CN108417663B - 一种用来测量超晶格材料少子横向扩散长度的器件结构 - Google Patents

一种用来测量超晶格材料少子横向扩散长度的器件结构 Download PDF

Info

Publication number
CN108417663B
CN108417663B CN201810315001.3A CN201810315001A CN108417663B CN 108417663 B CN108417663 B CN 108417663B CN 201810315001 A CN201810315001 A CN 201810315001A CN 108417663 B CN108417663 B CN 108417663B
Authority
CN
China
Prior art keywords
superlattice
diffusion length
type
absorption region
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810315001.3A
Other languages
English (en)
Other versions
CN108417663A (zh
Inventor
周易
陈建新
田源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201810315001.3A priority Critical patent/CN108417663B/zh
Publication of CN108417663A publication Critical patent/CN108417663A/zh
Application granted granted Critical
Publication of CN108417663B publication Critical patent/CN108417663B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03042Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • H01L31/035263Doping superlattices, e.g. nipi superlattices

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种用来测量超晶格材料少子横向扩散长度的器件结构。超晶格材料是一种多周期交叠生长的量子结构材料,与传统的平面结HgCdTe材料相比,超晶格探测器一般为原位掺杂的台面结构,无法直接通过激光诱导电流的方法测试吸收区的少子扩散长度。本发明公开的结构利用浅台面将PN结区与吸收区进行隔离,使得浅台面处吸收区在无电场作用的情况下产生光生载流子,并通过扩散到电场区被收集,从而可以方便快捷地测试并获得超晶格吸收区的少子横向扩散长度,对超晶格红外探测材料的参数测试及性能表征有重要的意义。

Description

一种用来测量超晶格材料少子横向扩散长度的器件结构
技术领域
本发明涉及一种用来测量超晶格材料少子横向扩散长度的器件结构,它应用于超晶格台面探测材料扩散长度参数的测试与表征。
背景技术
InAs/GaSb II类超晶格是第三代红外焦平面探测器的优选材料,近年来,美国、德国、日本等国都在大力发展基于该II类超晶格的红外探测技术。InAs/GaSb异质材料体系具有十分特殊的能带排列结构,InAs禁带宽度小于InAs/GaSb的价带偏移,因此InAs的导带底在GaSb的价带顶之下,构成II类超晶格。这就导致电子和空穴在空间上是分离的,电子限制在InAs层中,而空穴限制在GaSb层中,其有效禁带宽度为电子微带至重空穴微带的能量差。成熟的III-V族化合物的分子束外延生长技术为高性能II类超晶格的制备提供了技术支持。
在这样的材料体系中,少子扩散长度、少子寿命等材料参数决定了探测器的光电性能,快速准确地测试超晶格材料的少子扩散长度对材料质量的表征和器件结构的设计都有非常重要的意义。
传统的平面结HgCdTe材料中,一般采用激光诱导电流(LBIC)的方法对少子扩散长度进行测试,通过注入形成的平面PN结区收集激光诱导的光生电流并拟合出材料的扩散长度。而超晶格材料为原位生长的探测器结构材料,因此无法直接通过LBIC测试获得扩散长度。
本发明提出了一种用来测量超晶格材料少子横向扩散长度的器件结构,利用浅台面的制备将吸收区与PN结隔离,使得浅台面处吸收区在无电场作用的情况下产生光生载流子,并通过扩散到电场区被收集,从而可以方便快捷地测试并获得超晶格吸收区的少子横向扩散长度,对超晶格红外探测材料的参数测试及性能表征有重要的意义。
发明内容
本发明的目的是设计了一种可以方便快捷测试超晶格吸收区少子横向扩散长度的器件结构,解决传统LBIC方法只能对平面结材料进行少子扩散长度测试的困难,通过简便快捷的方式对超晶格台面结构材料的吸收区的少子扩散长度参数进行测试;
如图1所示,本发明涉及的用来测量超晶格材料少子横向扩散长度的器件结构为:自GaSb衬底4自下而上依次为超晶格P型接触层1、超晶格弱P型吸收区2、超晶格N型接触区3,上电极TiPtAu5位于超晶格N型接触层1上,下电极TiPtAu6位于超晶格P型接触层1上,其特征在于:
所述的超晶格P型接触层1的结构为20-80周期超晶格,每周期由3-5nmInAs和2-4nm GaSb构成,P型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小为50μm×50μm-200μm×200μm;
所述的超晶格弱P型吸收区2的结构为100-800周期超晶格,每周期由3-5nm InAs和2-4nm GaSb构成,N型掺杂浓度为1015-1016cm-3,台面形成时该层平面尺寸大小为500μm×500μm-1000μm×1000μm,与超晶格P型接触层1形成浅台面;
所述的超晶格N型接触区3的结构为20-80周期超晶格,每周期由3-5nmInAs和2-4nm GaSb构成,N型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小与超晶格弱P型吸收区2相同;
本发明中涉及利用激光诱导电流(LBIC)对上述结构进行超晶格材料少子横向扩散长度测试的方法,其特征包括以下几个步骤:
LBIC测试中,红外激光从超晶格弱P型吸收区2浅台面的A点扫描到边缘B点,通过上下电极记录电流值随激光照射位置的变化曲线。
任一位置C测得的激光诱导电流值Ic与该位置到浅台面边缘A点的距离d的关系满足:
其中Ln为少子扩散长度。因此根据Ic与d的变化曲线可根据最小二乘法拟合获得扩散长度数值。
附图说明:
图1是用来测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件结构模型;其中,1是超晶格P型接触层、2是超晶格弱P型吸收区、3是超晶格N型接触区、4是GaSb衬底,5是上电极TiPtAu,6是下电极TiPtAu,上电极TiPtAu5位于超晶格P型接触层1上,下电极TiPtAu6位于超晶格N型接触层3上。
具体实施方式
实施例1:
根据发明内容,我们制备了一种用于测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件,具体结构如下:
超晶格P型接触层的结构为40周期超晶格,每周期由3nm InAs和2nmGaSb构成,P型掺杂浓度为1×1017cm-3,平面尺寸大小为50μm×50μm;
超晶格弱P型吸收区的结构为300周期超晶格,每周期由3nm InAs和2nmGaSb构成,N型掺杂浓度为5×1015cm-3,台面形成时该层平面尺寸大小为500μm×500μm,与超晶格P型接触层1形成浅台面;
超晶格N型接触区的结构为40周期超晶格,每周期由3nm InAs和2nmGaSb构成,N型掺杂浓度为1×1017cm-3,平面尺寸大小与超晶格弱P型吸收区相同;
实施例2:
根据发明内容,我们制备了第二种用于测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件,具体结构如下:
超晶格P型接触层的结构为60周期超晶格,每周期由3.5nm InAs和2.5nmGaSb构成,P型掺杂浓度为8×1016cm-3,平面尺寸大小为100μm×100μm;
超晶格弱P型吸收区的结构为400周期超晶格,每周期由3.5nm InAs和2.5nm GaSb构成,N型掺杂浓度为8×1015cm-3,台面形成时该层平面尺寸大小为800μm×800μm,与超晶格P型接触层1形成浅台面;
超晶格N型接触区的结构为60周期超晶格,每周期由3.5nm InAs和2.5nmGaSb构成,N型掺杂浓度为8×1016cm-3,平面尺寸大小与超晶格弱P型吸收区相同;
实施例3:
根据发明内容,我们制备了第三种用于测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件,具体结构如下:
超晶格P型接触层的结构为80周期超晶格,每周期由3nm InAs和2.5nmGaSb构成,P型掺杂浓度为2×1017cm-3,平面尺寸大小为150μm×150μm;
超晶格弱P型吸收区的结构为400周期超晶格,每周期由3nm InAs和2.5nm GaSb构成,N型掺杂浓度为1×1016cm-3,台面形成时该层平面尺寸大小为1000μm×1000μm,与超晶格P型接触层1形成浅台面;
超晶格N型接触区的结构为60周期超晶格,每周期由3nm InAs和2.5nmGaSb构成,N型掺杂浓度为2×1017cm-3,平面尺寸大小与超晶格弱P型吸收区相同。

Claims (1)

1.一种用来测量超晶格材料少子横向扩散长度的器件结构,其具体结构自GaSb(4)衬底向上依次为超晶格P型接触层(1)、超晶格弱P型吸收区(2)、超晶格N型接触区(3),上电极TiPtAu(5)位于超晶格N型接触层(1)上,下电极TiPtAu(6)位于衬底(4)上,其特征在于:
所述的超晶格P型接触层(1)的结构为20-80周期超晶格,每周期由3-5nm InAs和2-4nmGaSb构成,P型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小为50μm×50μm-200μm×200μm;
所述的超晶格弱P型吸收区(2)的结构为100-800周期超晶格,每周期由3-5nm InAs和2-4nm GaSb构成,N型掺杂浓度为1015-1016cm-3,台面形成时该层平面尺寸大小为500μm×500μm-1000μm×1000μm,与超晶格P型接触层(1)形成浅台面;
所述的超晶格N型接触区(3)的结构为20-80周期超晶格,每周期由3-5nm InAs和2-4nmGaSb构成,N型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小与超晶格弱P型吸收区(2)相同。
CN201810315001.3A 2018-04-10 2018-04-10 一种用来测量超晶格材料少子横向扩散长度的器件结构 Active CN108417663B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810315001.3A CN108417663B (zh) 2018-04-10 2018-04-10 一种用来测量超晶格材料少子横向扩散长度的器件结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810315001.3A CN108417663B (zh) 2018-04-10 2018-04-10 一种用来测量超晶格材料少子横向扩散长度的器件结构

Publications (2)

Publication Number Publication Date
CN108417663A CN108417663A (zh) 2018-08-17
CN108417663B true CN108417663B (zh) 2023-11-07

Family

ID=63135078

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810315001.3A Active CN108417663B (zh) 2018-04-10 2018-04-10 一种用来测量超晶格材料少子横向扩散长度的器件结构

Country Status (1)

Country Link
CN (1) CN108417663B (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102544229A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 甚长波InAs/GaSb二类超晶格红外探测器材料的制备方法
CN102534764A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
JP2012209357A (ja) * 2011-03-29 2012-10-25 Asahi Kasei Electronics Co Ltd 量子型赤外線センサ
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN105789364A (zh) * 2016-05-25 2016-07-20 中国科学院上海技术物理研究所 一种无铝型ii类超晶格长波双势垒红外探测器
WO2017051005A1 (fr) * 2015-09-25 2017-03-30 Thales Photodétecteur comprenant un empilement de couches superposées
CN106558633A (zh) * 2015-09-24 2017-04-05 中国科学院苏州纳米技术与纳米仿生研究所 平面结构的锑化物二类超晶格红外探测器及其制备方法
CN208225894U (zh) * 2018-04-10 2018-12-11 中国科学院上海技术物理研究所 用来测量超晶格材料少子横向扩散长度的器件结构

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9276159B2 (en) * 2012-12-21 2016-03-01 Teledyne Scientific & Imaging, Llc Superlattice structure
US9324900B2 (en) * 2013-08-01 2016-04-26 Teledyne Scientific & Imaging, Llc Method of fabricating a superlattice structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012209357A (ja) * 2011-03-29 2012-10-25 Asahi Kasei Electronics Co Ltd 量子型赤外線センサ
CN102544229A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 甚长波InAs/GaSb二类超晶格红外探测器材料的制备方法
CN102534764A (zh) * 2012-02-17 2012-07-04 中国科学院半导体研究所 Ⅱ类超晶格窄光谱红外光电探测器材料的外延生长方法
CN103887360A (zh) * 2014-04-16 2014-06-25 中国科学院半导体研究所 InAs/GaSb超晶格红外光电探测器及其制备方法
CN106558633A (zh) * 2015-09-24 2017-04-05 中国科学院苏州纳米技术与纳米仿生研究所 平面结构的锑化物二类超晶格红外探测器及其制备方法
WO2017051005A1 (fr) * 2015-09-25 2017-03-30 Thales Photodétecteur comprenant un empilement de couches superposées
CN105789364A (zh) * 2016-05-25 2016-07-20 中国科学院上海技术物理研究所 一种无铝型ii类超晶格长波双势垒红外探测器
CN208225894U (zh) * 2018-04-10 2018-12-11 中国科学院上海技术物理研究所 用来测量超晶格材料少子横向扩散长度的器件结构

Also Published As

Publication number Publication date
CN108417663A (zh) 2018-08-17

Similar Documents

Publication Publication Date Title
CN102144298B (zh) 纳米结构的光电二极管
Klem et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors
Qiu et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes
Wenus et al. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes
CN102484147B (zh) 具有纳米线的多结光生伏打电池
EP2300792A1 (en) Complementary barrier infrared detector
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
US20150243825A1 (en) Simultaneous dual-band detector
US9748430B2 (en) Staircase avalanche photodiode with a staircase multiplication region composed of an AIInAsSb alloy
US11637216B2 (en) Highly efficient optical to electrical conversion devices and MElHODS
CN105957908A (zh) 倍增区控制的雪崩光电二极管及其制造方法
CN103904152A (zh) 光电探测器及其制造方法和辐射探测器
JP2017199935A (ja) 平面のアバランシェ・フォトダイオード
JP2012216727A (ja) 受光素子、その製造方法および検出装置
CN213242573U (zh) 一种基于Sb化物的中短波双色红外探测器
CN208225894U (zh) 用来测量超晶格材料少子横向扩散长度的器件结构
CN108417663B (zh) 一种用来测量超晶格材料少子横向扩散长度的器件结构
CN115295646A (zh) 一种高性能光探测器芯片外延片
Xie et al. Self-Powered Short-Wavelength Infrared Photodetectors Composed of MXene/InGaAs Heterostructures
CN114122191A (zh) 一种雪崩光电探测器的制备方法
CN114068738A (zh) 势垒增强同型异质结ii类超晶格长/长波双色红外探测器
CN107240616A (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
Huang et al. Short/mid-wave two-band type-II superlattice infrared heterojunction phototransistor
US10002979B1 (en) Unipolar doping in photodiode and phototransistor
CN201078806Y (zh) 硅光电检测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant