CN107240616A - 具有本征层结构的InGaAs/InP光敏晶体管红外探测器 - Google Patents

具有本征层结构的InGaAs/InP光敏晶体管红外探测器 Download PDF

Info

Publication number
CN107240616A
CN107240616A CN201710436715.5A CN201710436715A CN107240616A CN 107240616 A CN107240616 A CN 107240616A CN 201710436715 A CN201710436715 A CN 201710436715A CN 107240616 A CN107240616 A CN 107240616A
Authority
CN
China
Prior art keywords
inp
intrinsic
thickness
photistor
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710436715.5A
Other languages
English (en)
Other versions
CN107240616B (zh
Inventor
谢红云
马佩
刘硕
高杰
吴佳辉
刘芮
张万荣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN201710436715.5A priority Critical patent/CN107240616B/zh
Publication of CN107240616A publication Critical patent/CN107240616A/zh
Application granted granted Critical
Publication of CN107240616B publication Critical patent/CN107240616B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/11Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors
    • H01L31/1105Devices sensitive to infrared, visible or ultraviolet radiation characterised by two potential barriers, e.g. bipolar phototransistors the device being a bipolar phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种具有本征层结构的InGaAs/InP光敏晶体管红外探测器。该探测器衬底材料为InP,从衬底往上依次为:InP缓冲层、In0.53Ga0.47As集电区、In0.53Ga0.47As本征层、In0.53Ga0.47As基区、InP发射区、InP帽层、In0.53Ga0.47As欧姆接触层。集电极在In0.53Ga0.47As集电区台面上;基极和基区光窗口在In0.53Ga0.47As基区台面上;发射极在In0.53Ga0.47As欧姆接触层上。本发明的基区和集电区之间存在In0.53Ga0.47As本征层,在集电极偏置为2V时完全耗尽,大大增加了集电结耗尽层的厚度,使大部分进入探测器的入射光被集电结耗尽层吸收。在集电结耗尽层产生的光生电子‑空穴对被其中的强电场分离,从而产生光生电流。因此,本发明具有比无本征层探测器更高的量子效率和光生电流。

Description

具有本征层结构的InGaAs/InP光敏晶体管红外探测器
技术领域
本发明属于半导体光电子技术领域,特别涉及一种具有高量子效率的InGaAs/InP光敏晶体管红外探测器。
背景技术
红外探测器在红外成像、红外遥感、精确测量、光纤传感、相控阵雷达、精确制导和红外光谱仪等领域起着关键性的作用。光敏晶体管红外探测器相比出现较早的雪崩光电探测器(APD)、金属-半导体-金属(MSM)光电探测器、PIN光电探测器,具有无雪崩引起的额外噪声、不需要高的偏置电压、结构简单和易与异质结晶体管(HBT)集成等优点,近年来得到了快速的发展。现有的光敏晶体管红外探测器采用基区和集电区作为光吸收区,主要依靠集电结耗尽层产生光生电流。因此,在光敏晶体管光吸收区面积一定时,要想提高其量子效率,需要增加集电结耗尽层的厚度。
降低集电区掺杂浓度、提高集电结反向偏置电压可以增加集电结耗尽层的厚度。但对现有的光敏晶体管红外探测器来说,降低集电区掺杂浓度会降低探测器的开关速度;提高集电结反向偏置电压则难以使集电结耗尽层厚度有较大程度的增加,同时会提高探测器的功耗。另外,现有光敏晶体管红外探测器集电结耗尽层厚度的增加还会受到其集电区厚度的限制。所以,我们需要提出新的方法来提高光敏晶体管红外探测器的量子效率。
发明内容
有鉴于此,本发明的主要目的是提供一种在1~1.6μm波段入射光下具有高的量子效率的光敏晶体管红外探测器。
为了达到上述目的,本发明提供一种具有本征层结构的InGaAs/InP光敏晶体管红外探测器,包括:
InP材料的衬底,起支撑外延层的作用。
InP缓冲层,厚度为0.5μm,n型掺杂,掺杂浓度为1017cm-3,以提高外延层生长质量。
In0.53Ga0.47As集电区,厚度为0.8μm,n型掺杂,掺杂浓度为1017~1018cm-3,确保探测器具有足够的反向击穿电压。
In0.53Ga0.47As本征层,厚度为1.5~2μm,确保探测器具有足够厚的光吸收区。
In0.53Ga0.47As基区,厚度为0.05~0.1μm,p型掺杂,掺杂浓度为1018~1019cm-3,以降低基区电阻。
InP发射区,厚度为0.05~0.1μm,n型掺杂,掺杂浓度为1017~1018cm-3,与In0.53Ga0.47As基区形成异质结以提高发射结注入效率。
InP帽层,厚度为1.5μm,n型掺杂,掺杂浓度为1019~1020cm-3,以降低串联电阻。
In0.53Ga0.47As欧姆接触层,厚度为0.1μm,n型掺杂,掺杂浓度为1019~1020cm-3,确保金属电极与InP帽层有良好的接触特性。
经过第一次刻蚀形成In0.53Ga0.47As集电区台面,并在此台面上制作集电极;经过第二次刻蚀形成In0.53Ga0.47As基区台面,在此台面上形成基区光窗口并制作基极;发射极在In0.53Ga0.47As欧姆接触层上。
与现有光敏晶体管红外探测器相比,本发明具有以下优点:
本发明创新地在光敏晶体管红外探测器的基区和集电区之间加入In0.53Ga0.47As本征层。由于其基区为p型重掺杂(掺杂浓度为1018~1019cm-3),在2V集电极偏置下,集电结耗尽层展宽至整个本征层。不同于现有光敏晶体管红外探测器的耗尽层主要落在集电区,本发明提出的光敏晶体管探测器集电结耗尽层包括已加入的本征层和部分集电区,整个耗尽层的厚度大大增加。当入射光照射本发明的光窗口时,集电结耗尽层吸收了大部分进入探测器的入射光。在集电结耗尽层产生的光生电子-空穴对被其中的强电场分离,从而产生光生电流。因此,本发明在1~1.6μm波段入射光下具有比无本征层结构的光敏晶体管探测器更高的量子效率和光生电流。
附图说明
为进一步说明本发明的技术特征,结合以下附图,对本发明作一个详细地描述,其中:
图1是本发明的二维结构示意图;
图2是本发明实施例在集电极偏置为2V下的能带结构;
图3是当入射光强为100W/cm2时,本发明实施例和无本征层结构的光敏晶体管在1~1.6μm波段下的量子效率曲线;
图4是当入射光强为100W/cm2时,本发明实施例和无本征层结构的光敏晶体管在1~1.6μm波段下的光生电流曲线。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,以下结合具体实施例,并参照附图,对本发明进一步详细说明。
参阅图1所示,本发明实施例提供的具有本征层结构的InGaAs/InP光敏晶体管红外探测器包括:
InP衬底1;由衬底往上依次为InP缓冲层2、In0.53Ga0.47As集电区3、In0.53Ga0.47As本征层4、In0.53Ga0.47As基区5、InP发射区6、InP帽层7和In0.53Ga0.47As欧姆接触层8。
优选地,所述的衬底1厚度为1μm,n型掺杂,掺杂浓度为1018cm-3
优选地,所述的缓冲层2厚度为0.5μm,n型掺杂,掺杂浓度为1017cm-3
优选地,所述的集电区3厚度为0.8μm,n型掺杂,掺杂浓度为1018cm-3
优选地,所述的本征层4厚度为1.5μm;
优选地,所述的基区5厚度为0.05μm,p型掺杂,掺杂浓度为1019cm-3
优选地,所述的发射区6厚度为0.08μm,n型掺杂,掺杂浓度为1017cm-3
优选地,所述的帽层7厚度为1.5μm,n型掺杂,掺杂浓度为1.5×1019cm-3
优选地,所述的欧姆接触层8厚度为0.1μm,n型掺杂,掺杂浓度为1.5×1019cm-3
经过第一次刻蚀形成宽度为7μm的In0.53Ga0.47As集电区台面,并在此台面上制作集电极;经过第二次刻蚀形成宽度为6μm的In0.53Ga0.47As基区台面,在此台面上形成宽度为4μm的基区光窗口并制作基极;发射极制作在In0.53Ga0.47As欧姆接触层上。
参阅图2所示,本实施例在集电极偏置为2V下,本征层是完全耗尽的。
为了说明本发明中In0.53Ga0.47As本征层对提高光敏晶体管光探测效率的作用,将本实施例的量子效率和光生电流与无本征层结构且外延层尺寸相同的光敏晶体管进行对比。
参阅图3所示,当入射光强为100W/cm2时,本实施例在1~1.6μm波段入射光下的量子效率高达98%~99%;无本征层结构的光敏晶体管在相同条件下的量子效率仅有65%~73%,且随入射光波长的增加,量子效率有明显地下降。
参阅图4所示,当入射光强为100W/cm2时,在1~1.6μm波段入射光下本实施例的光生电流明显大于无本征层结构的光敏晶体管,且随入射光波长的增加,二者的差距越大。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (1)

1.具有本征层结构的InGaAs/InP光敏晶体管红外探测器,其特征在于包括:
InP衬底;由衬底往上依次为:
InP缓冲层,厚度为0.5μm,n型掺杂,掺杂浓度为1017cm-3
In0.53Ga0.47As集电区,厚度为0.8μm,n型掺杂,掺杂浓度为1017~1018cm-3
In0.53Ga0.47As本征层,厚度为1.5~2μm;
In0.53Ga0.47As基区,厚度为0.05~0.1μm,p型掺杂,掺杂浓度为1018~1019cm-3
InP发射区,厚度为0.05~0.1μm,n型掺杂,掺杂浓度为1017~1018cm-3
InP帽层,厚度为1.5μm,n型掺杂,掺杂浓度为1019~1020cm-3
In0.53Ga0.47As欧姆接触层,厚度为0.1μm,n型掺杂,掺杂浓度为1019~1020cm-3
CN201710436715.5A 2017-06-12 2017-06-12 具有本征层结构的InGaAs/InP光敏晶体管红外探测器 Active CN107240616B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710436715.5A CN107240616B (zh) 2017-06-12 2017-06-12 具有本征层结构的InGaAs/InP光敏晶体管红外探测器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710436715.5A CN107240616B (zh) 2017-06-12 2017-06-12 具有本征层结构的InGaAs/InP光敏晶体管红外探测器

Publications (2)

Publication Number Publication Date
CN107240616A true CN107240616A (zh) 2017-10-10
CN107240616B CN107240616B (zh) 2018-11-13

Family

ID=59986243

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710436715.5A Active CN107240616B (zh) 2017-06-12 2017-06-12 具有本征层结构的InGaAs/InP光敏晶体管红外探测器

Country Status (1)

Country Link
CN (1) CN107240616B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420869A (zh) * 2020-09-30 2021-02-26 无锡中科德芯光电感知技术研究院有限公司 一种高In组分台面型InGaAs焦平面探测器及其制备方法
CN112490302A (zh) * 2020-12-03 2021-03-12 中国科学院半导体研究所 一种多电极的高速光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221996A (zh) * 2008-01-23 2008-07-16 厦门大学 基于虚衬底的硅锗异质结光晶体管
CN103545398A (zh) * 2013-10-16 2014-01-29 北京工业大学 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
US20140264437A1 (en) * 2013-03-15 2014-09-18 Sensors Unlimited, Inc. Epitaxial structure for vertically integrated charge transfer gate technology in optoelectronic materials
CN104576811A (zh) * 2015-01-27 2015-04-29 苏州苏纳光电有限公司 近中红外波双色探测器及其制备方法
CN106449854A (zh) * 2016-10-13 2017-02-22 中国科学院上海技术物理研究所 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221996A (zh) * 2008-01-23 2008-07-16 厦门大学 基于虚衬底的硅锗异质结光晶体管
US20140264437A1 (en) * 2013-03-15 2014-09-18 Sensors Unlimited, Inc. Epitaxial structure for vertically integrated charge transfer gate technology in optoelectronic materials
CN103545398A (zh) * 2013-10-16 2014-01-29 北京工业大学 基区渐变的单向载流子传输的双异质结光敏晶体管探测器
CN104576811A (zh) * 2015-01-27 2015-04-29 苏州苏纳光电有限公司 近中红外波双色探测器及其制备方法
CN106449854A (zh) * 2016-10-13 2017-02-22 中国科学院上海技术物理研究所 全耗尽铁电侧栅单根纳米线近红外光电探测器及制备方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112420869A (zh) * 2020-09-30 2021-02-26 无锡中科德芯光电感知技术研究院有限公司 一种高In组分台面型InGaAs焦平面探测器及其制备方法
CN112420869B (zh) * 2020-09-30 2022-05-10 无锡中科德芯感知科技有限公司 一种高In组分台面型InGaAs焦平面探测器及其制备方法
CN112490302A (zh) * 2020-12-03 2021-03-12 中国科学院半导体研究所 一种多电极的高速光电探测器及其制备方法
CN112490302B (zh) * 2020-12-03 2023-03-24 中国科学院半导体研究所 一种多电极的高速光电探测器及其制备方法

Also Published As

Publication number Publication date
CN107240616B (zh) 2018-11-13

Similar Documents

Publication Publication Date Title
CN105742397B (zh) 一种可见光到红外光探测的宽波段光电二极管
CN106531822B (zh) 一种光电探测器
CN103887362B (zh) 一种带有深n阱的np型cmos雪崩光电二极管
Qiu et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes
KR101052030B1 (ko) 전자기 방사 컨버터
US5016073A (en) Photodetector semiconductor which does not require extensive cooling
RU2641620C1 (ru) Лавинный фотодетектор
CN105789347A (zh) 基于GeSn-GeSi材料的异质型光电晶体管及其制作方法
CN106356419B (zh) 一种含埋氧层结构的光电探测器
CN113035982A (zh) 全硅掺杂多结电场增强型锗光波导探测器
CN101090138A (zh) P+pin硅光电探测器
CN108666382B (zh) Soi基lsambm雪崩光电二极管及其制备方法
CN112259626A (zh) 一种850nm波段单载流子高速探测器
CN107240616B (zh) 具有本征层结构的InGaAs/InP光敏晶体管红外探测器
CN110197859B (zh) 一种工作在可见光波段的高带宽cmos apd光电器件
CN106960852B (zh) 具有漂移沟道的紫外雪崩光电二极管探测器及其探测方法
CN213212174U (zh) 一种850nm波段单载流子高速探测器
CN207572377U (zh) 一种多漂移环结构的紫外雪崩漂移探测器
Jegannathan et al. Current assisted avalanche photo diodes (CAAPDs) with separate absorption and multiplication region in conventional CMOS
CN110660878B (zh) 一种平面碲镉汞雪崩二极管探测器及其制备方法
US20040036146A1 (en) Phototransistor device with fully depleted base region
CN115295646A (zh) 一种高性能光探测器芯片外延片
CN211957666U (zh) 应用于高灵敏光耦隔离芯片传感前端的光电雪崩二极管
RU2310949C1 (ru) Фотодиодный приемник инфракрасного излучения
CN103247675B (zh) 具备光电转换和放大功能的异质结三极管

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant