CN108231923A - 一种红外探测器及其制备方法 - Google Patents

一种红外探测器及其制备方法 Download PDF

Info

Publication number
CN108231923A
CN108231923A CN201611161550.7A CN201611161550A CN108231923A CN 108231923 A CN108231923 A CN 108231923A CN 201611161550 A CN201611161550 A CN 201611161550A CN 108231923 A CN108231923 A CN 108231923A
Authority
CN
China
Prior art keywords
shaped
infrared detector
inassb
superlattices
collecting layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201611161550.7A
Other languages
English (en)
Other versions
CN108231923B (zh
Inventor
黄勇
熊敏
杨辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Jingge Semiconductor Co ltd
Original Assignee
Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Institute of Nano Tech and Nano Bionics of CAS filed Critical Suzhou Institute of Nano Tech and Nano Bionics of CAS
Priority to CN201611161550.7A priority Critical patent/CN108231923B/zh
Publication of CN108231923A publication Critical patent/CN108231923A/zh
Application granted granted Critical
Publication of CN108231923B publication Critical patent/CN108231923B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1828Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIBVI compounds, e.g. CdS, ZnS, CdTe
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及半导体技术领域,尤其是一种红外探测器,从下至上依次包括:GaSb衬底、n型InAsSb吸收层、AlAsSb势垒层、n型超晶格收集层以及二维光栅;还包括设置在所述n型InAsSb吸收层上端面的下电极,以及设置于所述n型超晶格收集层上端面的上电极。本发明还提供这种红外探测器的制备方法。本发明提供的锑化物红外探测器具有超薄的吸收层和表面光栅结构,在降低探测器暗电流的同时保证了探测器的量子效率,能有效提高器件的工作温度。

Description

一种红外探测器及其制备方法
技术领域
本发明涉及半导体技术领域,尤其涉及一种集成光栅的红外探测器。
背景技术
红外探测器广泛应用于热成像、卫星遥感、气体监测、光通讯、光谱分析等领域,对于国家安全和国民经济都有重要意义。红外探测器的一个重要指标就是暗电流,决定了红外探测系统的灵敏度。对于半导体红外探测器,其暗电流和温度直接相关,温度越低,暗电流呈指数下降。所以为了提高性噪比,高性能的红外探测器通常都在低温(如77K)下工作。如果能够提高红外探测器的工作温度,就能减小系统功耗和重量,大幅提高探测器的可靠性。
为了获得高温工作的红外探测器,一个方向就是减小暗电流。目前通过先进的半导体能带工程、材料设计、和加工工艺的运用,红外探测器中的产生-复合电流、隧穿电流、表面漏电流等都能得到有效抑制。例如具有nBn量子结构的势垒型锑化物红外探测器,能有效抑制产生-复合电流和表面漏电流等暗电流成分。但理论上器件中的少子扩散电流却难以抑制,因为它的传输方向和光电流方向一致。2013年美国DRS技术公司提出使用陷光技术,将InAsSb/AlAsSb势垒型探测器中的InAsSb吸收层刻蚀成锥状,这样既减小了InAsSb材料的体积而减小了扩散电流,又达到了减反和陷光的效果,使得探测器的量子效率基本得到保持。通过该技术,探测器的工作温度提高了10~20度。但该方法的缺点是直接在吸收层上进行刻蚀工艺,刻蚀损伤导致器件的表面漏电流增加;而且刻蚀工艺需要在衬底完全去除后进行,由于面阵面积小,无法使用常规的光刻技术,限制了该技术路线的大规模推广。
发明内容
针对目前相关技术的不足,本发明的主要目的在于提供一种集成表面光栅结构的势垒型高温红外探测器,在降低探测器暗电流的同时保证了探测器的量子效率,能有效提高器件的工作温度。而且本发明采用传统工艺技术,具有高重复性和可控性,能够做工业化推广。
本发明这种红外探测器,从下至上依次包括:GaSb衬底、n型InAsSb吸收层、AlAsSb势垒层、n型超晶格收集层以及二维光栅;还包括设置在所述n型InAsSb吸收层上端面的下电极,以及设置于所述n型超晶格收集层上端面的上电极。
其中,所述n型InAsSb吸收层厚度为0.1~1μm。
其中,所述n型超晶格收集层由InAs和GaSb材料按照100~1000的交替周期层叠组成;所述n型超晶格收集层厚度为0.1~2μm。
其中,所述n型InAsSb吸收层中,Sb组分为0%~20%;掺杂浓度为1×1015~1×1018cm-3
所述AlAsSb势垒层中Sb组分为80%~100%,厚度为0.1~2μm,可以是非掺或均匀的n型掺杂。
本发明还提供这种红外探测器的制备方法,包括如下步骤:
温度400~500℃,在所述GaSb衬底上依次生长n型InAsSb吸收层、AlAsSb势垒层;
将由InAs和GaSb材料交替层叠生长,形成n型超晶格收集层;
在所述n型超晶格收集层上刻蚀若干个凹槽,形成二维光栅;
沉积电极:在所述n型InAsSb吸收层的上端面、所述n型超晶格收集层的上端面分别沉积下电极、上电极。
其中,所述n型InAsSb吸收层厚度为0.1~1μm。
其中,所述InAs和GaSb材料的交替周期为100~1000;所述n型超晶格收集层厚度为0.1~2μm。
其中,所述n型InAsSb吸收层中,Sb组分为0%~20%;掺杂浓度为1×1015~1×1018cm-3
所述AlAsSb势垒层中Sb组分为80%~100%,厚度为0.1~2μm。
其中,在所述沉积电极步骤之前,还包括台面刻蚀步骤和钝化步骤。
其中,所述生长步骤采用金属有机物化学气相沉积或分子束外延工艺。
有益效果:
(1)本发明提供的探测器的InAsSb吸收层厚度很薄(小于其吸收系数的倒数),这样探测器的扩散电流能够得到有效抑制;而且n型InAsSb吸收层利用外延工艺控制,在后续工艺中没有刻蚀步骤,避免了表面漏电流的产生。
(2)本发明提供的探测器通过在InAs/GaSb超晶格收集层的最顶部引入二维光栅结构,使得垂直入射的信号光尽量横向传播,在吸收层厚度减小的情况下保证了入射光的充分吸收和器件的量子效率。
(3)本发明提供的探测器使用了InAs/GaSb超晶格收集层,该材料的有效带宽大于InAsSb吸收层,避免了光栅结构对入射光的吸收;并且InAs/GaSb超晶格和InAsSb吸收层的导带差接近0eV,这样在光照下,吸收层产生的少子电流不会被阻挡而顺利到达电极产生信号,保证了器件的最佳性能。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图,其中:
图1为本发明红外探测器的结构示意图。
图2为本发明红外探测器的俯视结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。本案发明人经长期研究和大量实践,得以提出本发明的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。
参阅图1所示,在本发明提供了一种集成表面光栅结构的势垒型高温红外探测器,其从下至上依次包括:GaSb衬底10、n型InAsSb吸收层11、AlAsSb势垒层12、集成了二维表面光栅14的n型InAs/GaSb超晶格收集层13;还包括设置在所述InAsSb吸收层11上端面的下电极17,以及设置于所述超晶格收集层13上端面的上电极16。
所述n型InAsSb吸收层11形成于GaSb衬底10的上端面,其中Sb组分为0%~20%,厚度为0.1~1μm,掺杂方式为n型均匀掺杂,掺杂浓度为1×1015~1×1018cm-3。其中,优选控制所述n型InAsSb吸收层的Sb组分,使得红外探测器获得所需吸收波长。
所述AlAsSb势垒层12中Sb组分为80%~100%,总厚度为0.1~2μm,掺杂方式为非掺或n型均匀掺杂。其中,优选控制所述AlAsSb势垒层与所述n型InAsSb吸收层晶格参数匹配,能使得红外探测器获得较好的性能。
所述InAs/GaSb超晶格收集层13为n型,其由InAs和GaSb材料按照100~1000的交替周期层叠组成,厚度为0.1~2μm,掺杂方式为n型均匀掺杂,掺杂浓度为1×1017~1×1019cm-3
所述二维光栅14形成于InAs/GaSb超晶格收集层13上。实际上,所述二维光栅14是由超晶格材料以及刻蚀材料后留下的凹槽15组成,整个二维光栅与所述超晶格收集层是一体成型的。参阅图2所示,二维表面光栅14可以是周期光栅,也可以是随机光栅,根据探测器需求进行设计和选择。
在超晶格收集层13的上端面预留一个区域,不刻蚀凹槽,而作为后续步骤中上电极16的沉积之用。
所述下电极17与所述InAsSb吸收层11的上端面连接,所述上电极16与InAs/GaSb超晶格收集层13的上端面连接。
本发明还提供了这种集成表面光栅结构的势垒型高温红外探测器的制备方法,其可以包括如下步骤:
S1:采用金属有机物化学气相沉积(MOCVD)或分子束外延工艺(MBE),温度400~500℃,在GaSb衬底10上依次外延生长n型InAsSb吸收层11、AlAsSb势垒层12。
S2:将由InAs和GaSb材料交替层叠生长,100~1000个交替周期,形成n型InAs/GaSb超晶格收集层13。
此时,完成外延片的生长。
S3:在所述InAs/GaSb超晶格收集层13中刻蚀出凹槽15形成二维光栅14。其中,至少选用湿法腐蚀、感应耦合等离子体刻蚀、反应离子刻蚀工艺的任一种来刻蚀获得所述光栅层。
S4:然后在所述外延片上进行台面制作,然后沉积介质膜进行台面和侧壁钝化。类似地,选用湿法腐蚀、感应耦合等离子体刻蚀、反应离子刻蚀工艺的任一种来制作台面。而选用等离子体增强化学气相沉积工艺(ICP)制作形成所述介质钝化膜。
S5:最后,选用电子束蒸发工艺,在所述n型InAsSb吸收层11的上端面沉积下电极17,在所述n型InAs/GaSb超晶格收集层13的上端面沉积上电极16。
本发明提供的一种集成表面光栅结构的势垒型高温红外探测器适合于制备单元分立器件,也适合于制备焦平面探测器阵列(FPA)等。
实施例1
使用金属有机物化学气相沉积(MOCVD)作为生长工艺,提供GaSb衬底10,生长源为TEGa、TMIn、TMAl、TMSb和AsH3,n型掺杂源为Si2H6。生长温度约500℃,反应室压力为100Torr。在高温处理除去衬底表面杂质后,按照如图1所示的红外探测器结构依次生长:
(1)0.2μm InAsSb吸收层11,Sb组分为9%,掺Si,浓度为2×1016cm-3;此时InAsSb吸收层与所述GaSb衬底晶格匹配。
(2)0.5μm AlAsSb势垒层12,Sb组分为92%,非掺;此时所述AlAsSb势垒层与所述GaSb衬底晶格匹配。
(3)200个交替周期的InAs/GaSb形成超晶格收集层13,InAs厚度1.2nm,GaSb厚度2.4nm,也即总厚度0.72μm,在InAs中掺Si,平均浓度为5×1017cm-3
生长完成后在InAs/GaSb超晶格收集层13中采用感应耦合等离子体刻蚀(ICP)刻蚀出凹槽15形成二维周期光栅14,凹槽15的直径为0.8μm,深度为0.3μm,周期为1.2μm;
然后采用湿法腐蚀工艺制作台面(图中未示出),再采用等离子体增强化学气相沉积(PECVD)工艺沉积SiO2介质钝化层进行台面和侧壁钝化,再使用标准光刻和反应离子刻蚀(RIE)工艺选择性刻蚀掉SiO2介质保护层。
最后用电子束蒸发工艺在InAsSb吸收层11的上端面沉积下电极17,InAs/GaSb超晶格收集层13的上端面沉积上电极16。金属为组合。
该实施例中生长采用了工业化的MOCVD工艺,能够减小成本,提高性价比。InAsSb和AlAsSb材料与GaSb晶格匹配,保证了晶体质量。InAsSb吸收层的厚度很薄,能极大减小探测器的暗电流。InAs/GaSb超晶格收集层截止波长约3μm,小于InAsSb吸收层的截止波长4.2μm。周期光栅的峰值波长在4μm左右,适合制作高温窄带探测器。
实施例2
使用分子束外延工艺(MBE)作为生长工艺,提供GaSb衬底10,生长源为固态单质源Ga、In、Al、As和Sb,n型掺杂源为Si。生长温度约400℃。在衬底除气去杂后按照如图1所示的红外探测器结构依次生长:
(1)0.5μm InAsSb吸收层11,Sb组分为20%,掺Si,浓度为1×1017cm-3
(2)1μm AlAsSb势垒层12,Sb组分为100%,也即纯AlSb,晶格参数与InAsSb匹配,掺Si,浓度为1×1016cm-3
(3)1000个交替周期的InAs/GaSb形成超晶格收集层13,InAs厚度0.9nm,GaSb厚度0.9nm,也即总厚度1.8μm,在InAs中掺Si,平均浓度为2×1018cm-3
生长完成后在InAs/GaSb超晶格收集层13中采用ICP刻蚀凹槽15形成二维随机光栅,凹槽15的直径和深度完全随机,无周期性;
然后采用ICP工艺制作台面,再采用PECVD工艺沉积Si3N4介质层进行台面和侧壁钝化,再使用标准光刻和湿法腐蚀工艺选择性刻蚀掉Si3N4介质保护层。
最后用电子束蒸发工艺在InAsSb吸收层11的上端面沉积下电极17,InAs/GaSb超晶格收集层13的上端面沉积上电极16。金属为组合。
该实施例中使用较为常见的MBE工艺,材料质量较高。InAsSb吸收层的截止波长5.1μm。InAs/GaSb超晶格收集层截止波长约2.5μm,对光谱干扰较小。采用随机光栅使探测器响应为宽带响应。整体工艺流程比较适合做焦平面探测器阵列。
本发明提供的锑化物红外探测器具有超薄的吸收层和表面光栅结构,在降低探测器暗电流的同时保证了探测器的量子效率,能有效提高器件的工作温度。
需要说明的是,在本说明书中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
以上所述仅是本发明的具体实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (12)

1.一种红外探测器,其特征在于,从下至上依次包括:GaSb衬底、n型InAsSb吸收层、AlAsSb势垒层、n型超晶格收集层以及二维光栅;还包括设置在所述n型InAsSb吸收层上端面的下电极,以及设置于所述n型超晶格收集层上端面的上电极。
2.根据权利要求1所述红外探测器,其特征在于,所述n型InAsSb吸收层厚度为0.1~1μm。
3.根据权利要求1或2所述红外探测器,其特征在于,所述n型超晶格收集层由InAs和GaSb材料按照100~1000的交替周期层叠组成;所述n型超晶格收集层厚度为0.1~2μm。
4.根据权利要求1或2所述红外探测器,其特征在于,所述n型InAsSb吸收层中,Sb组分为0%~20%,掺杂浓度为1×1015~1×1018cm-3
5.根据权利要求1所述红外探测器,其特征在于,所述AlAsSb势垒层中Sb组分为80%~100%,厚度为0.1~2μm。
6.一种红外探测器的制备方法,其特征在于,包括如下步骤:
温度400~500℃,在所述GaSb衬底上依次生长n型InAsSb吸收层、AlAsSb势垒层;
将由InAs和GaSb材料交替层叠生长,形成n型超晶格收集层;
在所述n型超晶格收集层上刻蚀若干个凹槽,形成二维光栅;
沉积电极:在所述n型InAsSb吸收层的上端面、所述n型超晶格收集层的上端面分别沉积下电极、上电极。
7.根据权利要求6所述红外探测器的制备方法,其特征在于,所述n型InAsSb吸收层厚度为0.1~1μm。
8.根据权利要求6所述红外探测器的制备方法,其特征在于,所述InAs和GaSb材料的交替周期为100~1000;所述n型超晶格收集层厚度为0.1~2μm。
9.根据权利要求6或7所述红外探测器的制备方法,其特征在于,所述n型InAsSb吸收层中,Sb组分为0%~20%;掺杂浓度为1×1015~1×1018cm-3
10.根据权利要求6所述红外探测器的制备方法,其特征在于,所述AlAsSb势垒层中Sb组分为80%~100%,厚度为0.1~2μm。
11.根据权利要求6所述红外探测器的制备方法,其特征在于,在所述沉积电极步骤之前,还包括台面刻蚀步骤和钝化步骤。
12.根据权利要求6述红外探测器的制备方法,其特征在于,所述生长步骤采用金属有机物化学气相沉积或分子束外延工艺。
CN201611161550.7A 2016-12-15 2016-12-15 一种红外探测器及其制备方法 Active CN108231923B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201611161550.7A CN108231923B (zh) 2016-12-15 2016-12-15 一种红外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201611161550.7A CN108231923B (zh) 2016-12-15 2016-12-15 一种红外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN108231923A true CN108231923A (zh) 2018-06-29
CN108231923B CN108231923B (zh) 2019-10-18

Family

ID=62651486

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201611161550.7A Active CN108231923B (zh) 2016-12-15 2016-12-15 一种红外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN108231923B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896113A (zh) * 2018-09-12 2020-03-20 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN111129187A (zh) * 2018-10-30 2020-05-08 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081782A3 (en) * 2004-02-18 2006-03-16 Bae Systems Information Qwip with enhanced optical coupling
US20070187604A1 (en) * 2006-01-16 2007-08-16 Bandara Sumith V Polarization-sensitive quantum well infrared photodetector focal plane array
CN101494243A (zh) * 2009-03-04 2009-07-29 中国科学院上海技术物理研究所 光子晶体耦合窄带响应量子阱红外探测器
EP2180511A2 (fr) * 2008-10-24 2010-04-28 Thales Dispositif d'imagerie multispectral a base de multi-puits quantiques
US8217480B2 (en) * 2010-10-22 2012-07-10 California Institute Of Technology Barrier infrared detector
US20140225064A1 (en) * 2013-02-11 2014-08-14 California Institute Of Technology Barrier infrared detectors on lattice mismatch substrates
US9450117B2 (en) * 2013-11-11 2016-09-20 Kingwave Corporation Optoelectronic device having surface periodic grating structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005081782A3 (en) * 2004-02-18 2006-03-16 Bae Systems Information Qwip with enhanced optical coupling
US20070187604A1 (en) * 2006-01-16 2007-08-16 Bandara Sumith V Polarization-sensitive quantum well infrared photodetector focal plane array
EP2180511A2 (fr) * 2008-10-24 2010-04-28 Thales Dispositif d'imagerie multispectral a base de multi-puits quantiques
CN101494243A (zh) * 2009-03-04 2009-07-29 中国科学院上海技术物理研究所 光子晶体耦合窄带响应量子阱红外探测器
US8217480B2 (en) * 2010-10-22 2012-07-10 California Institute Of Technology Barrier infrared detector
US20140225064A1 (en) * 2013-02-11 2014-08-14 California Institute Of Technology Barrier infrared detectors on lattice mismatch substrates
US9450117B2 (en) * 2013-11-11 2016-09-20 Kingwave Corporation Optoelectronic device having surface periodic grating structure

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
J. Y. ANDERSSON: ""Nearunity quantum efficiency of AlGaAs/GaAs quantum well infrared detectors using a waveguide with a doubly periodic grating couple"", 《APPLIED PHYSICS LETTERS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110896113A (zh) * 2018-09-12 2020-03-20 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN110896113B (zh) * 2018-09-12 2021-11-09 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法
CN111129187A (zh) * 2018-10-30 2020-05-08 中国科学院苏州纳米技术与纳米仿生研究所 红外光探测器及其制作方法

Also Published As

Publication number Publication date
CN108231923B (zh) 2019-10-18

Similar Documents

Publication Publication Date Title
CN108231926B (zh) 一种红外探测器及其制备方法
CN102187469B (zh) 电磁辐射转换器和电池
CN101714591A (zh) 一种硅光电二极管的制作方法
CN106558633B (zh) 平面结构的锑化物二类超晶格红外探测器及其制备方法
CN111725338A (zh) 一种微米线阵列异质结紫外光探测器及其制备方法
CN213601879U (zh) 一种ii类超晶格长波红外探测器
US11637216B2 (en) Highly efficient optical to electrical conversion devices and MElHODS
CN109686809A (zh) 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN108231923B (zh) 一种红外探测器及其制备方法
CN111129187B (zh) 红外光探测器及其制作方法
CN109148638B (zh) 红外探测器及其制备方法
Wu et al. Grating Perovskite Enhanced Polarization-Sensitive GaAs-Based Photodetector
CN109742093A (zh) 一种增强蓝光型硅基雪崩光电二极管阵列及其制备方法
CN111799350B (zh) 双色红外探测器及其制作方法
KR101322364B1 (ko) 표면 플라스몬 커플러를 가지는 포토다이오드
CN110634891B (zh) 红外探测器及其制备方法
JP6411450B2 (ja) 高効率光電変換デバイス
CN103208555A (zh) 紫外选择性硅雪崩光电探测芯片
CN110444628A (zh) 红外探测器及其制作方法
CN104465686B (zh) 红外探测器阵列及其制作方法
WO2012002144A1 (ja) 受光素子およびその製造方法
CN104051043B (zh) 3D式PIN结构α辐照电池及其制备方法
Choudhuri et al. Enhanced Photodetection from TiO 2–SiO x–TiO 2 One-Dimensional Device
US20120255608A1 (en) Back-surface-field type of heterojunction solar cell and a production method therefor
JP7072801B2 (ja) 光電変換素子用構造体及び光電変換素子

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210512

Address after: Room 300, 3rd floor, building 20, Suzhou nano City, 99 Jinjihu Avenue, Suzhou Industrial Park, 215000, Jiangsu Province

Patentee after: Suzhou Jingge Semiconductor Co.,Ltd.

Address before: 215123, Suzhou Industrial Park, Jiangsu, Suzhou, if waterway 398

Patentee before: SUZHOU INSTITUTE OF NANO-TECH AND NANO-BIONICS (SINANO), CHINESE ACADEMY OF SCIENCES