CN108417661A - 一种基于带间级联结构的长波超晶格红外探测器 - Google Patents

一种基于带间级联结构的长波超晶格红外探测器 Download PDF

Info

Publication number
CN108417661A
CN108417661A CN201810349427.0A CN201810349427A CN108417661A CN 108417661 A CN108417661 A CN 108417661A CN 201810349427 A CN201810349427 A CN 201810349427A CN 108417661 A CN108417661 A CN 108417661A
Authority
CN
China
Prior art keywords
long wave
superlattices
inas
gasb
cycle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810349427.0A
Other languages
English (en)
Other versions
CN108417661B (zh
Inventor
陈建新
周易
田源
柴旭良
徐志成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201810349427.0A priority Critical patent/CN108417661B/zh
Publication of CN108417661A publication Critical patent/CN108417661A/zh
Application granted granted Critical
Publication of CN108417661B publication Critical patent/CN108417661B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种基于带间级联结构的长波超晶格红外探测器。与传统的PIN器件结构相比,带间级联结构通过电子隧穿区和多量子阱弛豫区实现光生载流子的单方向输运,抑制了器件的产生复合电流、隧穿电流和侧壁漏电,从而大大提高该红外探测器的信噪比。特别是在结构中采用了多组同周期的量子阱来实现窄禁带宽度下电子弛豫区的设计,实现了长波带间级联的载流子输运,可获得30%左右的量子效率。因此本发明公开的结构利用InAs/GaSb/AlSb三种二元化合物形成不同周期厚度的超晶格和多量子阱材料,构成一种基于带间级联结构的长波超晶格红外探测器,降低器件的暗电流,获得高灵敏度和高探测率的长波器件。

Description

一种基于带间级联结构的长波超晶格红外探测器
技术领域
本发明涉及一种基于带间级联结构的长波超晶格红外探测器,它应用于高性能长波红外焦平面探测器及成像系统核心元器件。
背景技术
InAs/GaSb II类超晶格是第三代红外焦平面探测器的优选材料,近年来,美国、德国、日本等国都在大力发展基于该II类超晶格的红外探测技术。InAs/GaSb异质材料体系具有十分特殊的能带排列结构,InAs禁带宽度小于InAs/GaSb的价带偏移,因此InAs的导带底在GaSb的价带顶之下,构成II类超晶格。这就导致电子和空穴在空间上是分离的,电子限制在InAs层中,而空穴限制在GaSb层中,其有效禁带宽度为电子微带至重空穴微带的能量差。成熟的III-V族化合物的分子束外延生长技术为高性能II类超晶格的制备提供了技术支持。更为重要的是,II类超晶格材料体系给予探测器结构更多的可能性去设计多势垒结构,改善器件输运,并利用结构设计降低长波探测器的暗电流,提高器件性能。
带间级联结构一般用在中波红外探测器,达到高温工作的效果。结构中包含吸收区、电子隧穿区、多量子阱弛豫区,吸收区产生的光生载流子通过弛豫区弛豫到低能级,并通过电子隧穿区隧穿到下一级吸收区。通过该带间级联结构,大大降低探测器的隧穿电流和产生复合电流,同时通过多级级联,进一步降低探测器噪声。多级级联结构还有助于解决超晶格探测材料中扩散长度受限的问题,提高探测器的吸收效率和灵敏度。
本发明将带间级联结构应用在长波10-12微米波段,并利用多组同周期结构多量子阱的手段解决窄禁带宽度下光生电子弛豫的难题,使得长波带间级联结构可以保证30%左右的量子效率。
长波超晶格探测器还有一个难题是侧壁漏电,侧壁钝化是一个有效的抑制手段,但在吸收区为P型的长波甚长波波段,目前还没有特别有效的钝化手段,采用多量子阱结构和多势垒结构,可以有效抑制侧壁电子的输运,达到抑制侧壁漏电的效果。综上所述,通过该带间级联结构,长波超晶格探测器将大大提高信噪比和探测率。
发明内容
本发明的目的是设计一种基于带间级联结构的长波超晶格红外探测器结构,解决目前存在以下技术问题:
1.长波超晶格探测器PIN结构暗电流水平特别是产生复合电流和隧穿电流偏高的问题;
2.长波超晶格探测器为台面结构,侧壁漏电的抑制是其难点,通过多量子阱势垒结构的引入,有效抑制侧壁漏电;
如附图1所示,本发明的带间级联长波超晶格探测器结构为:由InAs衬底9自下而上依次为长波超晶格N型接触层1、空穴势垒层2、第一级长波超晶格吸收区3、多量子阱电子隧穿区4、多量子阱电子弛豫区5、第二级长波超晶格吸收区6、电子势垒区7和长波超晶格P型接触层8,下电极TiPtAu11位于长波超晶格N型接触层1上,上电极TiPtAu10位于长波超晶格P型接触层8上,其特征在于:
所述的长波超晶格N型接触层1的结构为20-80周期长波超晶格,每周期由5-7nmInAs和2-4nm GaSb构成,N型掺杂浓度为1016-1017cm-3
所述的空穴势垒层2的结构为20-80周期中波超晶格,每周期由2-3nm InAs和1-2nm GaSb构成,N型掺杂浓度为1015-2×1016cm-3
所述的第一级长波超晶格吸收区3的结构为100-800周期长波超晶格,每周期由5-7nm InAs和2-4nm GaSb构成,P型掺杂浓度为1015-1016cm-3
所述的多量子阱电子隧穿区4的结构为6-10周期超晶格,每周期由3-5nm GaSb和2-4nm AlSb构成,P型掺杂浓度为1015-2×1016cm-3
所述的多量子阱电子弛豫区5的结构为3-5组量子阱,每组量子阱由3-5个相同的量子阱组成,每个量子阱由5-10nm InAs和2-4nm AlSb构成,N型掺杂浓度为1015-2×1016cm-3
所述的第二级长波超晶格吸收区6的结构为100-800周期长波超晶格,每周期由5-7nm InAs和2-4nm GaSb构成,P型掺杂浓度为1015-1016cm-3
所述的电子势垒区7的结构为20-80周期超晶格,每周期由2-3nm InAs和2-4nmGaSb构成,P型掺杂浓度为1015-1016cm-3
所述的长波超晶格P型接触层8的结构为20-80周期长波超晶格,每周期由4-6nmInAs和2-4nm GaSb构成,P型掺杂浓度为1016-1017cm-3
本发明的优点在于:与传统的PIN器件结构相比,基于带间级联结构的长波超晶格探测器通过电子隧穿区和多量子阱弛豫区输运光生载流子,避免了传统PN结中的暗电流主要机制,特别是抑制降低器件的产生复合电流和隧穿电流,从而大大提高该红外探测器的信噪比。两级级联的结构可以保证探测器的吸收不受制于扩散长度,保证较高的量子效率。多组同周期量子阱结构的电子弛豫区实现光生载流子的单方向输运。多量子阱结构和势垒结构将同时抑制探测器的侧壁漏电,提高探测器电学性能,获得高探测率的长波红外探测器。
附图说明:
图1是带间级联长波超晶格探测器结构模型;其中,1是长波超晶格N型接触层、2是空穴势垒层、3是第一级长波超晶格吸收区、4是多量子阱电子隧穿区、5是多量子阱电子弛豫区、6是第二级长波超晶格吸收区、7是电子势垒区,8是长波超晶格P型接触层,9是InAs衬底,10是上电极TiPtAu,11是下电极TiPtAu。
具体实施方式
实施例1:
根据发明内容,我们制备了一种基于带间级联结构的超晶格红外探测器,具体结构如下:
长波超晶格N型接触层为20周期,每周期由4nm InAs和2nm GaSb构成,N型掺杂浓度为1016cm-3
空穴势垒层为20周期,每周期由2nm InAs和1nm GaSb构成,N型掺杂浓度为1015cm-3
第一级长波超晶格吸收区为100周期长波超晶格,每周期由4nm InAs和2nm GaSb构成,P型掺杂浓度为1015cm-3
多量子阱电子隧穿区为8周期超晶格,每周期由4.5nm GaSb和2nm AlSb构成,P型掺杂浓度为1015cm-3
多量子阱电子弛豫区为3组量子阱,每组量子阱由3个相同的量子阱组成,第一组量子阱由8nm InAs和2.1nm AlSb构成,第二组量子阱由7.2nm InAs和2.7nm AlSb构成,第三组量子阱由6.3nm InAs和3nm构成,N型掺杂浓度为1015cm-3
第二级长波超晶格吸收区为120周期,每周期由4nm InAs和2nm GaSb构成,P型掺杂浓度为1015cm-3
电子势垒区为20周期,每周期由2nm InAs和2nm GaSb构成,P型掺杂浓度为1015cm-3
长波超晶格P型接触层为20周期,每周期由4nm InAs和2nm GaSb构成,P型掺杂浓度为1016cm-3
实施例2:
根据发明内容,我们制备了第二种基于带间级联结构的超晶格红外探测器,具体结构如下:
长波超晶格N型接触层为80周期,每周期由6nm InAs和4nm GaSb构成,N型掺杂浓度为1017cm-3
空穴势垒层为80周期,每周期由3nm InAs和2nm GaSb构成,N型掺杂浓度为1016cm-3
第一级长波超晶格吸收区为400周期长波超晶格,每周期由6nm InAs和4nm GaSb构成,P型掺杂浓度为1016cm-3
多量子阱电子隧穿区为10周期超晶格,每周期由4nm GaSb和2nm AlSb构成,P型掺杂浓度为1016cm-3
多量子阱电子弛豫区为3组量子阱,每组量子阱由3个相同的量子阱组成,第一组量子阱由9nm InAs和2nm AlSb构成,第二组量子阱由7.5nm InAs和2.4nm AlSb构成,第三组量子阱由6.6nm InAs和2.7nm构成,N型掺杂浓度为5×1015cm-3
第二级长波超晶格吸收区为500周期,每周期由6nm InAs和4nm GaSb构成,P型掺杂浓度为1016cm-3
电子势垒区为80周期,每周期由3nm InAs和4nm GaSb构成,P型掺杂浓度为1016cm-3
长波超晶格P型接触层为80周期,每周期由6nm InAs和4nm GaSb构成,P型掺杂浓度为1017cm-3
实施例3:
根据发明内容,我们制备了第二种基于带间级联结构的超晶格红外探测器,具体结构如下:
长波超晶格N型接触层为50周期,每周期由4.5nm InAs和2.1nm GaSb构成,N型掺杂浓度为1×1017cm-3
空穴势垒层为50周期,每周期由2.4nm InAs和1.05nm GaSb构成,N型掺杂浓度为1×1016cm-3
第一级长波超晶格吸收区为300周期长波超晶格,每周期由4.5nm InAs和2.1nmGaSb构成,P型掺杂浓度为5×1015cm-3
多量子阱电子隧穿区为8周期超晶格,每周期由3.6nm GaSb和2.4nm AlSb构成,P型掺杂浓度为1016cm-3
多量子阱电子弛豫区为3组量子阱,每组量子阱由3个相同的量子阱组成,第一组量子阱由8nm InAs和2.5nm AlSb构成,第二组量子阱由7.1nm InAs和2.8nm AlSb构成,第三组量子阱由6nm InAs和3.2nm构成,N型掺杂浓度为1016cm-3
第二级长波超晶格吸收区为400周期,每周期由4.5nm InAs和2.1nm GaSb构成,P型掺杂浓度为5×1015cm-3
超晶格中波电子势垒区为50周期,每周期由2.1nm InAs和2.1nm GaSb构成,P型掺杂浓度为1×1016cm-3
长波超晶格P型接触层为50周期,每周期由4.5nm InAs和2.1nm GaSb构成,P型掺杂浓度为1×1017cm-3

Claims (1)

1.一种基于带间级联结构的长波超晶格红外探测器,其具体结构自InAs(9)衬底向上依次为长波超晶格N型接触层(1)、空穴势垒层(2)、第一级长波超晶格吸收区(3)、多量子阱电子隧穿区(4)、多量子阱电子弛豫区(5)、第二级长波超晶格吸收区(6)、电子势垒区(7)和长波超晶格P型接触层(8),下电极TiPtAu(11)位于长波超晶格N型接触层(1)上,上电极TiPtAu(10)位于长波超晶格P型接触层(8)上,其特征在于:
所述的长波超晶格N型接触层(1)的结构为20-80周期长波超晶格,每周期由5-7nmInAs和2-4nm GaSb构成,N型掺杂浓度为1016-1017cm-3
所述的空穴势垒层(2)的结构为20-80周期中波超晶格,每周期由2-3nm InAs和1-2nmGaSb构成,N型掺杂浓度为1015-2×1016cm-3
所述的第一级长波超晶格吸收区(3)的结构为100-800周期长波超晶格,每周期由5-7nm InAs和2-4nm GaSb构成,P型掺杂浓度为1015-1016cm-3
所述的多量子阱电子隧穿区(4)的结构为6-10周期超晶格,每周期由3-5nm GaSb和2-4nm AlSb构成,P型掺杂浓度为1015-2×1016cm-3
所述的多量子阱电子弛豫区(5)的结构为3-5组量子阱,每组量子阱由3-5个相同的量子阱组成,每个量子阱由5-10nm InAs和2-4nm AlSb构成,N型掺杂浓度为1015-2×1016cm-3
所述的第二级长波超晶格吸收区(6)的结构为100-800周期长波超晶格,每周期由5-7nm InAs和2-4nm GaSb构成,P型掺杂浓度为1015-1016cm-3
所述的电子势垒区(7)的结构为20-80周期超晶格,每周期由2-3nm InAs和2-4nm GaSb构成,P型掺杂浓度为1015-1016cm-3
所述的长波超晶格P型接触层(8)的结构为20-80周期长波超晶格,每周期由4-6nmInAs和2-4nm GaSb构成,P型掺杂浓度为1016-1017cm-3
CN201810349427.0A 2018-04-18 2018-04-18 一种基于带间级联结构的长波超晶格红外探测器 Active CN108417661B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810349427.0A CN108417661B (zh) 2018-04-18 2018-04-18 一种基于带间级联结构的长波超晶格红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810349427.0A CN108417661B (zh) 2018-04-18 2018-04-18 一种基于带间级联结构的长波超晶格红外探测器

Publications (2)

Publication Number Publication Date
CN108417661A true CN108417661A (zh) 2018-08-17
CN108417661B CN108417661B (zh) 2023-09-12

Family

ID=63134265

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810349427.0A Active CN108417661B (zh) 2018-04-18 2018-04-18 一种基于带间级联结构的长波超晶格红外探测器

Country Status (1)

Country Link
CN (1) CN108417661B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477717A (zh) * 2020-04-26 2020-07-31 中国科学院半导体研究所 自制冷型锑化物超晶格红外探测器及其制备方法
CN112582497A (zh) * 2020-12-11 2021-03-30 睿创微纳(无锡)技术有限公司 一种带间级联探测器及其制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335686A (ja) * 2006-06-15 2007-12-27 National Univ Corp Shizuoka Univ 量子井戸サブバンド間遷移デバイス
US20120199185A1 (en) * 2011-02-09 2012-08-09 Board Of Regents University Of Oklahoma Interband Cascade (IC) Photovoltaic (PV) Architecture for PV Devices
CN104900731A (zh) * 2015-06-03 2015-09-09 中国科学院半导体研究所 红外光电探测器及其制造方法
US20160005895A1 (en) * 2011-02-09 2016-01-07 Board Of Regents University Of Oklahoma Interband cascade devices
CN105789364A (zh) * 2016-05-25 2016-07-20 中国科学院上海技术物理研究所 一种无铝型ii类超晶格长波双势垒红外探测器
WO2016115302A1 (en) * 2015-01-16 2016-07-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tunnel diode with broken-gap quantum well
CN106340553A (zh) * 2016-10-26 2017-01-18 中国科学院半导体研究所 电子输运通道为斜跃迁‑微带型的量子级联红外探测器
JP2017157755A (ja) * 2016-03-03 2017-09-07 富士通株式会社 光検出器及び光検出器の製造方法
WO2017205707A1 (en) * 2016-05-27 2017-11-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Resonant-cavity infrared photodetectors with fully-depleted absorbers

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007335686A (ja) * 2006-06-15 2007-12-27 National Univ Corp Shizuoka Univ 量子井戸サブバンド間遷移デバイス
US20120199185A1 (en) * 2011-02-09 2012-08-09 Board Of Regents University Of Oklahoma Interband Cascade (IC) Photovoltaic (PV) Architecture for PV Devices
US20160005895A1 (en) * 2011-02-09 2016-01-07 Board Of Regents University Of Oklahoma Interband cascade devices
WO2016115302A1 (en) * 2015-01-16 2016-07-21 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tunnel diode with broken-gap quantum well
CN104900731A (zh) * 2015-06-03 2015-09-09 中国科学院半导体研究所 红外光电探测器及其制造方法
JP2017157755A (ja) * 2016-03-03 2017-09-07 富士通株式会社 光検出器及び光検出器の製造方法
CN105789364A (zh) * 2016-05-25 2016-07-20 中国科学院上海技术物理研究所 一种无铝型ii类超晶格长波双势垒红外探测器
WO2017205707A1 (en) * 2016-05-27 2017-11-30 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Resonant-cavity infrared photodetectors with fully-depleted absorbers
CN106340553A (zh) * 2016-10-26 2017-01-18 中国科学院半导体研究所 电子输运通道为斜跃迁‑微带型的量子级联红外探测器

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111477717A (zh) * 2020-04-26 2020-07-31 中国科学院半导体研究所 自制冷型锑化物超晶格红外探测器及其制备方法
CN111477717B (zh) * 2020-04-26 2022-02-11 中国科学院半导体研究所 自制冷型锑化物超晶格红外探测器及其制备方法
CN112582497A (zh) * 2020-12-11 2021-03-30 睿创微纳(无锡)技术有限公司 一种带间级联探测器及其制作方法

Also Published As

Publication number Publication date
CN108417661B (zh) 2023-09-12

Similar Documents

Publication Publication Date Title
CN105789364B (zh) 一种无铝型ii类超晶格长波双势垒红外探测器
US7737411B2 (en) nBn and pBp infrared detectors with graded barrier layer, graded absorption layer, or chirped strained layer super lattice absorption layer
Nguyen et al. Type-II M structure photodiodes: an alternative material design for mid-wave to long wavelength infrared regimes
Soci et al. Nanowire photodetectors
US8653460B2 (en) Method and system for detecting light
Zamani et al. Graphene nanoribbon spin-photodetector
Sun et al. Recent advances in two‐dimensional heterostructures: From band alignment engineering to advanced optoelectronic applications
WO2007038600A2 (en) A single-photon detector and applications of same
US9799785B1 (en) Unipolar barrier dual-band infrared detectors
JPS62115786A (ja) 光デバイス
CN108417661A (zh) 一种基于带间级联结构的长波超晶格红外探测器
Sablon et al. High-response hybrid quantum dots-2D conductor phototransistors: recent progress and perspectives
CN205810841U (zh) 无铝型ii类超晶格长波双势垒红外探测器
Ostovari et al. Dual function armchair graphene nanoribbon-based spin-photodetector: Optical spin-valve and light helicity detector
Lei et al. Resonant tunneling and multiple negative differential conductance features in long wavelength interband cascade infrared photodetectors
Nolde et al. Reticulated shallow etch mesa isolation for controlling surface leakage in GaSb-based infrared detectors
CN208904041U (zh) 基于带间级联结构的长波超晶格红外探测器
Wang et al. Next‐Generation Photodetectors beyond Van Der Waals Junctions
Li et al. Enhanced carrier collection efficiency and reduced quantum state absorption by electron doping in self-assembled quantum dot solar cells
Takeda Requisites for highly efficient hot-carrier solar cells
Baril et al. Low operating bias InAs/GaSb strain layer superlattice LWIR detector
Schneider et al. Capture dynamics and far-infrared response in photovoltaic quantum well intersubband photodetectors
TWI400813B (zh) 量子點及量子井混合模式紅外線偵測器裝置及其形成方法
Tian et al. Dark current in antimony-based mid-infrared interband cascade infrared photodetectors
Nguyen et al. Very high performance LWIR and VLWIR Type-II InAs/GaSb superlattice photodiodes with M-structure barrier

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant