CN110021678B - 红外光探测器及其制备方法 - Google Patents

红外光探测器及其制备方法 Download PDF

Info

Publication number
CN110021678B
CN110021678B CN201810024209.XA CN201810024209A CN110021678B CN 110021678 B CN110021678 B CN 110021678B CN 201810024209 A CN201810024209 A CN 201810024209A CN 110021678 B CN110021678 B CN 110021678B
Authority
CN
China
Prior art keywords
type
layer
superlattice
gasb
inas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810024209.XA
Other languages
English (en)
Other versions
CN110021678A (zh
Inventor
黄勇
赵宇
熊敏
吴启花
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201810024209.XA priority Critical patent/CN110021678B/zh
Publication of CN110021678A publication Critical patent/CN110021678A/zh
Application granted granted Critical
Publication of CN110021678B publication Critical patent/CN110021678B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种红外光探测器,包括N型衬底;依序层叠设置在所述N型衬底上的N型超晶格吸收层、P型超晶格势垒层和P型超晶格接触层,所述P型超晶格势垒层和所述P型超晶格接触层中间隔的多个区域被注入离子,以形成多个接触所述N型超晶格吸收层的N型区;设置在所述N型衬底上的第一电极;以及设置在所述P型超晶格接触层上的第二电极。本发明还公开了一种红外光探测器的制备方法。本发明实施例公开了一种红外光探测器,在P型超晶格势垒层和所述P型超晶格接触层中设置多个接触N型超晶格吸收层的N型区,从而形成多个电学隔离的P型区,实现各个器件的独立,且红外光探测器的制备工艺简单,成本较低。

Description

红外光探测器及其制备方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种红外光探测器及其制备方法。
背景技术
红外辐射探测是红外技术的重要组成部分,广泛应用于热成像、卫星遥感、气体监测、光通讯、光谱分析等领域。锑化物InAs/GaSb二类超晶格红外探测器由于具有均匀性好、俄歇复合率低、波长调节范围大等特点被认为是制备第三代红外探测器最理想的选择之一。相对于碲镉汞红外探测器(HgCdTe),它的均匀性重复性更好、成本更低、在甚长波段性能更好;相对于量子阱红外探测器(QWIP),它的量子效率更高、暗电流更小、工艺更简单。
目前国内外报道的锑化物红外探测器均采用台面结构,也就是采用刻蚀手段实现探测器单元间的电学隔离。刻蚀工艺将连接两个探测器单元间极性相同的材料去除,从而实现器件的独立工作。但由于锑化物材料体系加工工艺和钝化手段尚不成熟,在台面刻蚀中产生的侧壁损伤、表面氧化以及沾污等因素造成锑化物超晶格探测器表面漏电流较高,器件的暗电流控制较差,尤其是在长波甚长波段。这是目前制约锑化物红外探测器实用化的一个重要因素。
发明内容
鉴于现有技术存在的不足,本发明提供了一种能有效抑制表面暗电流的红外光探测器以及一种工艺简单的红外光探测器的制备方法。
为了实现上述的目的,本发明采用了如下的技术方案:
一种红外光探测器,包括:
N型衬底;
依序层叠设置在所述N型衬底上的N型超晶格吸收层、P型超晶格势垒层和P型超晶格接触层,所述P型超晶格势垒层和所述P型超晶格接触层中间隔的多个区域被注入离子,以形成多个接触所述N型超晶格吸收层的N型区;
设置在所述N型衬底上的第一电极;以及
设置在所述P型超晶格接触层上的第二电极。
优选地,所述N型超晶格吸收层包括100~2000周期的N型InAs/GaSb超晶格吸收层,每一周期所述N型InAs/GaSb超晶格吸收层包括InAs层和GaSb层,所述N型超晶格吸收层的厚度范围为1~8μm。
优选地,所述P型超晶格势垒层包括10~500周期的P型InAs/GaSb超晶格势垒层,每一周期所述P型InAs/GaSb超晶格势垒层包括InAs层和GaSb层,所述P型超晶格势垒层的厚度范围为0.05~2μm。
优选地,所述P型超晶格势垒层的有效带宽大于所述N型超晶格吸收层的有效带宽。
优选地,所述P型超晶格接触层包括20~500周期的P型InAs/GaSb超晶格接触层,每一周期所述P型InAs/GaSb超晶格接触层包括InAs层和GaSb层,所述P型超晶格接触层的厚度范围为0.1~2μm。
优选地,所述N型衬底为N型GaSb衬底或者N型InAs衬底。
本发明还公开了一种红外光探测器的制备方法,包括:
提供一N型衬底;
依次在所述N型衬底上生长形成N型超晶格吸收层、P型超晶格势垒层和P型超晶格接触层;
在所述P型超晶格势垒层和所述P型超晶格接触层的多个区域进行离子注入,制作形成多个间隔的N型区,每个所述N型区接触所述N型超晶格吸收层;
在所述N型衬底上制作形成第一电极;
在所述P型超晶格接触层上制作形成第二电极。
优选地,采用金属有机物化学气相沉积工艺或者分子束外延工艺依次在所述N型衬底上生长形成所述N型超晶格吸收层、所述P型超晶格势垒层和所述P型超晶格接触层。
优选地,所述离子为氧离子、氟离子、氮离子、氦离子、氖离子和氩离子中的任意一种。
本发明实施例公开了一种红外光探测器,在P型超晶格势垒层和所述P型超晶格接触层中设置多个接触N型超晶格吸收层的N型区,从而形成多个电学隔离的P型区,实现各个器件的独立,且红外光探测器的制备工艺简单,成本较低。
附图说明
图1A至图1D为本发明的实施例的驱动器件的制备方法的工艺流程图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
实施例一
如图1D所示,本实施例中的红外光探测器包括N型衬底10;依序层叠设置在N型衬底10上的N型超晶格吸收层20、P型超晶格势垒层30和P型超晶格接触层40,P型超晶格势垒层30和P型超晶格接触层40中间隔的多个区域被注入离子,以形成多个接触N型超晶格吸收层20的N型区50;设置于N型衬底10上的第一电极70和设置于P型超晶格接触层40上的第二电极60。
具体地,N型衬底10为N型GaSb衬底或者N型InAs衬底。N型超晶格吸收层20包括若干周期N型InAs/GaSb超晶格吸收层,每一周期N型InAs/GaSb超晶格吸收层包括InAs层和GaSb层,N型InAs/GaSb超晶格吸收层的周期数为100~2000,N型超晶格吸收层20的厚度范围为1~8μm,掺杂方式为N型均匀掺杂,掺杂浓度为1×1015~1×1018cm-3
进一步地,P型超晶格势垒层30包括若干周期P型InAs/GaSb超晶格势垒层,每一周期P型InAs/GaSb超晶格势垒层包括InAs层和GaSb层,P型InAs/GaSb超晶格势垒层的周期数10~500,P型超晶格势垒层30的厚度范围为0.05~2μm,掺杂方式为P型均匀掺杂,掺杂浓度为1×1015~1×1018cm-3。P型超晶格势垒层30的有效带宽大于N型超晶格吸收层20的有效带宽,这样P型超晶格势垒层30可有效地保护N型超晶格吸收层20。
进一步地,P型超晶格接触层40包括若干周期P型InAs/GaSb超晶格接触层,每一周期P型InAs/GaSb超晶格接触层包括InAs层和GaSb层,P型InAs/GaSb超晶格接触层的周期数为20~500,P型超晶格接触层40的厚度范围为0.1~2μm,掺杂方式为P型均匀掺杂,掺杂浓度为1×1017~1×1019cm-3
具体地,N型区50为离子注入工艺制作形成,N型区50的厚度等于P型超晶格势垒层30和P型超晶格接触层40的厚度之和,这样P型超晶格势垒层30和P型超晶格接触层40中形成了多个电学隔离的P型区。进一步地,将第一电极70设置在N型衬底10的上端面,将多个第二电极60设置在P型超晶格接触层40上的多个P型区上,多个第二电极60与多个P型区一一正对,从而形成多个相互独立的器件。
本实施例的红外光探测器具有如下优点:
(1)红外光探测器采用了平面工艺制作,利用离子注入在P型的势垒材料中形成N型的反型区从而形成平面的PNP结;由于势垒层带宽较大,相邻器件间的PNP结暗电流远小于器件的本征暗电流;这样通过N型材料将P型材料隔断成独立的岛从而实现器件的电学隔离,无需材料刻蚀,能够有效抑制表面漏电流,减小少子的表面复合,提高了器件可靠性。
(2)红外光探测器使用无铝的单异质结结构,采用宽带的InAs/GaSb超晶格作势垒层,能够有效抑制器件的本征暗电流,保证器件的量子效率,同时简化了器件的生长和加工工艺。
(3)由于离子注入存在一定材料损伤,本发明的红外光探测器采用的离子注入工艺只在发生在器件有效区域的外围,探测器第二电极下方的核心功能区完全保留,保证了器件性能。
实施例二
图1A至图1D示出了本发明实施例的一种红外光探测器的制备方法流程图,其包括如下步骤:
步骤一:参照图1A,提供一N型衬底10,N型衬底10优选为N型InAs衬底。
步骤二:参照图1B,优选采用金属有机物化学气相沉积(MOCVD)作为生长工艺,生长源为TMGa、TMIn、TMSb和AsH3,N型掺杂源为SiH4,P型掺杂源为DEZn。生长温度为600℃,反应室压力为200Torr。在高温处理除去N型衬底10表面杂质后,按照如图1B所示的红外探测器结构依次生长:
(1)N型超晶格吸收层20,其中N型超晶格吸收层20包括400周期的N型InAs/GaSb超晶格吸收层,每一周期N型InAs/GaSb超晶格吸收层包括InAs层和GaSb层,InAs层厚度为2.5nm,GaSb层厚度为2.5nm,N型超晶格吸收层20的总厚度为2.0μm,各层掺杂Si,掺杂浓度为1×1016cm-3
(2)P型超晶格势垒层30,其中P型超晶格势垒层30包括50周期的P型InAs/GaSb超晶格势垒层,每一周期P型InAs/GaSb超晶格势垒层包括InAs层和GaSb层,InAs层厚度为1.5nm,GaSb层厚度为2.5nm,P型超晶格势垒层30的总厚度为0.2μm,各层掺杂Zn,掺杂浓度为5×1015cm-3
(3)P型超晶格接触层40,P型超晶格接触层40包括50周期的P型InAs/GaSb超晶格接触层,每一周期P型InAs/GaSb超晶格接触层包括InAs层和GaSb层,InAs层厚度为1.5nm,GaSb层厚度为2.5nm,P型超晶格接触层40的总厚度为0.2μm,各层掺杂Zn,掺杂浓度为5×1017cm-3
步骤三:参照图1C,在P型超晶格势垒层30和P型超晶格接触层40中的多个区域进行离子注入,制作形成多个N型区50,每个N型区50接触N型超晶格吸收层20。
作为优选实施例,采用离子注入工艺在P型超晶格势垒层30和P型超晶格接触层40内注入氧离子,注入深度为P型超晶格势垒层30和P型超晶格接触层40的厚度之和,本实例中注入深度为0.4μm,这样P型超晶格势垒层30和P型超晶格接触层40中形成了多个电学隔离的P型区。当然在其他实施方式中,还可采用离子注入工艺注入氟离子、氮离子、氦离子、氖离子和氩离子中的任意一种。离子注入工艺完成后对注入区域进行快速退火处理。
步骤四:参照图1D,在N型衬底10上制作形成第一电极70。
步骤五:参照图1D,在P型超晶格接触层40上制作形成多个第二电极60,其中多个第二电极60与P型超晶格接触层40上的多个P型区一一对应。
作为优选实施例,采用电子束蒸发工艺在N型衬底10的上端面沉积第一电极70、在P型超晶格接触层40的P型区上沉积多个第二电极60,第一电极70和第二电极60的材料均为
Figure BDA0001544453740000051
组合形成的接触金属。
本实施例中生长采用了工业化的MOCVD工艺,能够减小成本,提高性价比。N型超晶格吸收层20截至波长约5μm,P型超晶格势垒层30带宽对应波长为3μm。整体工艺流程比较适合做焦平面探测器阵列。
实施例三
图1A至图1D示出了本发明实施例的一种红外光探测器的制备方法流程图,其包括如下步骤:
步骤一:参照图1A,提供一N型衬底10,N型衬底10优选为N型GaSb衬底。
步骤二:参照图1B,优选采用分子束外延工艺(MBE)作为生长工艺,生长源为固态单质源Ga、In、As和Sb,N型掺杂源为Si,P型掺杂源为Be。生长温度为400℃。对N型衬底10除气去杂后,按照如图1B所示的红外探测器结构依次生长;
(1)N型超晶格吸收层20,其中N型超晶格吸收层20包括750周期的N型InAs/GaSb超晶格吸收层,每一周期N型InAs/GaSb超晶格吸收层包括InAs层和GaSb层,InAs层厚度为4.8nm,GaSb层厚度为2.4nm,N型超晶格吸收层20的总厚度为5.4μm,各层掺杂Si,掺杂浓度为1×1017cm-3
(2)P型超晶格势垒层30,其中P型超晶格势垒层30包括250周期的P型InAs/GaSb超晶格势垒层,每一周期P型InAs/GaSb超晶格势垒层包括InAs层和GaSb层,InAs层厚度为2.4nm,GaSb层厚度为2.4nm,P型超晶格势垒层30的总厚度为1.2μm,各层掺杂Be,掺杂浓度为5×1017cm-3
(3)P型超晶格接触层40,P型超晶格接触层40包括250周期的P型InAs/GaSb超晶格接触层,每一周期P型InAs/GaSb超晶格接触层包括InAs层和GaSb层,InAs层厚度为2.4nm,GaSb层厚度为2.4nm,P型超晶格接触层40的总厚度为1.2μm,各层掺杂Be,掺杂浓度为2×1018cm-3
步骤三:参照图1C,在P型超晶格势垒层30和所述P型超晶格接触层40中间隔的多个区域进行离子注入,制作形成多个N型区50,每个N型区50接触N型超晶格吸收层20。
作为优选实施例,采用离子注入工艺在P型超晶格势垒层30和P型超晶格接触层40内注入氩离子,注入深度为P型超晶格势垒层30和P型超晶格接触层40的厚度之和,本实例中注入深度为2.4μm,这样P型超晶格势垒层30和P型超晶格接触层40中形成了多个电学隔离的P型区。当然在其他实施方式中,还可采用离子注入工艺注入氟离子、氮离子、氦离子、氖离子和氧离子中的任意一种。离子注入工艺完成后对注入区域进行快速退火处理。
步骤四:参照图1D,在N型衬底10上制作形成第一电极70。
步骤五:参照图1D,在P型超晶格接触层40上制作形成多个第二电极60,其中多个第二电极60与P型超晶格接触层40上的多个P型区一一对应。
作为优选实施例,采用电子束蒸发工艺在N型衬底10的上端面沉积第一电极70、在P型超晶格接触层40的P型区上沉积多个第二电极60,第一电极70和第二电极60的材料均为
Figure BDA0001544453740000071
组合形成的接触金属。
本实施例中使用较为常见的MBE工艺,N型超晶格吸收层20截至波长约10μm,P型超晶格势垒层30带宽对应波长为5μm,P型超晶格势垒层30能有效地保护N型超晶格吸收层20。由于MBE工艺能形成陡峭界面,该实施例提供的锑化物超晶格探测器性能较高。
以上所述仅是本申请的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (8)

1.一种红外光探测器,其特征在于,包括:
N型衬底(10);
依序叠层设置在所述N型衬底(10)上的N型超晶格吸收层(20)、P型超晶格势垒层(30)和P型超晶格接触层(40),所述P型超晶格势垒层(30)和所述P型超晶格接触层(40)中间隔的多个区域被注入离子,以形成多个接触所述N型超晶格吸收层(20)的N型区(50),所述离子为氧离子、氟离子、氮离子、氦离子、氖离子和氩离子中的任意一种;
设置在所述N型衬底(10)上的第一电极(70);以及
设置在所述P型超晶格接触层(40)上的第二电极(60)。
2.根据权利要求1所述的红外光探测器,其特征在于,所述N型超晶格吸收层(20)包括100~2000周期的N型InAs/GaSb超晶格吸收层,每一周期所述N型InAs/GaSb超晶格吸收层包括InAs层和GaSb层,所述N型超晶格吸收层(20)的厚度范围为1~8μm。
3.根据权利要求1所述的红外光探测器,其特征在于,所述P型超晶格势垒层(30)包括10~500周期的P型InAs/GaSb超晶格势垒层,每一周期所述P型InAs/GaSb超晶格势垒层包括InAs层和GaSb层,所述P型超晶格势垒层(30)的厚度范围为0.05~2μm。
4.根据权利要求1所述的红外光探测器,其特征在于,所述P型超晶格势垒层(30)的有效带宽大于所述N型超晶格吸收层(20)的有效带宽。
5.根据权利要求1所述的红外光探测器,其特征在于,所述P型超晶格接触层(40)包括20~500周期的P型InAs/GaSb超晶格接触层,每一周期所述P型InAs/GaSb超晶格接触层包括InAs层和GaSb层,所述P型超晶格接触层(40)的厚度范围为0.1~2μm。
6.根据权利要求1所述的红外光探测器,其特征在于,所述N型衬底(10)为N型GaSb衬底或者N型InAs衬底。
7.一种红外光探测器的制备方法,其特征在于,包括:
提供一N型衬底(10);
依次在所述N型衬底(10)上生长形成N型超晶格吸收层(20)、P型超晶格势垒层(30)和P型超晶格接触层(40);
在所述P型超晶格势垒层(30)和所述P型超晶格接触层(40)的多个区域进行离子注入,制作形成多个间隔的N型区(50),每个所述N型区(50)接触所述N型超晶格吸收层(20),所述离子为氧离子、氟离子、氮离子、氦离子、氖离子和氩离子中的任意一种;
在所述N型衬底(10)上制作形成第一电极(70);
在所述P型超晶格接触层(40)上制作形成第二电极(60)。
8.根据权利要求7所述的红外光探测器的制备方法,其特征在于,采用金属有机物化学气相沉积工艺或者分子束外延工艺依次在所述N型衬底(10)上生长形成所述N型超晶格吸收层(20)、所述P型超晶格势垒层(30)和所述P型超晶格接触层(40)。
CN201810024209.XA 2018-01-10 2018-01-10 红外光探测器及其制备方法 Active CN110021678B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810024209.XA CN110021678B (zh) 2018-01-10 2018-01-10 红外光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810024209.XA CN110021678B (zh) 2018-01-10 2018-01-10 红外光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110021678A CN110021678A (zh) 2019-07-16
CN110021678B true CN110021678B (zh) 2021-06-04

Family

ID=67188103

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810024209.XA Active CN110021678B (zh) 2018-01-10 2018-01-10 红外光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110021678B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114141904A (zh) * 2021-11-08 2022-03-04 中国电子科技集团公司第十一研究所 碲镉汞平面异质结探测器及制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8178863B2 (en) * 2009-06-01 2012-05-15 Teledyne Scientific & Imaging, Llc Lateral collection architecture for SLS detectors
US8217480B2 (en) * 2010-10-22 2012-07-10 California Institute Of Technology Barrier infrared detector
US9024296B2 (en) * 2013-01-04 2015-05-05 Mani Sundaram Focal plane array with pixels defined by modulation of surface Fermi energy
US9099371B1 (en) * 2013-04-12 2015-08-04 Lockheed Martin Corporation Barrier photodetector with no contact layer
JP6295693B2 (ja) * 2014-02-07 2018-03-20 ソニー株式会社 撮像装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
High performance InAs/GaSb superlattice long wavelength;Zhou Yi et al;《Selected Papers from Conferences of the Photoelectronic Technology Committee of the Chinese Society of Astronautics》;20150516;2.1文章MBE器件结构生长部分,2.2器件制备第一段,图1 *

Also Published As

Publication number Publication date
CN110021678A (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
US10910502B2 (en) Solar cell and method for manufacturing the same
US8658458B2 (en) Patterned doping for polysilicon emitter solar cells
CN102449775B (zh) 半导体基板、光电转换器件、半导体基板的制造方法和光电转换器件的制造方法
US20100032008A1 (en) Zinc oxide multi-junction photovoltaic cells and optoelectronic devices
US9065006B2 (en) Lateral photovoltaic device for near field use
JP2009164544A (ja) 太陽電池のパッシベーション層構造およびその製造方法
CN111129187B (zh) 红外光探测器及其制作方法
CN108231926A (zh) 一种红外探测器及其制备方法
CN112786731A (zh) 双色红外探测器及其制作方法
KR20180050171A (ko) 태양 전지 및 이의 제조 방법
KR20150003181A (ko) 실리콘 태양광발전을 위한 정공 차단 실리콘/티탄 산화물 헤테로접합
CN109148638B (zh) 红外探测器及其制备方法
JP2002368238A (ja) タンデム型太陽電池およびその製造方法
US20210167244A1 (en) Methods of fabricating planar infrared photodetectors
CN110021678B (zh) 红外光探测器及其制备方法
CN110634891B (zh) 红外探测器及其制备方法
CN111799350B (zh) 双色红外探测器及其制作方法
CN110444628B (zh) 红外探测器及其制作方法
CN113410329B (zh) 双色红外探测器及其制作方法
CN111106203B (zh) 红外探测器及其制作方法
CN110896113B (zh) 红外光探测器及其制作方法
CN109216485B (zh) 红外探测器及其制备方法
JP2008060161A (ja) 光検出器及び光検出器の製造方法
JPH0955522A (ja) トンネルダイオード
CN215266335U (zh) 双色红外探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant