离子刻蚀工艺对所述第一N型InAsP/InAsSb超晶格层a、所述InPSb层b和所述第二N型InAsP/InAsSb超晶格层c进行刻蚀处理,暴露所述N型衬底1,从而形成所述探测器台面。
步骤S2、如图3所示,在所述探测器台面的N型InAsP/InAsSb超晶格接触层4上形成第一电极5,且在所述N型衬底1上形成与所述探测器台面对应的第二电极6。优选地,采用电子束蒸发工艺,把Ti、Pt、Au依序叠层组合形成所述第一电极5和第二电极6,所述Ti的厚度为
Figure BDA0001846047420000041
所述Pt的厚度为
Figure BDA0001846047420000042
所述Au的厚度为
Figure BDA0001846047420000043
本实施例中生长采用了工业化的MOCVD工艺,能够减少红外探测器的生产成本,提高产品性价比。本实施例中,N型InAsP/InAsSb超晶格吸收层2的带宽为0.25eV,对应截至波长约5μm,为中波器件。整体工艺流程比较适合做高性能中波红外焦平面探测器阵列。
作为本发明红外探测器的另一种实施方法,该方法包括:
步骤S1、在N型衬底1(优选为N型GaSb衬底,掺杂浓度为2×1018cm-3)上形成探测器台面,所述探测器台面包括依序层叠形成在所述N型衬底1上的N型InAsP/InAsSb超晶格吸收层2、InPSb势垒层3和N型InAsP/InAsSb超晶格接触层4。
具体地,如图1所示,本步骤中对N型衬底1进行高温处理去除表面杂质后,采用分子束外延工艺(MBE)在所述N型衬底1上依序形成层叠的第一N型InAsP/InAsSb超晶格层a、InPSb层b、第二N型InAsP/InAsSb超晶格层c。其中,生长源为固态单质源In、As、Sb和P,N型掺杂源为Si。生长温度为400℃。其中,所述InPSb层b不进行掺杂,其厚度为0.5μm,带宽为0.64eV;所述第一N型InAsP/InAsSb超晶格层a包括4.0μm厚的InAsP/InAsSb超晶格,各层掺Si,掺杂浓度为2×1016cm-3,对应带宽为0.12eV;所述第二N型InAsP/InAsSb超晶格层c包括0.5μm厚的InAsP/InAsSb超晶格,各层掺Si,掺杂浓度为1×1018cm-3,对应带宽为0.12eV。
具体地,如图2所示,本步骤中生长所述第一N型InAsP/InAsSb超晶格层a、InPSb层b、第二N型InAsP/InAsSb超晶格层c后,采用湿法腐蚀工艺对所述第一N型InAsP/InAsSb超晶格层a、所述InPSb层b和所述第二N型InAsP/InAsSb超晶格层c进行刻蚀处理,暴露所述N型衬底1,从而形成所述探测器台面。
步骤S2、如图3所示,在所述探测器台面的N型InAsP/InAsSb超晶格接触层4上形成第一电极5,且在所述N型衬底1上形成与所述探测器台面对应的第二电极6。优选地,采用电子束蒸发工艺,把Ti、Pt、Au依序叠层组合形成所述第一电极5和第二电极6,所述Ti的厚度为
Figure BDA0001846047420000051
所述Pt的厚度为
Figure BDA0001846047420000052
所述Au的厚度为
Figure BDA0001846047420000053
本实施例中使用较为常见的MBE工艺,N型InAsP/InAsSb超晶格吸收层2的带宽为0.12eV,对应截至波长约10μm,为长波器件。由于MBE工艺能形成陡峭界面,该实施例提供的长波锑化物超晶格探测器性能较高。
此外参阅图4可知,本发明红外探测器的N型InAsP/InAsSb超晶格吸收层2的有效带宽和N型InAsP/InAsSb超晶格接触层4的有效带宽均小于InPSb势垒层3的有效带宽,因此所述InPSb势垒层3能够做为所述N型InAsP/InAsSb超晶格吸收层2和所述N型InAsP/InAsSb超晶格接触层4的电子势垒,即带宽大于两者且价带与之平齐,形成“nBn”型探测器结构。该种结构具有结构简单、制作工艺稳定、重复性强、操作性强等优点。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

1.一种红外探测器的制作方法,其特征在于,所述制作方法包括:
在N型衬底(1)上形成探测器台面,所述探测器台面包括依序层叠形成在所述N型衬底(1)上的N型InAsP/InAsSb超晶格吸收层(2)、InPSb势垒层(3)和N型InAsP/InAsSb超晶格接触层(4);
在所述探测器台面的N型InAsP/InAsSb超晶格接触层(4)上形成第一电极(5),且在所述N型衬底(1)上形成与所述探测器台面对应的第二电极(6);
所述InPSb势垒层(3)的有效带宽大于所述N型InAsP/InAsSb超晶格吸收层(2)的有效带宽,且大于所述N型InAsP/InAsSb超晶格接触层(4)的有效带宽。
2.根据权利要求1所述的制作方法,其特征在于,在N型衬底(1)上形成所述探测器台面的方法包括:
在N型衬底(1)上依序形成层叠的第一N型InAsP/InAsSb超晶格层(a)、InPSb层(b)、第二N型InAsP/InAsSb超晶格层(c);
对所述第一N型InAsP/InAsSb超晶格层(a)、所述InPSb层(b)和所述第二N型InAsP/InAsSb超晶格层(c)进行刻蚀处理以暴露所述N型衬底(1),从而形成所述探测器台面。
3.根据权利要求2所述的制作方法,其特征在于,利用金属有机物化学气相沉积法在N型衬底(1)上依序形成层叠的第一N型InAsP/InAsSb超晶格层(a)、InPSb层(b)、第二N型InAsP/InAsSb超晶格层(c)。
4.根据权利要求3所述的制作方法,其特征在于,采用感应耦合等离子刻蚀工艺对所述第一N型InAsP/InAsSb超晶格层(a)、所述InPSb层(b)和所述第二N型InAsP/InAsSb超晶格层(c)进行刻蚀处理。
5.根据权利要求1至4任一项所述的制作方法,其特征在于,所述N型InAsP/InAsSb超晶格吸收层(2)的带宽为0.25eV,其截止波长在5μm附近。
6.根据权利要求2所述的制作方法,其特征在于,利用分子束外延沉积法在N型衬底(1)上依序形成层叠的第一N型InAsP/InAsSb超晶格层(a)、InPSb层(b)、第二N型InAsP/InAsSb超晶格层(c)。
7.根据权利要求6所述的制作方法,其特征在于,采用湿法腐蚀工艺对所述第一N型InAsP/InAsSb超晶格层(a)、所述InPSb层(b)和所述第二N型InAsP/InAsSb超晶格层(c)进行刻蚀处理。
8.根据权利要求1或2或6或7所述的制作方法,其特征在于,所述N型InAsP/InAsSb超晶格吸收层(2)的带宽为0.12eV,其截止波长在10μm附近。
9.一种由权利要求1至8任一项所述的制作方法制作而成的红外探测器。
CN201811271283.8A 2018-10-29 2018-10-29 红外探测器及其制作方法 Active CN111106203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811271283.8A CN111106203B (zh) 2018-10-29 2018-10-29 红外探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811271283.8A CN111106203B (zh) 2018-10-29 2018-10-29 红外探测器及其制作方法

Publications (2)

Publication Number Publication Date
CN111106203A CN111106203A (zh) 2020-05-05
CN111106203B true CN111106203B (zh) 2021-04-23

Family

ID=70419494

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811271283.8A Active CN111106203B (zh) 2018-10-29 2018-10-29 红外探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN111106203B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115000212B (zh) * 2022-06-13 2023-05-23 河南大学 一种二维直接带隙半导体探测器及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071813A1 (en) * 2000-03-23 2001-09-27 Mp Technologies Llc Multi color detector
CN102306667A (zh) * 2011-09-07 2012-01-04 清华大学 一种波长上转换半导体结构及其光探测方法
CN102629637A (zh) * 2011-12-22 2012-08-08 清华大学 一种含量子级联结构的波长上转换器件
EP2819180A2 (en) * 2013-06-25 2014-12-31 L-3 Communications Cincinnati Electronics Corporation Superlattice structures for unipolar infrared detector devices
US9184194B2 (en) * 2011-12-21 2015-11-10 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Multiband photodetector utilizing serially connected unipolar and bipolar devices
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9831372B2 (en) * 2015-05-13 2017-11-28 California Institute Of Technology P-compensated and P-doped superlattice infrared detectors

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001071813A1 (en) * 2000-03-23 2001-09-27 Mp Technologies Llc Multi color detector
CN102306667A (zh) * 2011-09-07 2012-01-04 清华大学 一种波长上转换半导体结构及其光探测方法
US9184194B2 (en) * 2011-12-21 2015-11-10 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Multiband photodetector utilizing serially connected unipolar and bipolar devices
CN102629637A (zh) * 2011-12-22 2012-08-08 清华大学 一种含量子级联结构的波长上转换器件
EP2819180A2 (en) * 2013-06-25 2014-12-31 L-3 Communications Cincinnati Electronics Corporation Superlattice structures for unipolar infrared detector devices
CN108231926A (zh) * 2016-12-15 2018-06-29 中国科学院苏州纳米技术与纳米仿生研究所 一种红外探测器及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Overview of antimonide based III-V semiconductor epitaxial layers and their applications at the center for quantum devices;M.Razeghi;《The European Physical Journal Applied Physics》;20030915;第23卷;全文 *
PIN、NBP及NBN型InAsSb中波红外探测器光电性能研究;任洋等;《云南师范大学学报(自然科学版)》;20160930;第36卷(第5期);全文 *

Also Published As

Publication number Publication date
CN111106203A (zh) 2020-05-05

Similar Documents

Publication Publication Date Title
Plis InAs/GaSb Type‐II Superlattice Detectors
CN111129187B (zh) 红外光探测器及其制作方法
WO2012114849A1 (ja) 受光素子およびその製造方法
WO2012046676A1 (ja) エピタキシャルウエハ、受光素子、光学センサ装置、並びにエピタキシャルウエハおよび受光素子の製造方法
TW201501279A (zh) 半導體元件及其製造方法
CN112786731A (zh) 双色红外探测器及其制作方法
CN213601879U (zh) 一种ii类超晶格长波红外探测器
CN112701171B (zh) 红外探测器及其制作方法
CN109148638B (zh) 红外探测器及其制备方法
WO2016171009A1 (ja) 半導体積層体、受光素子および半導体積層体の製造方法
CN111106203B (zh) 红外探测器及其制作方法
CN112310234A (zh) 红外探测器及其制作方法
CN110634891B (zh) 红外探测器及其制备方法
CN111799350B (zh) 双色红外探测器及其制作方法
CN110444628B (zh) 红外探测器及其制作方法
JP6488855B2 (ja) 半導体積層体、受光素子および半導体積層体の製造方法
CN113410329B (zh) 双色红外探测器及其制作方法
CN102959736B (zh) 光接收器元件及其制造方法
CN101976696B (zh) 用于拓展In0.53Ga0.47As探测器及其阵列短波响应的材料体系及其制备
CN110021678B (zh) 红外光探测器及其制备方法
CN221282132U (zh) 红外探测器
CN110896113B (zh) 红外光探测器及其制作方法
CN213716912U (zh) 红外探测器
CN215496746U (zh) 红外探测器
CN215266335U (zh) 双色红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant