CN111446332A - 一种AlGaN单极载流子日盲紫外探测器及其制备方法 - Google Patents

一种AlGaN单极载流子日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
CN111446332A
CN111446332A CN202010305301.0A CN202010305301A CN111446332A CN 111446332 A CN111446332 A CN 111446332A CN 202010305301 A CN202010305301 A CN 202010305301A CN 111446332 A CN111446332 A CN 111446332A
Authority
CN
China
Prior art keywords
algan
electrode
solar blind
growing
detector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010305301.0A
Other languages
English (en)
Inventor
黎大兵
蒋科
孙晓娟
陈洋
贾玉萍
臧行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Original Assignee
Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changchun Institute of Optics Fine Mechanics and Physics of CAS filed Critical Changchun Institute of Optics Fine Mechanics and Physics of CAS
Priority to CN202010305301.0A priority Critical patent/CN111446332A/zh
Publication of CN111446332A publication Critical patent/CN111446332A/zh
Priority to PCT/CN2020/110792 priority patent/WO2021208316A1/zh
Priority to CN202010854740.7A priority patent/CN112038448B/zh
Priority to US17/324,118 priority patent/US11495707B2/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供的AlGaN单极载流子日盲紫外探测器,基于AlGaN极化效应,利用p‑AlxGa1‑xN/i‑AlyGa1‑yN/n‑AlxGa1‑xN(0.45=<x<y)的双异质结作为探测器的主要结构,充分利用由n型AlGaN指向p型AlGaN的极化内建电场增强i型吸收区的电场强度,增强载流子吸收分离效率;同时,利用p‑AlxGa1‑xN/i‑AlyGa1‑yN异质结的价带带阶有效限制空穴进入吸收区与电子复合,提高载流子寿命;与此同时,在器件制备时设计结构,令光生空穴难以参与到光电导中,实现电子单极导电,从而获得高响应速度和高增益电流。

Description

一种AlGaN单极载流子日盲紫外探测器及其制备方法
技术领域
本发明涉及半导体技术领域,特别涉及一种AlGaN单极载流子日盲紫外探测器。
背景技术
波长处于200nm~280nm的太阳辐射极少能到达地球表面,因而在军事及民用领域日盲紫外探测都有着非常重要的应用。AlGaN材料的禁带宽度在3.4eV至6.2eV连续可调,对应的波长在200nm至365nm,是AlGaN单极载流子日盲紫外探测器的重要基础材料之一。目前,多种基于AlGaN材料的紫外探测器被研究,其结构类型包括光电导型、肖特基型、MSM型、p-n结型以及APD型。当前,各种类型的AlGaN基AlGaN单极载流子日盲紫外探测器均基于电子与空穴同时导电的工作模式。在此模式之下,电子空穴复合概率提高、复合速率增加、载流子寿命缩短。由此将引起探测器增益值低下、复合噪声强、响应速度慢,难以满足高速度、高灵敏度的探测需求。
AlGaN材料具有很强的自发极化效应。根据高斯定理,极化强度的变化将在界面位置引起极化电荷,极化电荷的密度和带电类型由极化强度变化的大小与方向决定。AlGaN材料丰富的异质结结构为极化电场的调控和利用创造了良好的条件。对于AlGaN异质结而言,当沿着(0001)方向生长的异质结组分变大,则在界面处形成正极化电荷;当沿着(0001)方向生长的异质结组分减小,则在界面处形成负极化电荷。当形成双异质结AlGaN后,则由于界面电荷的作用,异质结AlGaN区域将产生极化内建电场。该极化内建电场对于光生载流子的分离可以起到重要作用,对于探测器结构的设计具有显著作用。
发明内容
有鉴如此,有必要针对现有技术存在的缺陷,提供一种能够实现单极载流子导电高性能的AlGaN单极载流子日盲紫外探测器。
为实现上述目的,本发明采用下述技术方案:
本发明提供了一种AlGaN单极载流子日盲紫外探测器的制备方法,包括下述步骤:
提供一氮化物材料生长的衬底;
在所述衬底上生长AlN模板;
在所述AlN模板上生长n-AlxGa1-xN,x>=0.45;
在所述n-AlxGa1-xN上生长i-AlyGa1-yN,y>x;
在所述i-AlyGa1-yN上生长p-AlxGa1-xN;
在所述p-AlxGa1-xN上生长p-GaN;
在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面;
在所述光敏台面刻蚀环形沟道,并刻蚀至i-AlyGa1-yN层;
在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,并刻蚀至p-AlxGa1-xN层;
在经过刻蚀的光敏台面周围镀n电极,并快速热退火;
在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火。
在一些较佳的实施例中,在提供一氮化物材料生长的衬底的步骤中,所述氮化物材料生长衬底选择蓝宝石或AlN。
在一些较佳的实施例中,在所述AlN模板上生长n-AlxGa1-xN,x>=0.45的步骤中,所述n-AlxGa1-xN的厚度300nm,组分为0.45,掺杂浓度>5e18cm-3
在一些较佳的实施例中,在所述n-AlxGa1-xN上生长i-AlyGa1-yN,y>x的步骤中,所述i-AlyGa1-yN的厚度200~300nm,组分为0.6,非故意掺杂。
在一些较佳的实施例中,在所述i-AlyGa1-yN上生长p-AlxGa1-xN的步骤中,所述p-AlxGa1-xN的厚度10~50nm,组分为0.45,掺杂浓度>2e18cm-3
在一些较佳的实施例中,在所述p-AlxGa1-xN上生长p-GaN的步骤中,所述p-GaN的厚度50~150nm,掺杂浓度>5e18cm-3
在一些较佳的实施例中,在经过刻蚀的光敏台面周围镀n电极,并快速热退火的步骤中,所述n电极选择Ti/Al/Ni/Au。
在一些较佳的实施例中,在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火的步骤中,所述p电极选择Ni/Au。
另外,本发明还提供了采用上述制备方法制备得到的AlGaN单极载流子日盲紫外探测器。
本发明采用上述技术方案的优点是:
本发明提供的AlGaN单极载流子日盲紫外探测器,基于AlGaN极化效应,利用p-AlxGa1-xN/i-AlyGa1-yN/n-AlxGa1-xN(0.45=<x<y)的双异质结作为探测器的主要结构,充分利用由n型AlGaN指向p型AlGaN的极化内建电场增强i型吸收区的电场强度,增强载流子吸收分离效率;同时,利用p-AlxGa1-xN/i-AlyGa1-yN异质结的价带带阶有效限制空穴进入吸收区与电子复合,提高载流子寿命;与此同时,在器件制备时设计结构,令光生空穴难以参与到光电导中,实现电子单极导电,从而获得高响应速度和高增益电流。
本发明提供的AlGaN单极载流子日盲紫外探测器的制备方法,工艺简单,适合工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的AlGaN单极载流子日盲紫外探测器的步骤流程图。
图2为本发明实施例提供的AlGaN单极载流子日盲紫外探测器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,为本发明实施例提供的AlGaN单极载流子日盲紫外探测器的制备方法的步骤流程图,包括下述步骤:
步骤S110:提供一氮化物材料生长的衬底。
在一些实施例中,所述氮化物材料生长衬底选择蓝宝石或AlN。
步骤S120:在所述衬底上生长AlN模板。
具体地,利用MOCVD、MBE或HVPE等生长方法在所述衬底上生长AlN模板,优选的生长温度1300℃。
步骤S130:在所述AlN模板上生长n-AlxGa1-xN,x>=0.45。
具体地,利用MOCVD或MBE等外延方法在AlN模板上生长n-AlxGa1-xN外延层。
在一些较佳的实施例中,所述n-AlxGa1-xN的厚度300nm,组分为0.45,掺杂浓度>5e18cm-3
步骤S140:在所述n-AlxGa1-xN上生长i-AlyGa1-yN,y>x。
具体地,利用MOCVD或MBE等生长方法在n-AlxGa1-xN外延层上生长i-AlyGa1-yN外延层。
在一些较佳的实施例中,所述i-AlyGa1-yN的厚度200~300nm,组分为0.6,非故意掺杂。
步骤S150:在所述i-AlyGa1-yN上生长p-AlxGa1-xN。
具体地,利用MOCVD或MBE等生长方法在i-AlyGa1-yN外延层上生长p-AlxGa1-xN外延层。
在一些较佳的实施例中,所述p-AlxGa1-xN的厚度10~50nm,组分为0.45,掺杂浓度>2e18cm-3
步骤S160:在所述p-AlxGa1-xN上生长p-GaN。
具体地,利用MOCVD或MBE等生长方法在p-AlxGa1-XN外延层上生长p-GaN外延层。
在一些较佳的实施例中,所述p-GaN的厚度50~150nm,掺杂浓度>5e18cm-3
步骤S170:在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面。
具体地,利用感应耦合等离子体(ICP)刻蚀技术,在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面,台面刻蚀气体为Cl2与BCl3,刻蚀深度至n-AlxGa1-xN层,刻蚀深度由刻蚀时间决定。
步骤S180:在所述光敏台面刻蚀环形沟道,并刻蚀至i-AlyGa1-yN层。
具体地,利用感应耦合等离子体(ICP)刻蚀技术,在所述光敏台面刻蚀环形沟道,环形隔离沟道刻蚀气体为Cl2与BCl3,刻蚀深度至i-AlyGa1-yN层。
步骤S190:在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,并刻蚀至p-AlxGa1-xN层。
具体地,利用感应耦合等离子体(ICP)刻蚀技术在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,刻蚀气体为Cl2与BCl3,刻蚀深度至p-AlxGa1-xN层。
步骤S210:在经过刻蚀的光敏台面周围镀n电极,并快速热退火。
具体地,利用光刻在n-AlxGa1-xN层上形成电极制备区,利用真空蒸发或者磁控溅射等方式沉积n-AlxGa1-xN欧姆接触电极金属。
在一些较佳的实施例中,所述n电极选择Ti/Al/Ni/Au。
步骤S220:在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火。
具体地,利用光刻在环形隔离沟道外侧p-GaN外延层上形成电极制备区,利用真空蒸发或者磁控溅射等方式沉积p-GaN欧姆接触电极金属。
在一些较佳的实施例中,所述p电极选择Ni/Au。
请参阅图2,为本发明上述制备方法制备得到的AlGaN单极载流子日盲紫外探测器的结构示意图,其中,蓝宝石衬底1;AlN外延层2;n-AlxGa1-xN 3;i-AlyGa1-yN 4;p-AlxGa1-xN5;p-GaN 6;环形沟道7;n型欧姆电极8;p型欧姆电极9。
本发明上述实施例提供的AlGaN单极载流子日盲紫外探测器的制备方法,工艺简单,适合工业化生产;制备得到的AlGaN单极载流子日盲紫外探测器,基于AlGaN极化效应,利用p-AlxGa1-xN/i-AlyGa1-yN/n-AlxGa1-xN(0.45=<x<y)的双异质结作为探测器的主要结构,充分利用由n型AlGaN指向p型AlGaN的极化内建电场增强i型吸收区的电场强度,增强载流子吸收分离效率;同时,利用p-AlxGa1-xN/i-AlyGa1-yN异质结的价带带阶有效限制空穴进入吸收区与电子复合,提高载流子寿命;与此同时,在器件制备时设计结构,令光生空穴难以参与到光电导中,实现电子单极导电,从而获得高响应速度和高增益电流。
当然本发明的AlGaN单极载流子日盲紫外探测器还可具有多种变换及改型,并不局限于上述实施方式的具体结构。总之,本发明的保护范围应包括那些对于本领域普通技术人员来说显而易见的变换或替代以及改型。

Claims (9)

1.一种AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,包括下述步骤:
提供一氮化物材料生长的衬底;
在所述衬底上生长AlN模板;
在所述AlN模板上生长n-AlxGa1-xN,x>=0.45;
在所述n-AlxGa1-xN上生长i-AlyGa1-yN,y>x;
在所述i-AlyGa1-yN上生长p-AlxGa1-xN;
在所述p-AlxGa1-xN上生长p-GaN;
在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面;
在所述光敏台面刻蚀环形沟道,并刻蚀至i-AlyGa1-yN层;
在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,并刻蚀至p-AlxGa1-xN层;
在经过刻蚀的光敏台面周围镀n电极,并快速热退火;
在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火。
2.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在提供一氮化物材料生长的衬底的步骤中,所述氮化物材料生长衬底选择蓝宝石或AlN。
3.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述AlN模板上生长n-AlxGa1-xN,x>=0.45的步骤中,所述n-AlxGa1-xN的厚度为300nm,组分为0.45,掺杂浓度>5e18cm-3
4.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述n-AlxGa1-xN上生长i-AlyGa1-yN,y>x的步骤中,所述i-AlyGa1-yN的厚度为200~300nm,组分为0.6,非故意掺杂。
5.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述i-AlyGa1-yN上生长p-AlxGa1-xN的步骤中,所述p-AlxGa1-xN的厚度为10~50nm,组分为0.45,掺杂浓度为>2e18cm-3
6.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述p-AlxGa1-xN上生长p-GaN的步骤中,所述p-GaN的厚度为50~150nm,掺杂浓度>5e18cm-3
7.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在经过刻蚀的光敏台面周围镀n电极,并快速热退火的步骤中,所述n电极选择Ti/Al/Ni/Au。
8.如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火的步骤中,所述p电极选择Ni/Au。
9.一种AlGaN单极载流子日盲紫外探测器,其特征在于,由权利要求1至8任一项所述的制备方法制备得到。
CN202010305301.0A 2020-04-17 2020-04-17 一种AlGaN单极载流子日盲紫外探测器及其制备方法 Withdrawn CN111446332A (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202010305301.0A CN111446332A (zh) 2020-04-17 2020-04-17 一种AlGaN单极载流子日盲紫外探测器及其制备方法
PCT/CN2020/110792 WO2021208316A1 (zh) 2020-04-17 2020-08-24 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN202010854740.7A CN112038448B (zh) 2020-04-17 2020-08-24 一种AlGaN单极载流子日盲紫外探测器及其制备方法
US17/324,118 US11495707B2 (en) 2020-04-17 2021-05-19 AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010305301.0A CN111446332A (zh) 2020-04-17 2020-04-17 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN111446332A true CN111446332A (zh) 2020-07-24

Family

ID=71653223

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010305301.0A Withdrawn CN111446332A (zh) 2020-04-17 2020-04-17 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN202010854740.7A Active CN112038448B (zh) 2020-04-17 2020-08-24 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202010854740.7A Active CN112038448B (zh) 2020-04-17 2020-08-24 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Country Status (2)

Country Link
CN (2) CN111446332A (zh)
WO (1) WO2021208316A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208316A1 (zh) * 2020-04-17 2021-10-21 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法
US11495707B2 (en) 2020-04-17 2022-11-08 Changchun Institute Of Optics, Fine Mechanics And Physics, Chinese Academy Of Sciences AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296736B (zh) * 2022-07-21 2023-07-25 中国科学院半导体研究所 日盲紫外通讯探测器、制备方法及通讯方法
CN116532808A (zh) * 2023-05-17 2023-08-04 泰兰特激光技术(武汉)有限公司 一种局域改变无机非金属材料表面载流子浓度的方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278435A (en) * 1992-06-08 1994-01-11 Apa Optics, Inc. High responsivity ultraviolet gallium nitride detector
US6559038B2 (en) * 1997-11-18 2003-05-06 Technologies And Devices International, Inc. Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6483130B1 (en) * 1999-03-24 2002-11-19 Honeywell International Inc. Back-illuminated heterojunction photodiode
CN101640227B (zh) * 2009-09-07 2012-12-05 中国科学院微电子研究所 具有自增益的日盲型AlGaN紫外探测器及其制备方法
CN102201484B (zh) * 2011-05-06 2013-01-09 中国科学院上海技术物理研究所 具有二次台面包裹电极的AlGaN紫外探测器及制备方法
US20130292685A1 (en) * 2012-05-05 2013-11-07 Texas Tech University System Structures and Devices Based on Boron Nitride and Boron Nitride-III-Nitride Heterostructures
JP6721816B2 (ja) * 2015-06-29 2020-07-15 株式会社タムラ製作所 窒化物半導体テンプレート及び紫外線led
CN105261668B (zh) * 2015-11-23 2017-03-29 南京大学 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法
CN107452820B (zh) * 2017-08-15 2019-04-30 中国电子科技集团公司第三十八研究所 一种同质界面二维δ掺杂型PIN紫外探测器
CN107863413B (zh) * 2017-11-02 2019-08-27 中山大学 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN111446332A (zh) * 2020-04-17 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021208316A1 (zh) * 2020-04-17 2021-10-21 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法
US11495707B2 (en) 2020-04-17 2022-11-08 Changchun Institute Of Optics, Fine Mechanics And Physics, Chinese Academy Of Sciences AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof

Also Published As

Publication number Publication date
CN112038448A (zh) 2020-12-04
WO2021208316A1 (zh) 2021-10-21
CN112038448B (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
CN112038448B (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
US20170309768A1 (en) Silicon heterojunction photovoltaic device with wide band gap emitter
CN101872798B (zh) 一种紫外红外双色探测器及制作方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
JP2000312017A (ja) 太陽電池及びその製造方法
CN104282793A (zh) 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
CN102290478B (zh) 一种p-i-n型单结InGaN太阳能电池
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN111785797A (zh) 一种超薄量子阱结构AlGaN日盲紫外探测器及其制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN112701171B (zh) 红外探测器及其制作方法
US11495707B2 (en) AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
JPH0964386A (ja) 多接合太陽電池
CN108615782B (zh) 一种紫外探测器及其制造方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
JP6454981B2 (ja) 半導体積層体および受光素子
CN110911518B (zh) 一种iii族氮化物半导体雪崩光电探测器及其制备方法
JPH08204215A (ja) 直列接続型太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200724

WW01 Invention patent application withdrawn after publication