CN105261668B - 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法 - Google Patents

异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法 Download PDF

Info

Publication number
CN105261668B
CN105261668B CN201510816440.9A CN201510816440A CN105261668B CN 105261668 B CN105261668 B CN 105261668B CN 201510816440 A CN201510816440 A CN 201510816440A CN 105261668 B CN105261668 B CN 105261668B
Authority
CN
China
Prior art keywords
layer
dynode
shell
type
shaped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510816440.9A
Other languages
English (en)
Other versions
CN105261668A (zh
Inventor
陈敦军
张�荣
郑有炓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University
Original Assignee
Nanjing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University filed Critical Nanjing University
Priority to CN201510816440.9A priority Critical patent/CN105261668B/zh
Publication of CN105261668A publication Critical patent/CN105261668A/zh
Application granted granted Critical
Publication of CN105261668B publication Critical patent/CN105261668B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/107Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H01L31/1075Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers, e.g. absorption or multiplication layers, form an heterostructure, e.g. SAM structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种异质结倍增层增强型AlGaN日盲雪崩光电二极管,其结构从下至上依次为:AlN模板层、AlxGa1‑xN缓冲层、n型AlxGa1‑xN层、i型AlyGa1‑yN吸收层、n型AlyGa1‑yN分离层、i型AlyGa1‑yN倍增层、i型AlzGa1‑zN倍增层、p型AlzGa1‑zN层、p型GaN层,在n型AlxGa1‑xN层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,所述x、y、z满足0.2≤z<y<x,且y≥z+0.2。还公开了其制备方法。本发明设计的SAM结构异质结倍增层增强型AlGaN日盲雪崩光电二极管,可明显提高空穴的离化率、降低电子的碰撞离化、降低APD雪崩击穿时的器件噪声,有助于提高APD器件的整体性能。

Description

异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备 方法
技术领域
本发明专利涉及光电子器件领域,具体涉及一种AlGaN日盲紫外雪崩光电探测器及其制备方法。
背景技术
Ⅲ族氮化物是宽禁带直接带隙半导体材料,具有良好的导热性能,高电子饱和速度,物理化学性能稳定等优点,是近年来国内外重点研究的新型半导体材料,在高电子迁移率晶体管、高亮度发光二极管、高功率激光器及高灵敏度日盲或可见光盲光电探测器等方面有着广泛的应用前景。在电磁波谱中,波长在200nm~400nm范围内的辐射称为紫外辐射,太阳光是最强的紫外辐射光源,但由于大气中臭氧层和其它大气气体的吸收和散射作用,紫外光特别是波长小于280nm的日盲紫外光会绝大部分被大气所吸收,因此,紫外信号特别是日盲紫外信号具有背景干扰小、目标信号容易检测、不容易产生虚假警报等优点,在科学和军事领域有广泛的应用。一直以来,由于光电倍增管(PMT)具有高的电流增益(>106)、低的暗电流,能够在强的太阳背景下探测到微弱的紫外信号,因此光电倍增管一直占据着探测器的主要市场,然而,光电倍增管也有着体积大、容易损坏、需要很高的击穿电压(>1200V)、价格昂贵的缺陷,并且在紫外探测波段和硅基探测器一样,需要集成复杂昂贵的滤波系统。具有高增益的AlGaN雪崩光电探测器(APD)为固体探测器,体积小、功耗低、并且能够得到日盲紫外探测性能,能够弥补光电倍增管和硅基探测器的缺点,具有部分取代光电倍增管的潜力。但是,由于高Al组分AlGaN材料制备和p型掺杂尚未得到很好的解决,要想获得高增益的AlGaN雪崩光电探测器目前仍是一大难题。近年来,GaN基可见光盲雪崩探测器得到了长足的发展,工作于线性模式倍增因子高于103的GaN APD以及工作于盖革模式倍增因子高于106的GaN APD都已成功获得[参见文献J.B.Limb,D.Yoo,J.H.Ryou,W.Lee,S.C.Shen,R.D.Dupuis,M.L.Reed,C.J.Collins,M.Wraback,D.Hanser,E.Preble,N.M.Williams,and K.Evans,Appl.Phys.Lett.,89,011112(2006).与文献K.A.McIntosh,R.J.Molnar,L.J.Mahoney,K.M.Molvar,N.Efremow,and Jr.,S.Verghese,Appl.Phys.Lett.,76,3938(2000).]。AlGaN与GaN有着相似的材料特性,尽管GaN APD的发展取得了可喜的进步,然而,AlGaN材料的APD却发展缓慢,2007年,Turgut等人再次报道了在蓝宝石衬底上生长的Al组份为0.4的AlGaN肖特基结构的APD,其光电倍增因子为1560倍[参见文献T.Tut,M.Gokkavas,A.Inal,and E.Ozbay,Appl.Phys.Lett.,90,163506(2007).]。2012年,汪莱等公开了一种吸收倍增区分离(SAM)的GaN基p-i-p-i-n结构紫外探测器结构及其制备方法[参见专利,GaN基p-i-p-i-n结构紫外探测器及制备方法,申请号:201110391564.9],倍增区和吸收区分离的特点使载流子雪崩倍增距离提高,从而使灵敏度大大增加。2013年,陈敦军等公开了一种内建电场增强的背入射p-i1-n1-i-n SAM型高增益AlGaN紫外雪崩光电探测器及其制备方法[参见专利,高增益的AlGaN紫外雪崩光电探测器及其制备方法,申请号:201310367175.1]。背入射p-i1-n1-i-n SAM型高增益AlGaN紫外雪崩光电探测器是在传统的相同组分的p-i-n型结构中插入一个分离层n1和一个倍增层i1的基础上,同时降低p型层中Al的组分,从而达到提高器件性能的目的。分离层n1将吸收层和倍增层分开,当光从背部入射时,入射光子在吸收层被吸收,产生电子-空穴对,在反偏电压和内建电场作用下,空穴被加速通过n1型层,进入倍增层,而吸收层产生的绝大部分电子在电场作用下向n层漂移,并不进入n1型层,虽然仍然有少量电子扩散至n1型层,但由于n1层的电场比吸收层的电场还要大,扩散至n1层的电子在电场作用下,减速运动,在没到达倍增层以前,电子速度已经减小为零,这样就实现了纯空穴注入。在反向大偏压作用下,注入的空穴受到倍增层强电场的漂移作用,产生很大的动能,它们与倍增层的晶格原子发生碰撞时,把价键上的电子碰撞出来,产生一个电子-空穴对。由空穴碰撞产生的电子和空穴在强电场作用下,向相反方向运动,继续发生碰撞,如此一直碰撞下去,自由载流子数量急剧增加,产生雪崩倍增效应。电子和空穴的离化系数与倍增层电场存在一定的对应关系:α=Aexp(-b/E),A、b为常数,当倍增层电场E增加时,载流子离化系数α增大,离化系数增大意味着单位时间单位长度内,载流子碰撞产生的电子空穴对增多,倍增因子增大,对于同质结分离吸收倍增的AlGaN APD来说,倍增区的总电场由内建电场和外加偏压场提供,发生雪崩时电场一般小于3MV/cm。以上众多研究表明,高性能的AlGaN雪崩光电探测器的研究与开发利用已经成为目前研究的热点,在上述研究的基础上,本发明提出了一种新的高雪崩倍增因子AlGaN APD探测器。
发明内容
本发明是利用低Al组分的i型AlzGa1-zN倍增层作为空穴的主要离化区,高Al组分的i型AlyGa1-yN倍增层作为空穴初始加速区,设计了一种倍增层为异质结构的增强型AlGaN日盲雪崩光电二极管及其制备方法。
为达到上述目的,本发明采用的技术方案为:一种异质结倍增层增强型AlGaN日盲雪崩光电二极管,其结构从下至上依次为:AlN模板层、AlxGa1-xN缓冲层、n型AlxGa1-xN层、i型AlyGa1-yN吸收层、n型AlyGa1-yN分离层、i型AlyGa1-yN倍增层、i型AlzGa1-zN倍增层、p型GaN层,在n型AlxGa1-xN层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,所述x、y、z满足0.2≤z<y<x,且y≥z+0.2。
进一步的,所述AlxGa1-xN缓冲层厚度为300~600nm,所述n型AlxGa1-xN层厚度为300~600nm,所述i型AlyGa1-yN吸收层厚度为150~220nm,所述n型AlyGa1-yN分离层厚度为60~80nm,所述i型AlyGa1-yN倍增层厚度为100~150nm,所述i型AlzGa1-zN倍增层厚度为50~100nm,所述p型AlzGa1-zN层厚度为80~120nm,所述p型GaN层厚度为30~80nm。
进一步的,所述AlN模板层为蓝宝石衬底上生长的AlN层,厚度为500nm。
进一步的,所述n型欧姆电极为Ti/Al/Ni/Au合金电极,p型欧姆电极为Ni/Au合金电极。
本发明还提供了上述异质结倍增层增强型AlGaN日盲雪崩光电二极管的制备方法,其步骤包括:
(1)将AlN模板在NH3气氛下表面氮化;
(2)在AlN模板衬底上生长一层AlxGa1-xN缓冲层;
(3)在AlxGa1-xN缓冲层上生长一层n型AlxGa1-xN层;
(4)在n型AlxGa1-xN层上生长一层i型AlyGa1-yN吸收层;
(5)在i型AlyGa1-yN吸收层上生长一层n型AlyGa1-yN分离层;
(6)在n型AlyGa1-yN分离层上生长一层i型AlyGa1-yN倍增层;
(7)在i型AlyGa1-yN倍增层上生长一层i型AlzGa1-zN倍增层;
(8)在i型AlzGa1-zN层倍增层上生长一层P型AlzGa1-zN层,在P型AlzGa1-zN层上生长一层GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型AlxGa1-xN层,对刻蚀后的样品表面进行净化处理;
(10)在n型AlxGa1-xN层台面上蒸镀n型欧姆电极,蒸镀后退火;
(11)在p型GaN层上蒸镀p型欧姆电极,蒸镀后退火;
其中x、y、z满足0.2≤z<y<x,且y≥z+0.2。
本发明设计的倍增层增强型SAM结构AlGaN紫外雪崩光电探测器,通过将低Al组分的i型AlzGa1-zN倍增层作为空穴的主要离化区、高Al组分的i型AlyGa1-yN倍增层作为空穴初始加速区,在i型AlGaN倍增层内引入异质结构使得空穴初始加速过程主要发生在高Al组分的i型AlyGa1-yN层,而空穴的碰撞离化主要发生在具有更高离化率的低Al组分的i型AlzGa1- zN层,有利于空穴的倍增;且离化区的Al组分小于加速区的Al组分(y≥z+0.2),使得异质界面处导带形成足够高的势垒,阻碍了电子从空穴离化区向空穴加速区的运动,降低了电子的碰撞离化,从而可以有效降低器件噪声;此外,低Al组分的空穴离化区,有利于得到更高晶体质量的AlGaN材料,也有利于获得更高的雪崩增益。上述因素有利于提高倍增层内总的离化率,有助于提高APD的器件性能,在同样的实验条件下,与倍增层非异质结构的AlGaN紫外雪崩光电探测器相比较,最大雪崩倍增因子增幅达到一个数量级。
附图说明
图1为本发明异质结倍增层增强型AlGaN日盲雪崩光电二极管的结构示意图。
图2为对比实施例1探测器的暗电流及光电流I-V曲线与增益曲线。
图3为实施例1探测器的暗电流及光电流I-V曲线与增益曲线。
图4为实施例1探测器的光谱响应曲线。
下面结合附图对本发明的具体实施方式做进一步说明。
具体实施方式
对比例1
本AlGaN紫外雪崩光电探测器的制备方法,其步骤为:
(1)清洗AlN模板,将AlN模板衬底在NH3气氛下表面氮化3分钟;
(2)在AlN模板衬底上用MOCVD法生长一层506nm的Al0.5Ga0.5N缓冲层;
(3)在Al0.4Ga0.6N缓冲层上用MOCVD法生长一层513nm的n型Al0.5Ga0.5N层,掺杂浓度为2×1018cm-3
(4)在n型Al0.4Ga0.6N层上用MOCVD法生长一层220nm的i型Al0.4Ga0.6N吸收层;
(5)在i型Al0.4Ga0.6N吸收层上用MOCVD法生长一层74nm的n型Al0.4Ga0.6N分离层,掺杂浓度为1×1018cm-3
(6)在n型Al0.4Ga0.6N分离层上用MOCVD法生长一层200nm的i型Al0.4Ga0.6N倍增层;
(7)在i型Al0.4Ga0.6N倍增层上用MOCVD法生长一层87nm的p型AlzGa1-zN层,Al的组分z=0.2,使用二茂镁作p型AlGaN掺杂剂,掺杂浓度为2×1018cm-3
(8)在p型AlzGa1-zN层倍增层上生长一层34nm的P型GaN层,掺杂浓度为2×1018cm-3
(9)在p型GaN层上进行光刻,刻蚀出电池台面,露出n型Al0.4Ga0.6N层,对刻蚀后的样品表面进行净化处理;
(10)在n型Al0.4Ga0.6N层台面上蒸镀n型欧姆电极,电极为Ni/Au合金电极,电极尺寸为0.3×0.3mm2,蒸镀时间10分钟,蒸镀后在800℃的N2环境下退火3分钟;
(11)在p型Al0.4Ga0.6N层上蒸镀p型欧姆电极,电极为Ti/Al/Ni/Au合金电极电极蒸镀时间10分钟,蒸镀后在500℃的N2环境下退火1分钟。
图2为AlGaN紫外雪崩光电探测器在入射光波长为275nm,入射光功率为0.01mW/cm2的测试条件下,在不同反向偏压下得到的光电流、暗电流与雪崩倍增因子的变化曲线。其最大雪崩倍增因子为1.2×104
实施例1
本实施例步骤与对比例1基本一致,其区别在于:(6)在n型Al0.4Ga0.6N分离层上用MOCVD法生长一层120nm的i型Al0.4Ga0.6N倍增层;(7)在i型Al0.4Ga0.6N倍增层上用MOCVD法生长一层80nm的i型Al0.2Ga0.8N倍增层,在i型Al0.2Ga0.8N倍增层上用MOCVD法生长一层87nm的p型AlzGa1-zN层,Al的组分z=0.2,使用二茂镁作p型AlGaN掺杂剂,掺杂浓度为2×1018cm-3。图3为本实施例的AlGaN紫外雪崩光电探测器在入射光波长为275nm,入射光功率为0.01mW/cm2的测试条件下,在不同反向偏压下得到的光电流、暗电流和雪崩倍增因子,与图2比较可以看出,其最大雪崩倍增因子为1.5×105,是对比例1的12倍。本实施例所得的日盲型APD样品的光谱响应见图4,对应的截止波长为279nm。
实施例2
本实施例步骤与实施例1基本一致,其区别在于:所述AlxGa1-xN缓冲层厚度为300nm,所述n型AlxGa1-xN层厚度为300nm,所述i型AlyGa1-yN吸收层厚度为150nm,所述n型AlyGa1-yN分离层厚度为60nm,所述i型AlyGa1-yN倍增层厚度为100nm,所述i型AlzGa1-zN倍增层厚度为50nm,所述p型AlzGa1-zN层厚度为120nm,所述p型GaN层厚度为30nm,组分x=0.8,y=0.6,z=0.3。
实施例3
本实施例步骤与实施例1基本一致,其区别在于:所述AlxGa1-xN缓冲层厚度为600nm,所述n型AlxGa1-xN层厚度为600nm,所述i型AlyGa1-yN吸收层厚度为180nm,所述n型AlyGa1-yN分离层厚度为80nm,所述i型AlyGa1-yN倍增层厚度为150nm,所述i型AlzGa1-zN倍增层厚度为100nm,所述p型AlzGa1-zN层厚度为80nm,所述p型GaN层厚度为50nm,组分x=0.9,y=0.8,z=0.5。

Claims (4)

1.一种异质结倍增层增强型AlGaN日盲雪崩光电二极管,其结构从下至上依次为:AlN模板层、AlxGa1-xN缓冲层、n型AlxGa1-xN层、i型AlyGa1-yN吸收层、n型AlyGa1-yN分离层、i型AlyGa1-yN倍增层、i型AlzGa1-zN倍增层、p型AlzGa1-zN层、p型GaN层,在n型AlxGa1-xN层上引出n型欧姆电极,在p型GaN层上引出p型欧姆电极,其特征在于:所述x、y、z满足0.2≤z<y<x,且y≥z+0.2;所述AlxGa1-xN缓冲层厚度为300~600nm,所述n型AlxGa1-xN层厚度为300~600nm,所述i型AlyGa1-yN吸收层厚度为150~220nm,所述n型AlyGa1-yN分离层厚度为60~80nm,所述i型AlyGa1-yN倍增层厚度为100~150nm,所述i型AlzGa1-zN倍增层厚度为50~100nm,所述p型AlzGa1-zN层厚度为80~120nm,所述p型GaN层厚度为30~80nm。
2.根据权利要求1所述的异质结倍增层增强型AlGaN日盲雪崩光电二极管,其特征在于:所述AlN模板层为蓝宝石衬底上生长的AlN层,厚度为500nm。
3.根据权利要求1所述的异质结倍增层增强型AlGaN日盲雪崩光电二极管,其特征在于:所述n型欧姆电极为Ti/Al/Ni/Au合金电极,p型欧姆电极为Ni/Au合金电极。
4.权利要求1-3中任一项所述的异质结倍增层增强型AlGaN日盲雪崩光电二极管的制备方法,其步骤包括:
(1)将AlN模板在NH3气氛下表面氮化;
(2)在AlN模板衬底上生长一层AlxGa1-xN缓冲层;
(3)在AlxGa1-xN缓冲层上生长一层n型AlxGa1-xN层;
(4)在n型AlxGa1-xN层上生长一层i型AlyGa1-yN吸收层;
(5)在i型AlyGa1-yN吸收层上生长一层n型AlyGa1-yN分离层;
(6)在n型AlyGa1-yN分离层上生长一层i型AlyGa1-yN倍增层;
(7)在i型AlyGa1-yN倍增层上生长一层i型AlzGa1-zN层倍增层;
(8)在i型AlzGa1-zN层倍增层上生长一层P型AlzGa1-zN层,在P型AlzGa1-zN层上生长一层GaN层;
(9)在p型GaN层上进行台面刻蚀,露出n型AlxGa1-xN层,对刻蚀后的样品表面进行净化处理;
(10)在n型AlxGa1-xN层台面上蒸镀n型欧姆电极,蒸镀后退火;
(11)在p型GaN层上蒸镀p型欧姆电极,蒸镀后退火;
其中x、y、z满足0.2≤z<y<x,且y≥z+0.2。
CN201510816440.9A 2015-11-23 2015-11-23 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法 Active CN105261668B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510816440.9A CN105261668B (zh) 2015-11-23 2015-11-23 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510816440.9A CN105261668B (zh) 2015-11-23 2015-11-23 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法

Publications (2)

Publication Number Publication Date
CN105261668A CN105261668A (zh) 2016-01-20
CN105261668B true CN105261668B (zh) 2017-03-29

Family

ID=55101256

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510816440.9A Active CN105261668B (zh) 2015-11-23 2015-11-23 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法

Country Status (1)

Country Link
CN (1) CN105261668B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107342344B (zh) * 2017-07-10 2019-09-20 清华大学 一种紫外雪崩探测器及其制备方法
CN107863403B (zh) * 2017-11-28 2023-10-20 中国工程物理研究院电子工程研究所 一种高线性增益红外雪崩光电二极管及其制备方法
CN108987524A (zh) * 2018-07-23 2018-12-11 苏州大学 雪崩光电二极管
CN109817755B (zh) * 2019-01-24 2021-01-22 京东方科技集团股份有限公司 光电二极管
CN109980039A (zh) * 2019-04-04 2019-07-05 南通大学 一种高温度稳定性紫外雪崩光电探测器及其制备方法
CN111446332A (zh) * 2020-04-17 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10261815A (ja) * 1997-03-19 1998-09-29 Hitachi Ltd 半導体装置
KR100706952B1 (ko) * 2005-07-22 2007-04-12 삼성전기주식회사 수직 구조 질화갈륨계 발광다이오드 소자 및 그 제조방법
CN102157599B (zh) * 2010-09-25 2013-03-13 中国科学院上海微系统与信息技术研究所 用于雪崩光电二极管的能带递变倍增区结构及其制备方法
CN103400888A (zh) * 2013-08-22 2013-11-20 南京大学 高增益的AlGaN紫外雪崩光电探测器及其制备方法

Also Published As

Publication number Publication date
CN105261668A (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
CN105261668B (zh) 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法
CN103400888A (zh) 高增益的AlGaN紫外雪崩光电探测器及其制备方法
Liu et al. ZnO-based ultraviolet photodetectors
CN106409968B (zh) AlGaN基超晶格雪崩型紫外探测器及其制备方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN108305911B (zh) 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN106960887A (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN102800717A (zh) 一种pin结构紫外雪崩光电探测器及其制备方法
CN108022985A (zh) 延伸波长台面型雪崩光电二极管及其制备方法
CN105655437A (zh) 一种紫外雪崩光电探测器
CN102412334A (zh) 基于BeZnO的MSM结构的紫外光探测器及制备方法
CN110047955A (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
Guenther et al. Excess carrier generation in femtosecond-laser processed sulfur doped silicon by means of sub-bandgap illumination
CN107452820A (zh) 一种同质界面二维δ掺杂型PIN紫外探测器
Varshney et al. Ga2O3/GaN heterointerface-based self-driven broad-band ultraviolet photodetectors with high responsivity
CN105097964B (zh) 一种有源区高斯掺杂型pπn紫外探测器
Guo et al. Polarization assisted interdigital AlGaN/GaN heterostructure ultraviolet photodetectors
CN107342344B (zh) 一种紫外雪崩探测器及其制备方法
CN100595858C (zh) 一种反射式GaN紫外光电阴极材料结构及其制作方法
Wen et al. High performance foreign-dopant-free ZnO/AlxGa1− xN ultraviolet phototransistors using atomic-layer-deposited ZnO emitter layer
CN103779436A (zh) 透射式AlGaN紫外光电阴极及其制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
CN106409965A (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法
Zheng et al. A GaN p—i—p—i—n Ultraviolet Avalanche Photodiode

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant