CN112701171B - 红外探测器及其制作方法 - Google Patents

红外探测器及其制作方法 Download PDF

Info

Publication number
CN112701171B
CN112701171B CN201911012637.1A CN201911012637A CN112701171B CN 112701171 B CN112701171 B CN 112701171B CN 201911012637 A CN201911012637 A CN 201911012637A CN 112701171 B CN112701171 B CN 112701171B
Authority
CN
China
Prior art keywords
type
superlattice
layer
inas
contact layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911012637.1A
Other languages
English (en)
Other versions
CN112701171A (zh
Inventor
赵宇
吴启花
李欣
黄勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201911012637.1A priority Critical patent/CN112701171B/zh
Publication of CN112701171A publication Critical patent/CN112701171A/zh
Application granted granted Critical
Publication of CN112701171B publication Critical patent/CN112701171B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明公开了红外探测器及其制作方法,所述红外探测器包括衬底、P型超晶格接触层、P型超晶格吸收层、空穴势垒层、N型超晶格接触层、第一电极以及第二电极,所述P型超晶格接触层、P型超晶格吸收层、空穴势垒层以及N型超晶格接触层从下而上叠层设置在衬底上,所述第一电极设置在P型超晶格接触层上,所述第二电极设置在N型超晶格接触层上。其中,所述空穴势垒层为InAs/InPSb超晶格。由此,本发明凭借InAs/InPSb超晶格势垒层完美实现了以无Al结构对空穴的阻挡,有效抑制暗电流的同时,降低了材料生长和加工的难度、提升了器件的稳定性和可靠性。而且,InAs/InPSb超晶格可作为短波、中波和长波红外探测器的空穴势垒层,适用于各类波长的红外探测器,泛用性较强。

Description

红外探测器及其制作方法
技术领域
本发明涉及半导体的技术领域,尤其是涉及红外探测器及其制作方法。
背景技术
红外辐射探测是红外技术的重要组成部分,广泛应用于热成像、卫星遥感、气体监测、光通讯以及光谱分析等领域。锑化物超晶格(InAs/GaSb和InAs/InAsSb)红外探测器由于具有均匀性好、俄歇复合率低、波长调节范围大等特点被认为是制备第三代红外探测器最理想的选择之一。相对于碲镉汞红外探测器(HgCdTe),它的均匀性重复性更好、成本更低、在甚长波段性能更好;相对于量子阱红外探测器(QWIP),它的量子效率更高、暗电流更小、工艺更简单。
红外探测器的重要噪声来源是暗电流。目前,为了抑制暗电流,在锑化物超晶格探测器的结构设计上,通常利用能带工程在器件中引入势垒层,比如美国西北大学的M结构(B.-M.Nguyen et al,Appl.Phys.Lett.91,163511,2007),海军实验室的W结构(I.Vurgaftman et al,Appl.Phys.Lett.89,121114,2006),喷气推进实验室的电子空穴互补型势垒(David Z.-Y.Ting et al,Appl.Phys.Lett.95,023508,2009)等。但是,这些现有技术的方案在势垒层的选择上都无一例外的使用含铝(Al)的材料如AlSb或AlAsSb,而由于Al极易氧化,在势垒层中使用含Al的材料会增加红外探测器的生长和加工难度,影响器件的稳定性和可靠性。另有,如果直接采用常规的InAs/GaSb超晶格作为无Al结构异质结,由于无法与吸收层的能带宽度形成较大的差距,从能带工程角度其极难实现空穴的阻挡或者说其阻挡效果较差。
因此,有必要提供一种新的锑化物超晶格红外探测器,能够采用无Al的新型超晶格作为空穴势垒层,降低材料生长和加工的难度,提升器件稳定性和可靠性。
发明内容
有鉴于此,为了解决上述问题,本发明采用了如下的技术方案:
本发明提供了一种红外探测器,所述红外探测器包括衬底、P型超晶格接触层、P型超晶格吸收层、空穴势垒层、N型超晶格接触层、第一电极以及第二电极,所述P型超晶格接触层、P型超晶格吸收层、空穴势垒层以及N型超晶格接触层从下而上叠层设置在所述衬底上,所述第一电极设置在所述P型超晶格接触层上,所述第二电极设置在所述N型超晶格接触层上,
其中,所述空穴势垒层为InAs/InPSb超晶格。
优选地,所述P型超晶格接触层为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述P型超晶格吸收层为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述N型超晶格接触层为N型InAs/InPSb超晶格或N型InAs/GaSb超晶格。
优选地,所述空穴势垒层的有效带宽大于所述P型超晶格吸收层的有效带宽,且所述空穴势垒层的导带与所述P型超晶格吸收层的导带平齐。
优选地,所述衬底为P型InAs衬底或P型GaSb衬底。
本发明提供了一种红外探测器的制作方法,包括:提供一衬底;在所述衬底上从下而上地依次生长形成P型超晶格接触层、P型超晶格吸收层、空穴势垒层以及N型超晶格接触层,其中,所述空穴势垒层为InAs/InPSb超晶格;对所述N型超晶格接触层、所述空穴势垒层、所述P型超晶格吸收层进行局部刻蚀,形成露出了所述P型超晶格接触层的台面结构;在所述P型超晶格接触层上沉积第一电极,并在所述N型超晶格接触层上沉积第二电极。
优选地,所述P型超晶格接触层为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述P型超晶格吸收层为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述N型超晶格接触层为N型InAs/InPSb超晶格或N型InAs/GaSb超晶格。
优选地,所述空穴势垒层的有效带宽大于所述P型超晶格吸收层的有效带宽,且所述空穴势垒层的导带与所述P型超晶格吸收层的导带平齐。
优选地,所述衬底为P型InAs衬底或P型GaSb衬底。
优选地,采用金属有机物化学气相沉积或分子束外延工艺在所述衬底上从下而上地依次生长形成所述P型超晶格接触层、所述P型超晶格吸收层、所述空穴势垒层以及所述N型超晶格接触层。
与现有技术相比,本发明的有益效果为:
(1)本发明采用全新的无Al材料InAs/InPSb超晶格作为空穴势垒层,该材料的价带位置与InAs平齐,而导带位置可以通过InAs和InPSb材料的厚度灵活调节,因此可以作为InAs/GaSb超晶格以及InAs/InAsSb超晶格的空穴势垒。
(2)本发明提出的探测器结构完全不含Al,降低了材料生长和加工的难度、提升了稳定性和可靠性。
(3)本发明提出的InAs/InPSb超晶格可作为短波、中波和长波红外探测器的空穴势垒层,因此本发明中的红外探测器结构可适用于短波、中波和长波红外探测器,泛用性强。
附图说明
图1是本发明提供的红外探测器的结构示意图;
图2是所述红外探测器的能带示意图;
图3是所述红外探测器中对应P型超晶格吸收层和InAs/InPSb超晶格势垒层各自的导带EC和价带EV相对位置比对图;
图4a~图4d分别对应本发明提供的红外探测器的制作方法的流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面结合附图对本发明的具体实施方式进行详细说明。这些优选实施方式的示例在附图中进行了例示。附图中所示和根据附图描述的本发明的实施方式仅仅是示例性的,并且本发明并不限于这些实施方式。
在此,还需要说明的是,为了避免因不必要的细节而模糊了本发明,在附图中仅仅示出了与根据本发明的方案密切相关的结构和/或处理步骤,而省略了关系不大的其他细节。
参阅图1所示,本发明实施例提供了一种红外探测器,所述红外探测器包括衬底10、P型超晶格接触层11、P型超晶格吸收层12、空穴势垒层13、N型超晶格接触层14、第一电极15以及第二电极16,所述P型超晶格接触层11、P型超晶格吸收层12、空穴势垒层13以及N型超晶格接触层14从下而上叠层设置在所述衬底10上,所述第一电极15设置在所述P型超晶格接触层11上,所述第二电极16设置在所述N型超晶格接触层14上。
结合图2所示出的所述红外探测器的能带示意图,所述空穴势垒层13的有效带宽大于所述P型超晶格吸收层12的有效带宽,且所述空穴势垒层13的导带与所述P型超晶格吸收层12的导带平齐。由此,在所述红外探测器进行工作时,通过所述空穴势垒层13和所述P型超晶格吸收层12形成的异质结,对于在所述P型超晶格吸收层12处产生的光电流,空穴被所述P型超晶格接触层11所收集,而电子则通过所述空穴势垒层13后由所述N型超晶格接触层14所收集,所述空穴势垒层13阻挡空穴通过,使得暗电流受到抑制,从而确保了红外探测器的探测性能,提高器件的工作温度而乃至可以无需低温条件来正常工作。
其中,本发明的核心技术改进点在于,上述空穴势垒层13为InAs/InPSb超晶格势垒层。以所述P型超晶格吸收层12采用P型InAs/GaSb超晶格吸收层为例,参照图3中对应P型InAs/GaSb超晶格吸收层12和所述InAs/InPSb超晶格空穴势垒层13各自的导带EC和价带EV相对位置比对图所示,本发明可以灵活地控制InAs材料和InPSb材料的厚度可将InAs/GaSb超晶格的导带和InAs/InPSb超晶格的导带EC调节至平齐,而由于InPSb材料的特点是价带EV位置较低、带宽较大,所述InAs/InPSb超晶格的价带EV远低于InAs/GaSb超晶格的价带EV,从而实现了相对于所述P型超晶格吸收层12的完美空穴势垒。InAs/InPSb超晶格完全不含Al元素,相比于现有技术的方案,其能降低材料生长和加工的难度、提升了红外探测器生产的稳定性和可靠性。另外,InAs/InPSb超晶格可作为对应短波红外材料、中波红外材料以及长波红外材料的空穴势垒层,因此,基于InAs/InPSb超晶格的空穴势垒层13制成的红外探测器可适用于作为短波、中波和长波红外探测器,使得本发明的红外探测器的泛用性较高。
以下以具体的实施例进一步说明本发明:
实施例1
本发明提供的红外探测器中,示例性地,所述衬底10为P型InAs衬底或P型GaSb衬底,所述P型超晶格接触层11为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述P型超晶格吸收层12为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述空穴势垒层13为InAs/InPSb超晶格,所述N型超晶格接触层14为N型InAs/InPSb超晶格或N型InAs/GaSb超晶格。
更具体地,作为各层的示例,所述P型超晶格接触层11的厚度为0.2μm~0.5μm,掺杂源选用Zn或Be,掺杂浓度为1×1018cm-3~2×1018cm-3,对应带宽为0.1eV~0.3eV;
所述P型超晶格吸收层12的厚度为2μm~5μm,掺杂源选用Zn或Be,掺杂浓度为2×1015cm-3~5×1016cm-3,对应带宽为0.1eV~0.3eV;
所述空穴势垒层13的厚度为0.2μm~0.5μm,为非故意掺杂,对应带宽为0.4eV~0.6eV;
所述N型超晶格接触层14的厚度为0.2μm~0.5μm,掺杂源选用Si,掺杂浓度为1×1018cm-3~2×1018cm-3,对应带宽为0.3eV~0.6eV。
实施例2
如图4所示,本发明提供了一种上述红外探测器的制作方法,所述制作方法包括:
步骤S1、对应图4a所示,提供一衬底10;
在本实施例中,所述衬底10选用P型InAs衬底。
步骤S2、对应图4b所示,在所述衬底10上从下而上地依次生长形成P型超晶格接触层11、P型超晶格吸收层12、空穴势垒层13以及N型超晶格接触层14,其中,所述空穴势垒层13为InAs/InPSb超晶格;
在本实施例中,采用金属有机物化学气相沉积(MOCVD)工艺在所述衬底10上从下而上地依次生长形成P型超晶格接触层11、P型超晶格吸收层12、空穴势垒层13以及N型超晶格接触层14。具体地,以金属有机物化学气相沉积工艺作为生长工艺,生长源为TMGa、TMIn、TMSb、AsH3以及PH3,n型掺杂源为SiH4,p型掺杂源为DEZn,生长温度设置为约600℃,反应室压力设置为200Torr。在高温处理除去步骤S1中衬底10表面的杂质后,从下而上在衬底10上依次生长:
(1)P型超晶格接触层11,P型超晶格接触层11为P型InAs/GaSb超晶格,厚度为0.2μm,掺Zn,掺杂浓度为2×1018cm-3,对应带宽为0.3eV;
(2)P型超晶格吸收层12,P型超晶格吸收层12为P型InAs/GaSb超晶格,厚度为2μm,掺Zn,掺杂浓度为5×1016cm-3,对应带宽为0.3eV;
(3)空穴势垒层13,空穴势垒层13为InAs/InPSb超晶格,厚度为0.2μm,非故意掺杂,对应带宽为0.6eV,其导带与P型超晶格吸收层12的导带平齐;
(4)N型超晶格接触层14,N型超晶格接触层14的材料为N型InAs/GaSb超晶格,厚度为0.2μm,掺Si,掺杂浓度为2×1018cm-3,对应带宽为0.3eV。
步骤S3、对应图4c所示,对所述N型超晶格接触层14、所述空穴势垒层13、所述P型超晶格吸收层12进行局部刻蚀,形成露出了所述P型超晶格接触层11的台面结构A;
具体地,采用感应耦合等离子体刻蚀(ICP)工艺对N型超晶格接触层14、空穴势垒层13以及P型超晶格吸收层12进行局部刻蚀,使P型超晶格接触层11露出,从而形成台面结构A。
步骤S4、对应图4d所示,在所述P型超晶格接触层11上沉积第一电极15,并在所述N型超晶格接触层14上沉积第二电极16。
采用电子束蒸发工艺在露出的P型超晶格接触层11上沉积第一电极15、在N型超晶格接触层14上沉积第二电极16。其中,第一电极15和第二电极16均为Ti
Figure BDA0002244656290000061
/Pt
Figure BDA0002244656290000062
/Au
Figure BDA0002244656290000063
组合。
本实施例中采用了MOCVD工艺作为P型超晶格接触层11、P型超晶格吸收层12、空穴势垒层13以及N型超晶格接触层14的生长工艺,能够减小成本,提高制出的红外探测器的性价比,以上述具体工艺及参数获得的P型超晶格吸收层12的截至波长约为4.1μm,属于中波红外,整体工艺流程比较适合制作中波焦平面探测器阵列。
实施例3
本实施例提供了另一种红外探测器的制作方法,其包括的基本步骤与实施例2中的步骤S1~S4一致,主要所不同的是,本实施例采用分子束外延工艺(MBE)在所述衬底10上从下而上地依次生长形成P型超晶格接触层11、P型超晶格吸收层12、空穴势垒层13以及N型超晶格接触层14。
所述步骤S1中,具体地,提供一材质为P型GaSb的P型衬底10。
所述步骤S2中,使用分子束外延工艺作为生长工艺,生长源为固态单质源Ga、In、As、P以及Sb,n型掺杂源为Si,p型掺杂源为Be,生长温度约为400℃。在衬底10经过除气去杂后,从下而上在衬底10上依次生长:
(1)P型超晶格接触层11,P型超晶格接触层11为P型InAs/InAsSb超晶格,厚度为0.5μm,掺Be,掺杂浓度为1×1018cm-3,对应带宽为0.1eV;
(2)P型超晶格吸收层12,P型超晶格吸收层12为P型InAs/InAsSb超晶格,厚度为5μm,掺Be,掺杂浓度为2×1015cm-3,对应带宽为0.1eV;
(3)空穴势垒层13,空穴势垒层13为InAs/InPSb超晶格,厚度为0.5μm,非故意掺杂,对应带宽为0.4eV,其导带与P型超晶格吸收层12的导带平齐;
(4)N型超晶格接触层14,N型超晶格接触层14的材料为N型InAs/InPSb超晶格,厚度为0.5μm,掺Si,掺杂浓度为1×1018cm-3,对应带宽为0.4eV。
所述步骤S3中,采用湿法腐蚀工艺对N型超晶格接触层14、空穴势垒层13、P型超晶格吸收层12进行局部刻蚀,使P型超晶格接触层11露出,形成台面结构A。
所述步骤S4中,采用电子束蒸发工艺在露出的P型超晶格接触层11上沉积第一电极15、在N型超晶格接触层14上沉积第二电极16。其中,第一电极15和第二电极16均为Ti
Figure BDA0002244656290000071
/Pt
Figure BDA0002244656290000072
/Au
Figure BDA0002244656290000073
组合。
本实施例采用MBE工艺作为生长工艺,以上述具体工艺及参数获得的P型超晶格吸收层12的截至波长约为12μm,属于长波红外。由于MBE工艺能形成陡峭界面,得到的长波红外探测器的性能较高。
综上所述,本发明实施例提供的红外探测器,采用InAs/InPSb超晶格作为空穴势垒层,以无Al的结构完美实现了空穴阻挡以抑制暗电流,能够降低材料生长和加工的难度,提高制得的红外探测器的稳定性和可靠性,而且利用InAs/InPSb超晶格,能够适用于短波、中波和长波红外探测器,泛用性强。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (5)

1.一种红外探测器,其特征在于,包括衬底(10)、P型超晶格接触层(11)、P型超晶格吸收层(12)、空穴势垒层(13)、N型超晶格接触层(14)、第一电极(15)以及第二电极(16),所述P型超晶格接触层(11)、P型超晶格吸收层(12)、空穴势垒层(13)以及N型超晶格接触层(14)从下而上叠层设置在所述衬底(10)上,所述第一电极(15)设置在所述P型超晶格接触层(11)上,所述第二电极(16)设置在所述N型超晶格接触层(14)上,
其中,所述P型超晶格接触层(11)为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述P型超晶格吸收层(12)为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述N型超晶格接触层(14)为N型InAs/InPSb超晶格或N型InAs/GaSb超晶格;
其中,所述空穴势垒层(13)为InAs/InPSb超晶格,所述空穴势垒层(13)的有效带宽大于所述P型超晶格吸收层(12)的有效带宽,且所述空穴势垒层(13)的导带与所述P型超晶格吸收层(12)的导带平齐,且所述空穴势垒层(13)的价带低于所述P型超晶格吸收层(12)的价带。
2.根据权利要求1所述的红外探测器,其特征在于,所述衬底(10)为P型InAs衬底或P型GaSb衬底。
3.一种红外探测器的制作方法,其特征在于,包括:
提供一衬底(10);
在所述衬底(10)上从下而上地依次生长形成P型超晶格接触层(11)、P型超晶格吸收层(12)、空穴势垒层(13)以及N型超晶格接触层(14),其中,所述空穴势垒层(13)为InAs/InPSb超晶格;
对所述N型超晶格接触层(14)、所述空穴势垒层(13)、所述P型超晶格吸收层(12)进行局部刻蚀,形成露出了所述P型超晶格接触层(11)的台面结构(A);
在所述P型超晶格接触层(11)上沉积第一电极(15),并在所述N型超晶格接触层(14)上沉积第二电极(16);
其中,所述P型超晶格接触层(11)为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述P型超晶格吸收层 (12)为P型InAs/GaSb超晶格或P型InAs/InAsSb超晶格,所述N型超晶格接触层(14)为N型InAs/InPSb超晶格或N型InAs/GaSb超晶格;
其中,所述空穴势垒层(13)的有效带宽大于所述P型超晶格吸收层(12)的有效带宽,且所述空穴势垒层(13)的导带与所述P型超晶格吸收层(12)的导带平齐,且所述空穴势垒层(13)的价带低于所述P型超晶格吸收层(12)的价带。
4.根据权利要求3所述的红外探测器的制作方法,其特征在于,所述衬底(10)为P型InAs衬底或P型GaSb衬底。
5.根据权利要求3所述的红外探测器的制作方法,其特征在于,采用金属有机物化学气相沉积或分子束外延工艺在所述衬底(10)上从下而上地依次生长形成所述P型超晶格接触层(11)、所述P型超晶格吸收层(12)、所述空穴势垒层(13)以及所述N型超晶格接触层(14)。
CN201911012637.1A 2019-10-23 2019-10-23 红外探测器及其制作方法 Active CN112701171B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911012637.1A CN112701171B (zh) 2019-10-23 2019-10-23 红外探测器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911012637.1A CN112701171B (zh) 2019-10-23 2019-10-23 红外探测器及其制作方法

Publications (2)

Publication Number Publication Date
CN112701171A CN112701171A (zh) 2021-04-23
CN112701171B true CN112701171B (zh) 2022-08-19

Family

ID=75505125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911012637.1A Active CN112701171B (zh) 2019-10-23 2019-10-23 红外探测器及其制作方法

Country Status (1)

Country Link
CN (1) CN112701171B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114649432B (zh) * 2022-03-24 2023-02-17 中国科学院半导体研究所 反转型太赫兹光电探测器及其制备方法
CN115020526A (zh) * 2022-06-07 2022-09-06 中科爱毕赛思(常州)光电科技有限公司 NBp势垒型超晶格高温中波红外探测器及其制作方法
CN115000212B (zh) * 2022-06-13 2023-05-23 河南大学 一种二维直接带隙半导体探测器及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060077A (ja) * 2010-09-13 2012-03-22 Hamamatsu Photonics Kk 半導体受光素子及び半導体受光素子の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6482711B1 (en) * 1999-10-28 2002-11-19 Hrl Laboratories, Llc InPSb/InAs BJT device and method of making
KR101557498B1 (ko) * 2008-11-05 2015-10-07 삼성전자주식회사 양자점 발광소자 및 그 제조방법
CN205810841U (zh) * 2016-05-25 2016-12-14 中国科学院上海技术物理研究所 无铝型ii类超晶格长波双势垒红外探测器
CN105789364B (zh) * 2016-05-25 2018-07-06 中国科学院上海技术物理研究所 一种无铝型ii类超晶格长波双势垒红外探测器
CN106300014A (zh) * 2016-08-12 2017-01-04 成都斯科泰科技有限公司 含有空穴阻挡层的锑化镓基量子阱激光器的外延生长方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012060077A (ja) * 2010-09-13 2012-03-22 Hamamatsu Photonics Kk 半導体受光素子及び半導体受光素子の製造方法

Also Published As

Publication number Publication date
CN112701171A (zh) 2021-04-23

Similar Documents

Publication Publication Date Title
US8729527B2 (en) Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
CN112701171B (zh) 红外探测器及其制作方法
US7692183B2 (en) Polarity inversion of type-II InAs/GaSb superlattice photodiodes
US9123843B2 (en) Semiconductor device
US11271122B2 (en) Short wavelength infrared optoelectronic devices having a dilute nitride layer
JP5691154B2 (ja) 受光素子アレイ及びエピタキシャルウェハ
US6452242B1 (en) Multi color detector
Ji et al. Pipin separate absorption and multiplication ultraviolet avalanche photodiodes
CN213601879U (zh) 一种ii类超晶格长波红外探测器
US20210249545A1 (en) Optoelectronic devices having a dilute nitride layer
EP2372787A1 (en) Light-receiving element, light-receiving element array, method for manufacturing light-receiving element and method for manufacturing light-receiving element array
CN112786731A (zh) 双色红外探测器及其制作方法
CN109148638B (zh) 红外探测器及其制备方法
CN112310234A (zh) 红外探测器及其制作方法
CN110444628B (zh) 红外探测器及其制作方法
CN113410329B (zh) 双色红外探测器及其制作方法
CN215496746U (zh) 红外探测器
WO2012002144A1 (ja) 受光素子およびその製造方法
CN111106203B (zh) 红外探测器及其制作方法
RU2605839C2 (ru) Фотоэлектрический преобразователь
CN213716912U (zh) 红外探测器
CN116914001B (zh) 红外探测器及其制作方法
CN110518085B (zh) 锑化物超晶格雪崩光电二极管及其制备方法
CN112531047A (zh) 红外探测器及其制作方法
CN116387381A (zh) 红外探测器及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant