CN103779436A - 透射式AlGaN紫外光电阴极及其制备方法 - Google Patents

透射式AlGaN紫外光电阴极及其制备方法 Download PDF

Info

Publication number
CN103779436A
CN103779436A CN201410012850.3A CN201410012850A CN103779436A CN 103779436 A CN103779436 A CN 103779436A CN 201410012850 A CN201410012850 A CN 201410012850A CN 103779436 A CN103779436 A CN 103779436A
Authority
CN
China
Prior art keywords
type
transmission
emission layer
component
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201410012850.3A
Other languages
English (en)
Other versions
CN103779436B (zh
Inventor
常本康
郝广辉
金睦辉
陈鑫龙
张益军
杨明珠
石峰
程宏昌
任彬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201410012850.3A priority Critical patent/CN103779436B/zh
Publication of CN103779436A publication Critical patent/CN103779436A/zh
Application granted granted Critical
Publication of CN103779436B publication Critical patent/CN103779436B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Common Detailed Techniques For Electron Tubes Or Discharge Tubes (AREA)

Abstract

本发明提供一种透射式AlGaN紫外光电阴极及其制备方法。该阴极组件自下而上由高质量的蓝宝石衬底、p型均匀掺杂AlN缓冲层、p型变组分AlxGa1-xN发射层组成。其中,AlN缓冲层的厚度在50~500nm之间,采用p型均匀掺杂方式,掺杂原子为Mg;变组分的AlxGa1-xN发射层由N个AlxGa1-xN子层组成,其中N≥1,从上至下p型AlxGa1-xN子层的Al组分为x1、x2、···、xn-1、xn,且满足0.24≤x1≤x2≤···≤xn-1≤xn≤1,变组分的AlxGa1-xN发射层总厚度在20~150nm之间,掺杂原子为Mg,Mg掺杂浓度满足1×1014cm-3≤Nc≤1×1018cm-3。采用超高真空高温净化和Cs/O激活技术获得负电子亲和势表面。得到的透射式AlGaN紫外光电阴极。

Description

透射式AlGaN紫外光电阴极及其制备方法
技术领域
本发明涉及紫外探测材料技术领域,具体涉及一种基于AlGaN(铝镓氮)三元化合物Al/Ga组分控制技术、半导体材料掺杂技术、III-V族化合物材料外延技术和超高真空阴极激活技术相结合的透射式AlGaN紫外光电阴极及其制备方法。
背景技术
目前,紫外光源技术已取得快速的发展,并在众多领域的广泛应用。为了促进充分利用和开发紫外技术,高性能紫外探测器便是其中必不可少的工具之一。紫外探测在众多应用领域已取得初步发展,如电晕放电监测、火灾检测、生物制剂和激光成像探测与测距等。CsTe和CsI光电阴极已在远紫外探测领域得到应用,但是其量子效率较低,而且光谱响应随波长变化较大。因此高性能的紫外探测器必须具备较高的量子效率和随波长变化阴极的光谱响应变化平稳等条件。
太阳是一个高强度的紫外辐射源,由太阳辐射在大气中的传输特性可知,近紫外光(310nm ~ 400nm)可透过大气层到达地球表面,使得GaN基紫外探测器增加了背景噪声,影响了探测器的探测率,因此GaN光电阴极无法很好的满足日盲探测的需要,而AlGaN紫外光电阴极在GaN光电阴极的基础上通过改变Al组分x的值,调节紫外光电阴极的响应范围,提高探测率,使紫外真空探测器满足探测不同响应波段目标的需要,能很好解决上述难题。目前,美国伯克利大学空间科学实验室制备的透射式GaN光电阴极量子效率为5.5%。而在国内,对透射式AlGaN光电阴极研究处于起步阶段。
发明内容
本发明的目的在于针对现有的透射式GaN光电阴极响应截止波长为365nm固定不变,无法满足日盲紫外探测的需要,本发明提供一种基于AlGaN三元化合物Al/Ga组分控制技术、半导体材料掺杂技术、III-V族化合物材料外延技术和超高真空表面激活技术相结合制备出截止波长在200nm-330nm之间的透射式AlGaN光电阴极。
实现本发明目的的技术解决方案为:
    一种透射式AlGaN紫外光电阴极,所述阴极自下而上由蓝宝石衬底(1)、p型均匀掺杂AlN缓冲层、p型变组分AlxGa1-xN发射层以及Cs/O激活层组成。
    其中,所述p型AlN缓冲层厚度在50~500 nm之间;采用均匀掺杂方式,掺杂原子为Mg。
其中,所述p型变组分AlxGa1-xN发射层,总厚度在20~150 nm之间;p型变组分AlxGa1-xN发射层的掺杂原子为Mg,Mg掺杂浓度满足:1.0×1014cm-3≤Nc≤1.0×1018 cm-3 ,p型变组分AlxGa1-xN发射层由N个p型AlxGa1-xN子层构成,其中N≥1,从上至下p型AlxGa1-xN子层的Al组分为x1、x2、···、xn-1、xn,且满足0.24≤x1≤x2≤···≤xn-1≤xn≤1。
其中,所述Cs/O激活层通过超高真空激活工艺紧密吸附在p型AlxGa1-xN发射层的表面上。
    上述透射式AlGaN紫外光电阴极制备方法:
第一步,在双面抛光的蓝宝石衬底表面,采用MOCVD或MBE外延生长工艺在其表面生长p型均匀掺杂AlN缓冲层;
第二步,再通过相同的外延生长工艺以及半导体材料掺杂技术,在AlN缓冲层外延依次生长p型变组分AlxGa1-xN发射层;
第三步, 透射式AlGaN紫外光电阴极经过化学清洗去除表面油脂,再送入超高真空系统中进行加热净化,使透射式AlGaN紫外光电阴极获得原子级洁净表面;
第四步,通过超高真空激活工艺使透射式AlGaN紫外光电阴极的p型变组分AlxGa1-xN发射层表面吸附Cs/O激活层,最终制备得到透射式AlGaN紫外光电阴极。
 与现有的技术相比,透射式AlGaN紫外光电阴极及其制备方法具有如下优点:
(1)本发明采用改变p型变组分AlxGa1-xN发射层中Al组分的方法控制AlGaN光电阴极材料的禁带宽度,从而控制阴极的截止响应波长。同时,发射层采用变Al组分设计方式来减少生长界面应力,降低光电子的后界面复合速率,最终提高阴极光电发射的量子效率。
(2)本发明中透射式AlGaN紫外光电阴极的发射层采用变组分设计结构,发射层内Al组分均采用从内部向发射层外部由高到低的变化结构,这种设计模式在发射层内部产生由体内向表面由高到低的能带结构,使发射层内光电子以扩散加漂移两种方式向表面运动,从而增大了表面光电子的数目,提高光电阴极量子效率。
原理说明:
p型变组分AlxGa1-xN发射层掺杂浓度太低,会增加阴极表面的能带弯曲区宽度,使得光电子在较宽的区域内受到表面电场的散射并损失能量,从而导致电子表面逸出几率的明显降低。掺杂浓度太高,导致掺杂原子Mg离化率降低,造成阴极材料电子扩散长度降低,影响光电子的体内输运效率。因此,在设计中将掺杂浓度控制在1.0×1014cm-3≤Nc≤1.0×1018 cm-3范围内。p型变组分AlxGa1-xN发射层厚度太小,紫外入射光在p型变组分AlxGa1-xN发射层内无法充分被吸收,而发射层厚度太大会增加AlN缓冲层与p型变组分AlxGa1-xN发射层之间的后界面到阴极表面之间的距离,增加光电子在运动到阴极表面之前被复合的几率,因此p型变组分AlxGa1-xN发射层的总厚度范围为20~150nm。
 
下面结合附图对本发明作进一步详细描述。
附图说明
图1为透射式AlGaN光电阴极的结构示意图。
图2为实施例1中p型变组分AlxGa1-xN发射层的子层数N=1的透射式AlGaN光电阴极光学结构与Al组分结构示意图。
图3为实施例2中p型变组分AlxGa1-xN发射层的子层数N=4的透射式AlGaN光电阴极光学结构与Al组分结构示意图。
图4为透射式AlGaN光电阴极的光谱响应曲线,其中I曲线为实施例1透射式AlGaN光电阴极的光谱响应, II曲线为实施例2透射式AlGaN光电阴极的光谱响应。
图5为实施例1透射式AlGaN光电阴极与透射式GaN光电阴极的光谱响应对比曲线。 
具体实施方式
下面的实施例可以使本专业技术人员更全面地理解本发明。
实施例1
透射式AlGaN紫外光电阴极结构如图1所示,所述阴极自下而上由蓝宝石衬底1、p型均匀掺杂AlN缓冲层2、p型变组分AlxGa1-xN发射层3以及Cs/O激活层4组成。
图2为具体的透射式AlGaN紫外光电阴极组件的光学结构与Al组分结构设计示意图。其中,p型变组分AlxGa1-xN发射层的子层数N=1。
p型AlN缓冲层2直接外延生长在厚度为0.45mm的蓝宝石衬底(Al 2 O 3 )衬底1上,通过MOCVD外延技术生长p型AlN缓冲层2,厚度为500 nm,采用均匀掺杂方式,掺杂原子为Mg。
p型变组分AlxGa1-xN发射层3生长在p型AlN缓冲层2上,p型AlxGa1-xN子层数N=1,Al组分x1=0.24,厚度为150nm,掺杂原子为Mg ,Mg掺杂浓度为1×1016cm-3
Cs/O激活层4是通过超高真空激活工艺紧密吸附在p型变组分AlxGa1-xN发射层表面。
透射式AlGaN紫外光电阴极的制备方法如下:
1)在双面抛光的蓝宝石衬底1表面,通过MOCVD外延生长工艺生长厚度为500nm的p型AlN缓冲层2。
 2)再通过相同的外延生长工艺和半导体材料掺杂技术,在p型AlN缓冲层2上生长厚度为150nm的p型变组分AlxGa1-xN发射层3。
3)将透射式AlGaN紫外光电阴极放入丙酮、四氯化碳和乙醇分别超声5min对透射式AlGaN紫外光电阴极进行化学清洗,以去除其表面的油脂。将化学清洗后的透射式AlGaN紫外光电阴极样品送入超高真空系统中,设置合适的温度,对AlGaN光电阴极表面进行高温净化,去除表面的C、O化合物,从而获得原子清洁表面。
4)待高温加热净化后的透射式AlGaN紫外光电阴极样品自然冷却到50℃左右后,开始进行Cs/O激活,Cs/O激活工艺是现有负电子亲和势光电阴极制备的标准工艺。激活后形成表面为Cs/O激活层4的透射式AlGaN光电阴极。
5)对激活后的透射式AlGaN光电阴极进行光谱响应测试。图4的I曲线表示p型变组分AlxGa1-xN发射层的子层数N=1的透射式AlGaN光电阴极的光谱响应曲线,水平坐标是指波长;垂直坐标是透射式AlGaN光电阴极的光谱响应。
 
实施例II
图3为具体的透射式AlGaN紫外光电阴极组件的光学结构与Al组分结构设计示意图。其中,p型变组分AlxGa1-xN发射层的子层数N=4。
p型AlN缓冲层2直接外延生长在厚度为0.45mm的蓝宝石衬底(Al 2 O 3 )衬底1上,通过MOCVD外延技术生长p型AlN缓冲层2,厚度为500 nm,采用均匀掺杂方式,掺杂原子为Mg。
p型变组分AlxGa1-xN发射层3生长在p型AlN缓冲层2上,p型AlxGa1-xN子层数N=4,p型变组分AlxGa1-xN发射层的4个子层掺杂原子均为Mg ,掺杂浓度为1×1016cm-3。自上而下,第一个AlxGa1-xN子层N1的Al组分为0.37,厚度为30nm;第二个AlxGa1-xN子层N2的Al组分为0.47,厚度为15nm;第三个AlxGa1-xN子层N3的Al组分为0.6,厚度为10nm;第四个AlxGa1-xN子层N4的Al组分为0.8,厚度为5nm。
Cs/O激活层4是通过超高真空激活工艺紧密吸附在p型变组分AlxGa1-xN发射层表面。
透射式AlGaN紫外光电阴极的制备方法如下:
1)在双面抛光的蓝宝石衬底1表面,通过MOCVD外延生长工艺生长厚度为500nm的p型AlN缓冲层2。
    2)再通过相同的外延生长工艺和半导体材料掺杂技术,在p型AlN缓冲层2上生长厚度为60nm的p型变组分AlxGa1-xN发射层3。
    3)将透射式AlGaN紫外光电阴极放入丙酮、四氯化碳和乙醇分别超声5min对透射式AlGaN紫外光电阴极进行化学清洗,以去除其表面的油脂。将化学清洗后的透射式AlGaN紫外光电阴极样品送入超高真空系统中,设置合适的温度,对AlGaN光电阴极表面进行高温净化,去除表面的C、O化合物,从而获得原子清洁表面。
4)待高温加热净化后的透射式AlGaN紫外光电阴极样品自然冷却到50℃左右后,开始进行Cs/O激活,Cs/O激活工艺是现有负电子亲和势光电阴极制备的标准工艺。激活后形成表面为Cs/O激活层4的透射式AlGaN光电阴极。
5)对激活后的透射式AlGaN光电阴极进行光谱响应测试。图4的II曲线表示p型变组分AlxGa1-xN发射层的子层数N=4透射式AlGaN光电阴极的光谱响应曲线。
将上述两种透射式AlGaN光电阴极响应量子效率同透射式GaN光电阴极响应量子效率进行比较,如图5所示,透射式AlGaN光电阴极的响应截止波长明显低于透射式GaN光电阴极的响应截止波长。

Claims (5)

1.一种透射式AlGaN紫外光电阴极,其特征在于:所述AlGaN紫外光电阴极自下而上由蓝宝石衬底、p型均匀掺杂AlN缓冲层、p型变组分AlxGa1-xN发射层以及Cs/O激活层组成。
2.根据权利要求书1所述的透射式AlGaN紫外光电阴极,其特征在于:所述p型AlN缓冲层厚度在50~500 nm之间;采用均匀掺杂方式,掺杂原子为Mg。
3.根据权利要求书1所述的透射式AlGaN紫外光电阴极,其特征在于:所述p型变组分AlxGa1-xN发射层,总厚度在20~150 nm之间; p型变组分AlxGa1-xN发射层的掺杂原子为Mg,Mg掺杂浓度满足:1.0×1014cm-3≤Nc≤1.0×1018 cm-3 ;p型变组分AlxGa1-xN发射层由N个p型AlxGa1-xN子层构成,其中N≥1,从上至下p型AlxGa1-xN子层的Al组分为x1、x2、···、xn-1、xn,且满足0.24≤x1≤x2≤···≤xn-1≤xn≤1。
4.根据权利要求书1所述的透射式AlGaN紫外光电阴极,其特征在于:所述Cs/O激活层通过超高真空激活工艺紧密吸附在p型变组分AlxGa1-xN发射层的表面上。
5.一种如权利要求1所述的透射式AlGaN紫外光电阴极制备方法,其特征在于:
第一步,在双面抛光的蓝宝石衬底表面,采用MOCVD或MBE外延生长工艺在其表面生长p型均匀掺杂AlN缓冲层;
第二步,再通过相同的外延生长工艺以及半导体材料掺杂技术,在AlN缓冲层外延依次生长p型变组分AlxGa1-xN发射层;
第三步, 将p型变组分AlxGa1-xN发射层经过化学清洗去除表面油脂,再送入超高真空系统中进行加热净化,使p型变组分AlxGa1-xN发射层获得原子级洁净表面;
第四步,通过超高真空激活工艺使p型变组分AlxGa1-xN发射层表面吸附Cs/O激活层,最终制备得到透射式AlGaN紫外光电阴极。
CN201410012850.3A 2014-01-13 2014-01-13 透射式AlGaN紫外光电阴极及其制备方法 Expired - Fee Related CN103779436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201410012850.3A CN103779436B (zh) 2014-01-13 2014-01-13 透射式AlGaN紫外光电阴极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201410012850.3A CN103779436B (zh) 2014-01-13 2014-01-13 透射式AlGaN紫外光电阴极及其制备方法

Publications (2)

Publication Number Publication Date
CN103779436A true CN103779436A (zh) 2014-05-07
CN103779436B CN103779436B (zh) 2017-01-04

Family

ID=50571478

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201410012850.3A Expired - Fee Related CN103779436B (zh) 2014-01-13 2014-01-13 透射式AlGaN紫外光电阴极及其制备方法

Country Status (1)

Country Link
CN (1) CN103779436B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835865A (zh) * 2015-03-09 2015-08-12 中国计量学院 一种基于Ag纳米粒子催化湿法刻蚀AlGaN光电阴极
CN105449066A (zh) * 2015-12-07 2016-03-30 南京理工大学 超晶格组分渐变缓冲层透射式AlGaN紫外光阴极及制备方法
CN107393787A (zh) * 2017-07-24 2017-11-24 中国电子科技集团公司第五十五研究所 Al组分梯度渐变的蓝绿光敏感透射式GaAlAs阴极
CN109103059A (zh) * 2018-07-25 2018-12-28 南京理工大学 变组分反射式NEA AlxGa1-xN纳米线阵列光电阴极及制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251398A1 (en) * 2003-06-16 2004-12-16 Chandra Mouli Photodiode with ultra-shallow junction for high quantum efficiency CMOS image sensor and method of formation
CN101866977A (zh) * 2010-06-25 2010-10-20 重庆大学 基于组分渐变缓冲层的透射式GaN紫外光电阴极
CN201689902U (zh) * 2010-05-21 2010-12-29 重庆大学 基于变掺杂结构的透射式GaN紫外光电阴极
CN102064206A (zh) * 2010-11-30 2011-05-18 南京理工大学 多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法
CN102280343A (zh) * 2011-07-13 2011-12-14 重庆大学 基于双面图形化衬底的透射式GaN紫外光电阴极
CN102306600A (zh) * 2011-07-19 2012-01-04 东华理工大学 一种蓝延伸变带隙AlGaAs/GaAs光电阴极及其制备方法
CN202167452U (zh) * 2011-07-13 2012-03-14 重庆大学 基于双面凹孔衬底的透射式GaN光电阴极
CN102610472A (zh) * 2012-04-01 2012-07-25 南京理工大学 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN103031596A (zh) * 2012-12-14 2013-04-10 中国电子科技集团公司第五十五研究所 基于铝镓氮材料的日盲型紫外光电阴极的外延生长方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040251398A1 (en) * 2003-06-16 2004-12-16 Chandra Mouli Photodiode with ultra-shallow junction for high quantum efficiency CMOS image sensor and method of formation
CN201689902U (zh) * 2010-05-21 2010-12-29 重庆大学 基于变掺杂结构的透射式GaN紫外光电阴极
CN101866977A (zh) * 2010-06-25 2010-10-20 重庆大学 基于组分渐变缓冲层的透射式GaN紫外光电阴极
CN102064206A (zh) * 2010-11-30 2011-05-18 南京理工大学 多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法
CN102280343A (zh) * 2011-07-13 2011-12-14 重庆大学 基于双面图形化衬底的透射式GaN紫外光电阴极
CN202167452U (zh) * 2011-07-13 2012-03-14 重庆大学 基于双面凹孔衬底的透射式GaN光电阴极
CN102306600A (zh) * 2011-07-19 2012-01-04 东华理工大学 一种蓝延伸变带隙AlGaAs/GaAs光电阴极及其制备方法
CN102610472A (zh) * 2012-04-01 2012-07-25 南京理工大学 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN103031596A (zh) * 2012-12-14 2013-04-10 中国电子科技集团公司第五十五研究所 基于铝镓氮材料的日盲型紫外光电阴极的外延生长方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
唐光华 等: "紫外光电阴极研究进展", 《真空电子技术》, no. 6, 31 December 2011 (2011-12-31), pages 5 - 11 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104835865A (zh) * 2015-03-09 2015-08-12 中国计量学院 一种基于Ag纳米粒子催化湿法刻蚀AlGaN光电阴极
CN105449066A (zh) * 2015-12-07 2016-03-30 南京理工大学 超晶格组分渐变缓冲层透射式AlGaN紫外光阴极及制备方法
CN107393787A (zh) * 2017-07-24 2017-11-24 中国电子科技集团公司第五十五研究所 Al组分梯度渐变的蓝绿光敏感透射式GaAlAs阴极
CN109103059A (zh) * 2018-07-25 2018-12-28 南京理工大学 变组分反射式NEA AlxGa1-xN纳米线阵列光电阴极及制备方法

Also Published As

Publication number Publication date
CN103779436B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
Sang et al. A comprehensive review of semiconductor ultraviolet photodetectors: from thin film to one-dimensional nanostructures
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
JP6986349B2 (ja) n型超格子及びp型超格子を備える電子デバイス
CN109494275B (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN102610472B (zh) 峰值响应在532 nm敏感的反射式GaAlAs光电阴极及其制备方法
CN102064206A (zh) 多组分、梯度掺杂GaN紫外光电阴极材料结构及其制作方法
US9870918B2 (en) InGaAs film grown on Si substrate and method for preparing the same
Raj et al. High-efficiency solar cells from extremely low minority carrier lifetime substrates using radial junction nanowire architecture
CN101866976B (zh) 基于变掺杂结构的透射式GaN紫外光电阴极及制作方法
CN105590971B (zh) AlGaN日盲紫外增强型雪崩光电探测器及其制备方法
CN109256305B (zh) 基于衬底剥离的透射式AlGaN紫外光电阴极制备方法
Park et al. Ag2O/β-Ga2O3 heterojunction-based self-powered solar blind photodetector with high responsivity and stability
CN103779436A (zh) 透射式AlGaN紫外光电阴极及其制备方法
Wang et al. A review of earth abundant ZnO-based materials for thermoelectric and photovoltaic applications
Ainbund et al. Solar-blind UV photocathodes based on AlGaN heterostructures with a 300-to 330-nm spectral sensitivity threshold
CN105449066A (zh) 超晶格组分渐变缓冲层透射式AlGaN紫外光阴极及制备方法
Suvarna et al. Design and growth of visible-blind and solar-blind III-N APDs on sapphire substrates
Varshney et al. Ga2O3/GaN heterointerface-based self-driven broad-band ultraviolet photodetectors with high responsivity
CN103295855A (zh) 一种指数掺杂反射式GaAs光电阴极及其制备方法
Reddeppa et al. Hydrogen passivation: a proficient strategy to enhance the optical and photoelectrochemical performance of InGaN/GaN single-quantum-well nanorods
Dai et al. The investigation of GaInP solar cell grown by all-solid MBE
CN100595858C (zh) 一种反射式GaN紫外光电阴极材料结构及其制作方法
CN102087937A (zh) 指数掺杂GaN紫外光电阴极材料结构及其制备方法
CN201689902U (zh) 基于变掺杂结构的透射式GaN紫外光电阴极
CN110416055B (zh) 具有原子级厚超薄发射层的GaN反射式光电阴极

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170104

Termination date: 20180113

CF01 Termination of patent right due to non-payment of annual fee