CN208225894U - 用来测量超晶格材料少子横向扩散长度的器件结构 - Google Patents

用来测量超晶格材料少子横向扩散长度的器件结构 Download PDF

Info

Publication number
CN208225894U
CN208225894U CN201820500293.3U CN201820500293U CN208225894U CN 208225894 U CN208225894 U CN 208225894U CN 201820500293 U CN201820500293 U CN 201820500293U CN 208225894 U CN208225894 U CN 208225894U
Authority
CN
China
Prior art keywords
superlattice
superlattices
diffusion length
type
uptake zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201820500293.3U
Other languages
English (en)
Inventor
周易
陈建新
田源
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Technical Physics of CAS
Original Assignee
Shanghai Institute of Technical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Technical Physics of CAS filed Critical Shanghai Institute of Technical Physics of CAS
Priority to CN201820500293.3U priority Critical patent/CN208225894U/zh
Application granted granted Critical
Publication of CN208225894U publication Critical patent/CN208225894U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本专利公开了一种用来测量超晶格材料少子横向扩散长度的器件结构。超晶格材料是一种多周期交叠生长的量子结构材料,与传统的平面结HgCdTe材料相比,超晶格探测器一般为原位掺杂的台面结构,无法直接通过激光诱导电流的方法测试吸收区的少子扩散长度。本专利公开的结构利用浅台面将PN结区与吸收区进行隔离,使得浅台面处吸收区在无电场作用的情况下产生光生载流子,并通过扩散到电场区被收集,从而可以方便快捷地测试并获得超晶格吸收区的少子横向扩散长度,对超晶格红外探测材料的参数测试及性能表征有重要的意义。

Description

用来测量超晶格材料少子横向扩散长度的器件结构
技术领域
本专利涉及一种用来测量超晶格材料少子横向扩散长度的器件结构,它应用于超晶格台面探测材料扩散长度参数的测试与表征。
背景技术
InAs/GaSb II类超晶格是第三代红外焦平面探测器的优选材料,近年来,美国、德国、日本等国都在大力发展基于该II类超晶格的红外探测技术。InAs/GaSb异质材料体系具有十分特殊的能带排列结构,InAs禁带宽度小于InAs/GaSb的价带偏移,因此InAs的导带底在GaSb的价带顶之下,构成II类超晶格。这就导致电子和空穴在空间上是分离的,电子限制在InAs层中,而空穴限制在GaSb层中,其有效禁带宽度为电子微带至重空穴微带的能量差。成熟的III-V族化合物的分子束外延生长技术为高性能II类超晶格的制备提供了技术支持。
在这样的材料体系中,少子扩散长度、少子寿命等材料参数决定了探测器的光电性能,快速准确地测试超晶格材料的少子扩散长度对材料质量的表征和器件结构的设计都有非常重要的意义。
传统的平面结HgCdTe材料中,一般采用激光诱导电流(LBIC)的方法对少子扩散长度进行测试,通过注入形成的平面PN结区收集激光诱导的光生电流并拟合出材料的扩散长度。而超晶格材料为原位生长的探测器结构材料,因此无法直接通过LBIC测试获得扩散长度。
本专利提出了一种用来测量超晶格材料少子横向扩散长度的器件结构,利用浅台面的制备将吸收区与PN结隔离,使得浅台面处吸收区在无电场作用的情况下产生光生载流子,并通过扩散到电场区被收集,从而可以方便快捷地测试并获得超晶格吸收区的少子横向扩散长度,对超晶格红外探测材料的参数测试及性能表征有重要的意义。
发明内容
本专利的目的是设计了一种可以方便快捷测试超晶格吸收区少子横向扩散长度的器件结构,解决传统LBIC方法只能对平面结材料进行少子扩散长度测试的困难,通过简便快捷的方式对超晶格台面结构材料的吸收区的少子扩散长度参数进行测试;
如图1所示,本专利涉及的用来测量超晶格材料少子横向扩散长度的器件结构为:自GaSb衬底4自下而上依次为超晶格P型接触层1、超晶格弱P型吸收区2、超晶格N型接触区3,上电极TiPtAu5位于超晶格N型接触层1上,下电极TiPtAu6位于超晶格P型接触层1上,其特征在于:
所述的超晶格P型接触层1的结构为20-80周期超晶格,每周期由3-5nmInAs和2-4nm GaSb构成,P型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小为50μm×50μm-200μm×200μm;
所述的超晶格弱P型吸收区2的结构为100-800周期超晶格,每周期由3-5nm InAs和2-4nm GaSb构成,N型掺杂浓度为1015-1016cm-3,台面形成时该层平面尺寸大小为500μm×500μm-1000μm×1000μm,与超晶格P型接触层1形成浅台面;
所述的超晶格N型接触区3的结构为20-80周期超晶格,每周期由3-5nmInAs和2-4nm GaSb构成,N型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小与超晶格弱P型吸收区2相同;
本专利中涉及利用激光诱导电流(LBIC)对上述结构进行超晶格材料少子横向扩散长度测试的方法,其特征包括以下几个步骤:
LBIC测试中,红外激光从超晶格弱P型吸收区2浅台面的A点扫描到边缘B点,通过上下电极记录电流值随激光照射位置的变化曲线。
任一位置C测得的激光诱导电流值Ic与该位置到浅台面边缘A点的距离d的关系满足:
其中Ln为少子扩散长度。因此根据Ic与d的变化曲线可根据最小二乘法拟合获得扩散长度数值。
附图说明:
图1是用来测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件结构模型;其中,1是超晶格P型接触层、2是超晶格弱P型吸收区、3是超晶格N型接触区、4是GaSb衬底,5是上电极TiPtAu,6是下电极TiPtAu,上电极TiPtAu5位于超晶格P型接触层1上,下电极TiPtAu6位于超晶格N型接触层3上。
具体实施方式
实施例1:
根据专利内容,我们制备了一种用于测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件,具体结构如下:
超晶格P型接触层的结构为40周期超晶格,每周期由3nm InAs和2nmGaSb构成,P型掺杂浓度为1×1017cm-3,平面尺寸大小为50μm×50μm;
超晶格弱P型吸收区的结构为300周期超晶格,每周期由3nm InAs和2nmGaSb构成,N型掺杂浓度为5×1015cm-3,台面形成时该层平面尺寸大小为500μm×500μm,与超晶格P型接触层1形成浅台面;
超晶格N型接触区的结构为40周期超晶格,每周期由3nm InAs和2nmGaSb构成,N型掺杂浓度为1×1017cm-3,平面尺寸大小与超晶格弱P型吸收区相同;
实施例2:
根据专利内容,我们制备了第二种用于测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件,具体结构如下:
超晶格P型接触层的结构为60周期超晶格,每周期由3.5nm InAs和2.5nmGaSb构成,P型掺杂浓度为8×1016cm-3,平面尺寸大小为100μm×100μm;
超晶格弱P型吸收区的结构为400周期超晶格,每周期由3.5nm InAs和2.5nm GaSb构成,N型掺杂浓度为8×1015cm-3,台面形成时该层平面尺寸大小为800μm×800μm,与超晶格P型接触层1形成浅台面;
超晶格N型接触区的结构为60周期超晶格,每周期由3.5nm InAs和2.5nmGaSb构成,N型掺杂浓度为8×1016cm-3,平面尺寸大小与超晶格弱P型吸收区相同;
实施例3:
根据专利内容,我们制备了第三种用于测量InAs/GaSb II类超晶格材料少子横向扩散长度的浅台面器件,具体结构如下:
超晶格P型接触层的结构为80周期超晶格,每周期由3nm InAs和2.5nmGaSb构成,P型掺杂浓度为2×1017cm-3,平面尺寸大小为150μm×150μm;
超晶格弱P型吸收区的结构为400周期超晶格,每周期由3nm InAs和2.5nm GaSb构成,N型掺杂浓度为1×1016cm-3,台面形成时该层平面尺寸大小为1000μm×1000μm,与超晶格P型接触层1形成浅台面;
超晶格N型接触区的结构为60周期超晶格,每周期由3nm InAs和2.5nmGaSb构成,N型掺杂浓度为2×1017cm-3,平面尺寸大小与超晶格弱P型吸收区相同。

Claims (1)

1.一种用来测量超晶格材料少子横向扩散长度的器件结构,其具体结构自GaSb(4)衬底向上依次为超晶格P型接触层(1)、超晶格弱P型吸收区(2)、超晶格N型接触区(3),上电极TiPtAu(5)位于超晶格N型接触层(1)上,下电极TiPtAu(6)位于超晶格P型接触层(1)上,其特征在于:
所述的超晶格P型接触层(1)的结构为20-80周期超晶格,每周期由3-5nm InAs和2-4nmGaSb构成,P型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小为50μm×50μm-200μm×200μm;
所述的超晶格弱P型吸收区(2)的结构为100-800周期超晶格,每周期由3-5nm InAs和2-4nm GaSb构成,N型掺杂浓度为1015-1016cm-3,台面形成时该层平面尺寸大小为500μm×500μm-1000μm×1000μm,与超晶格P型接触层(1)形成浅台面;
所述的超晶格N型接触区(3)的结构为20-80周期超晶格,每周期由3-5nm InAs和2-4nmGaSb构成,N型掺杂浓度为5×1016-5×1017cm-3,平面尺寸大小与超晶格弱P型吸收区(2)相同。
CN201820500293.3U 2018-04-10 2018-04-10 用来测量超晶格材料少子横向扩散长度的器件结构 Active CN208225894U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201820500293.3U CN208225894U (zh) 2018-04-10 2018-04-10 用来测量超晶格材料少子横向扩散长度的器件结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201820500293.3U CN208225894U (zh) 2018-04-10 2018-04-10 用来测量超晶格材料少子横向扩散长度的器件结构

Publications (1)

Publication Number Publication Date
CN208225894U true CN208225894U (zh) 2018-12-11

Family

ID=64514549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201820500293.3U Active CN208225894U (zh) 2018-04-10 2018-04-10 用来测量超晶格材料少子横向扩散长度的器件结构

Country Status (1)

Country Link
CN (1) CN208225894U (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417663A (zh) * 2018-04-10 2018-08-17 中国科学院上海技术物理研究所 一种用来测量超晶格材料少子横向扩散长度的器件结构

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417663A (zh) * 2018-04-10 2018-08-17 中国科学院上海技术物理研究所 一种用来测量超晶格材料少子横向扩散长度的器件结构
CN108417663B (zh) * 2018-04-10 2023-11-07 中国科学院上海技术物理研究所 一种用来测量超晶格材料少子横向扩散长度的器件结构

Similar Documents

Publication Publication Date Title
Klem et al. Comparison of nBn and nBp mid-wave barrier infrared photodetectors
Cook et al. Electron and hole impact ionization coefficients in InP determined by photomultiplication measurements
Wenus et al. Two-dimensional analysis of double-layer heterojunction HgCdTe photodiodes
Hu et al. Dependence of ion-implant-induced LBIC novel characteristic on excitation intensity for long-wavelength HgCdTe-based photovoltaic infrared detector pixel arrays
Qiu et al. Dark current transport and avalanche mechanism in HgCdTe electron-avalanche photodiodes
US20150243825A1 (en) Simultaneous dual-band detector
Rhiger et al. Carrier transport in the valence band of nBn III–V superlattice infrared detectors
Abedin et al. AlGaAsSb-InGaAsSb HPTs with high optical gain and wide dynamic range
Musca et al. Junction depth measurement in HgCdTe using laser beam induced current (LBIC)
CN208225894U (zh) 用来测量超晶格材料少子横向扩散长度的器件结构
Redfern et al. Interpretation of current flow in photodiode structures using laser beam-induced current for characterization and diagnostics
Moczała et al. Investigation of multi-junction solar cells using electrostatic force microscopy methods
Musca et al. Analysis of crosstalk in HgCdTe p-on-n heterojunction photovoltaic infrared sensing arrays
Hou et al. PHOTOELECTRONIC PROPERTIES OF ION‐IMPLANTED CdS
Morschbach et al. Visible light emission by a reverse-biased integrated silicon diode
CN108417663B (zh) 一种用来测量超晶格材料少子横向扩散长度的器件结构
Chen et al. Temperature dependence on photosensitive area extension in mercury cadmium telluride photodiodes using laser beam induced current
Redfern et al. Characterization of electrically active defects in photovoltaic detector arrays using laser beam-induced current
Bai et al. Structural optimization of 4H-SiC BJT for ultraviolet detection with high optical gain
Yagi et al. Evaluation of selective energy contact for hot carrier solar cells based on III–V semiconductors
Krakers et al. Reverse breakdown and light-emission patterns studied in Si PureB SPADs
Guang-Hua et al. A photovoltaic InAs quantum-dot infrared photodetector
CN201078806Y (zh) 硅光电检测器
CN103576070B (zh) 一种通过光伏测量提取肖特基势垒高度的方法
Klem et al. Epitaxially passivated mesa-isolated InGaAs photodetectors

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant