WO2021208316A1 - 一种AlGaN单极载流子日盲紫外探测器及其制备方法 - Google Patents

一种AlGaN单极载流子日盲紫外探测器及其制备方法 Download PDF

Info

Publication number
WO2021208316A1
WO2021208316A1 PCT/CN2020/110792 CN2020110792W WO2021208316A1 WO 2021208316 A1 WO2021208316 A1 WO 2021208316A1 CN 2020110792 W CN2020110792 W CN 2020110792W WO 2021208316 A1 WO2021208316 A1 WO 2021208316A1
Authority
WO
WIPO (PCT)
Prior art keywords
algan
blind ultraviolet
ultraviolet detector
carrier solar
unipolar
Prior art date
Application number
PCT/CN2020/110792
Other languages
English (en)
French (fr)
Inventor
黎大兵
蒋科
孙晓娟
陈洋
贾玉萍
臧行
Original Assignee
中国科学院长春光学精密机械与物理研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院长春光学精密机械与物理研究所 filed Critical 中国科学院长春光学精密机械与物理研究所
Priority to US17/324,118 priority Critical patent/US11495707B2/en
Publication of WO2021208316A1 publication Critical patent/WO2021208316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of semiconductor technology, in particular to an AlGaN unipolar carrier solar-blind ultraviolet detector.
  • the band gap of AlGaN material is continuously adjustable from 3.4eV to 6.2eV, and the corresponding wavelength is from 200nm to 365nm. It is one of the important basic materials for solar-blind ultraviolet detectors.
  • a variety of UV detectors based on AlGaN materials have been studied, and their structure types include photoconductive, Schottky, MSM, p-n junction and APD.
  • various types of AlGaN-based solar-blind ultraviolet detectors are based on the working mode of simultaneous conduction of electrons and holes.
  • the probability of electron-hole recombination is increased, the recombination rate is increased, and the carrier lifetime is shortened.
  • the detector gain value is low, the composite noise is strong, and the response speed is slow, and it is difficult to meet the detection requirements of high speed and high sensitivity.
  • AlGaN material has a strong spontaneous polarization effect. According to Gauss's theorem, the change of polarization intensity will cause polarization charge at the interface position, and the density and charge type of polarization charge are determined by the magnitude and direction of the polarization intensity change.
  • the rich heterojunction structure of AlGaN materials creates good conditions for the regulation and utilization of the polarization electric field. For AlGaN heterojunction, when the composition of the heterojunction grown along the (0001) direction becomes larger, the positive polarization charge is formed at the interface; when the composition of the heterojunction grown along the (0001) direction is reduced , Then a negative charge is formed at the interface.
  • the polarization built-in electric field will be generated in the heterojunction AlGaN region.
  • the polarization built-in electric field can play an important role in the separation of photo-generated carriers, and has a significant role in the design of the detector structure.
  • the present invention provides a method for preparing an AlGaN unipolar carrier solar-blind ultraviolet detector, which includes the following steps:
  • the p-electrode is plated on the p-GaN layer outside the annular channel of the photosensitive mesa with the n-electrode plated around it, and rapid thermal annealing is performed.
  • the nitride material growth substrate is selected from sapphire or AlN.
  • x> 0.45
  • the thickness of the n-Al x Ga 1-x N is 300 nm, Divided into 0.45, doping concentration>5e18cm -3 .
  • the i-Al y Ga 1-y N in the step of growing i-Al y Ga 1-y N on the n-Al x Ga 1-x N, y>x, the i-Al y Ga 1-y
  • the thickness of N is 200-300nm, the composition is 0.6, and it is not intentionally doped.
  • the thickness of the p-Al z Ga 1-z N is 10 ⁇ 50nm, composition is 0.45, doping concentration>2e18cm -3 .
  • the thickness of the p-GaN is 50-150 nm, and the doping concentration is >5e18 cm ⁇ 3 .
  • the n-electrode in the steps of plating an n-electrode around the etched photosensitive mesa and performing rapid thermal annealing, is selected from Ti/Al/Ni/Au.
  • Ni/Au is selected as the p-electrode.
  • the present invention also provides an AlGaN unipolar carrier solar-blind ultraviolet detector prepared by the above-mentioned preparation method.
  • the AlGaN unipolar carrier solar-blind ultraviolet detector provided by the present invention is based on the AlGaN polarization effect and utilizes p-Al z Ga 1-z N/i-Al y Ga 1-y N/n-Al x Ga 1-
  • the valence band step of the p-Al z Ga 1-z N/i-Al y Ga 1-y N heterojunction is used to effectively restrict holes from entering the absorption region to recombine with electrons, increasing the load Current carrier lifetime; at the same time, the structure is designed during device preparation to make it difficult for photo-generated holes to participate in the photoconductivity, so that electron unipolar conduction is achieved, so as to obtain high response speed and high gain current.
  • the preparation method of the AlGaN unipolar carrier solar-blind ultraviolet detector provided by the invention has a simple process and is suitable for industrialized production.
  • FIG. 1 is a flowchart of steps of an AlGaN unipolar carrier solar-blind ultraviolet detector provided by an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of an AlGaN unipolar carrier solar-blind ultraviolet detector provided by an embodiment of the present invention.
  • FIG. 1 is a flow chart of the manufacturing method of an AlGaN unipolar carrier solar-blind ultraviolet detector provided by an embodiment of the present invention, including the following steps:
  • Step S110 Provide a substrate for growth of nitride material.
  • the nitride material growth substrate is sapphire or AlN.
  • Step S120 growing an AlN template on the substrate.
  • an AlN template is grown on the substrate using growth methods such as MOCVD, MBE, or HVPE, and the preferred growth temperature is 1300°C.
  • an epitaxial layer of n-Al x Ga 1-x N is grown on the AlN template by an epitaxial method such as MOCVD or MBE.
  • the thickness of the n-Al x Ga 1-x N is 300 nm, the composition is 0.45, and the doping concentration is greater than 5e18 cm -3 .
  • Step S140 growing i-Al y Ga 1-y N on the n-Al x Ga 1-x N, y>x.
  • an i-Al y Ga 1-y N epitaxial layer is grown on the n-Al x Ga 1-x N epitaxial layer using growth methods such as MOCVD or MBE.
  • the thickness of the i-Al y Ga 1-y N is 200-300 nm, the composition is 0.6, and it is not intentionally doped.
  • a p-Al z Ga 1-z N epitaxial layer is grown on the i-Al y Ga 1-y N epitaxial layer using growth methods such as MOCVD or MBE.
  • the thickness of the p-Al z Ga 1-z N is 10-50 nm, the composition is 0.45, and the doping concentration is greater than 2e18 cm -3 .
  • Step S160 growing p-GaN on the p-Al z Ga 1-z N.
  • a p-GaN epitaxial layer is grown on the p-Al z Ga 1-z N epitaxial layer by a growth method such as MOCVD or MBE.
  • the thickness of the p-GaN is 50-150 nm, and the doping concentration is >5e18cm -3 .
  • Step S170 etching the photosensitive mesa of the detector on the wafer formed after the above steps are completed.
  • the photosensitive mesa of the detector is etched on the wafer formed after the above steps, the mesa etching gas is Cl 2 and BCl 3 , and the etching depth is n-Al For the x Ga 1-x N layer, the etching depth is determined by the etching time.
  • ICP inductively coupled plasma
  • Step S180 etch the annular channel on the photosensitive mesa and etch to the i-Al y Ga 1-y N layer.
  • an inductively coupled plasma (ICP) etching technique is used to etch the ring-shaped channel on the photosensitive mesa.
  • the ring-shaped isolation channel etching gas is Cl 2 and BCl 3 , and the etching depth is i-Al y Ga 1 -y N layer.
  • Step S190 etch the p-GaN layer surrounded by the ring channel on the photosensitive mesa with the ring channel, and etch to the p-Al z Ga 1-z N layer.
  • an inductively coupled plasma (ICP) etching technique is used to etch the p-GaN layer surrounded by the ring channel on the photosensitive mesa with the ring channel, the etching gas is Cl 2 and BCl 3 , and the etching depth is To the p-Al z Ga 1-z N layer.
  • ICP inductively coupled plasma
  • Step S210 plate n-electrodes around the etched photosensitive mesa and perform rapid thermal annealing.
  • the electrode preparation area is formed on the n-Al x Ga 1-x N layer by photolithography, and the n-Al x Ga 1-x N ohmic contact electrode metal is deposited by vacuum evaporation or magnetron sputtering.
  • the n electrode is Ti/Al/Ni/Au.
  • Step S220 P-electrode is plated on the p-GaN layer on the outer side of the annular channel of the photosensitive mesa with the n-electrode plated around, and rapid thermal annealing is performed.
  • an electrode preparation area is formed on the p-GaN epitaxial layer outside the annular isolation trench by photolithography, and the p-GaN ohmic contact electrode metal is deposited by means of vacuum evaporation or magnetron sputtering.
  • Ni/Au is selected as the p-electrode.
  • FIG. 2 is a schematic diagram of the structure of the AlGaN monopolar carrier solar-blind ultraviolet detector prepared by the above-mentioned preparation method of the present invention, in which, sapphire substrate 1; AlN epitaxial layer 2; n-Al x Ga 1-x N 3; i-Al y Ga 1-y N 4; p-Al z Ga 1-z N 5; p-GaN 6; n-type ohmic electrode 7; p-type ohmic electrode 8.
  • the structure makes full use of the built-in electric field directed from the n-type AlGaN to the p-type AlGaN to enhance the electric field strength of the i-type absorption region and enhance the efficiency of carrier absorption and separation; at the same time, the use of p-Al z Ga 1-z N/i-
  • the valence band step of the Al y Ga 1-y N heterojunction effectively restricts holes from entering the absorption region to recombine with electrons, increasing the carrier lifetime; at the same time, designing
  • the AlGaN unipolar carrier solar-blind ultraviolet detector of the present invention can also have various transformations and modifications, and is not limited to the specific structure of the above-mentioned embodiment.
  • the protection scope of the present invention should include those alterations or substitutions and modifications that are obvious to those of ordinary skill in the art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供的AlGaN单极载流子日盲紫外探测器,基于AlGaN极化效应,利用p-AlzGa1-zN/i-A yGa1-yN/n-Al xGa 1-xN(0.45=<x,z<y)的双异质结作为探测器的主要结构,充分利用由n型AlGaN指向p型AlGaN的极化内建电场增强i型吸收区的电场强度,增强载流子吸收分离效率;同时,利用p-Al zGa1-zN/i-AlyGa 1-yN异质结的价带带阶有效限制空穴进入吸收区与电子复合,提高载流子寿命;与此同时,在器件制备时设计结构,令光生空穴难以参与到光电导中,实现电子单极导电,从而获得高响应速度和高增益电流。

Description

一种AlGaN单极载流子日盲紫外探测器及其制备方法 技术领域
本发明涉及半导体技术领域,特别涉及一种AlGaN单极载流子日盲紫外探测器。
背景技术
波长处于200nm~280nm的太阳辐射极少能到达地球表面,因而在军事及民用领域日盲紫外探测都有着非常重要的应用。AlGaN材料的禁带宽度在3.4eV至6.2eV连续可调,对应的波长在200nm至365nm,是日盲紫外探测器的重要基础材料之一。目前,多种基于AlGaN材料的紫外探测器被研究,其结构类型包括光电导型、肖特基型、MSM型、p-n结型以及APD型。当前,各种类型的AlGaN基日盲紫外探测器均基于电子与空穴同时导电的工作模式。在此模式之下,电子空穴复合概率提高、复合速率增加、载流子寿命缩短。由此将引起探测器增益值低下、复合噪声强、响应速度慢,难以满足高速度、高灵敏度的探测需求。
AlGaN材料具有很强的自发极化效应。根据高斯定理,极化强度的变化将在界面位置引起极化电荷,极化电荷的密度和带电类型由极化强度变化的大小与方向决定。AlGaN材料丰富的异质结结构为极化电场的调控和利用创造了良好的条件。对于AlGaN异质结而言,当沿着(0001)方向生长的异质结组分变大,则在界面处形成正极化电荷;当沿着(0001)方向生长的异质结组分减小,则在界面处形成负极化电荷。当形成双异质结AlGaN后,由于界面电荷的作用,异质结AlGaN区域将产生极化内建电场。该极化内建电场对于光生载流子的分离可以起到重要作用,对于探测器结构的设计具有显著作用。
发明内容
有鉴于此,有必要针对现有技术存在的缺陷,提供一种能够实现单极载流 子导电的高性能AlGaN基日盲紫外探测器。
为实现上述目的,本发明采用下述技术方案:
本发明提供了一种AlGaN单极载流子日盲紫外探测器的制备方法,包括下述步骤:
提供一氮化物材料生长的衬底;
在所述衬底上生长AlN模板;
在所述AlN模板上生长n-Al xGa 1-xN,x>=0.45;
在所述n-Al xGa 1-xN上生长i-Al yGa 1-yN,y>x;
在所述i-Al yGa 1-yN上生长p-Al zGa 1-zN,0.45<=z<y;
在所述p-Al zGa 1-zN上生长p-GaN;
在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面;
在所述光敏台面刻蚀环形沟道,并刻蚀至i-Al yGa 1-yN层;
在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,并刻蚀至p-Al zGa 1-zN层;
在经过刻蚀的光敏台面周围镀n电极,并快速热退火;
在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火。
在一些较佳的实施例中,在提供一氮化物材料生长的衬底的步骤中,所述氮化物材料生长衬底选择蓝宝石或AlN。
在一些较佳的实施例中,在所述AlN模板上生长n-Al xGa 1-xN,x>=0.45的步骤中,所述n-Al xGa 1-xN的厚度300nm,组分为0.45,掺杂浓度>5e18cm -3
在一些较佳的实施例中,在所述n-Al xGa 1-xN上生长i-Al yGa 1-yN,y>x的步骤中,所述i-Al yGa 1-yN的厚度200~300nm,组分为0.6,非故意掺杂。
在一些较佳的实施例中,在所述i-Al yGa 1-yN上生长p-Al zGa 1-zN的步骤中,所述p-Al zGa 1-zN的厚度10~50nm,组分为0.45,掺杂浓度>2e18cm -3
在一些较佳的实施例中,在所述p-Al zGa 1-zN上生长p-GaN的步骤中,所述p-GaN的厚度50~150nm,掺杂浓度>5e18cm -3
在一些较佳的实施例中,在经过刻蚀的光敏台面周围镀n电极,并快速热退火的步骤中,所述n电极选择Ti/Al/Ni/Au。
在一些较佳的实施例中,在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火的步骤中,所述p电极选择Ni/Au。
另外,本发明还提供了采用上述制备方法制备得到的AlGaN单极载流子日盲紫外探测器。
本发明采用上述技术方案的优点是:
本发明提供的AlGaN单极载流子日盲紫外探测器,基于AlGaN极化效应,利用p-Al zGa 1-zN/i-Al yGa 1-yN/n-Al xGa 1-xN(0.45=<x,z<y)的双异质结作为探测器的主要结构,充分利用由n型AlGaN指向p型AlGaN的极化内建电场增强i型吸收区的电场强度,增强载流子吸收分离效率;同时,利用p-Al zGa 1-zN/i-Al yGa 1-yN异质结的价带带阶有效限制空穴进入吸收区与电子复合,提高载流子寿命;与此同时,在器件制备时设计结构,令光生空穴难以参与到光电导中,实现电子单极导电,从而获得高响应速度和高增益电流。
本发明提供的AlGaN单极载流子日盲紫外探测器的制备方法,工艺简单,适合工业化生产。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本发明实施例提供的AlGaN单极载流子日盲紫外探测器的步骤流程图。
图2为本发明实施例提供的AlGaN单极载流子日盲紫外探测器的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。
请参阅图1,为本发明实施例提供的AlGaN单极载流子日盲紫外探测器的制备方法的步骤流程图,包括下述步骤:
步骤S110:提供一氮化物材料生长的衬底。
在一些实施例中,所述氮化物材料生长衬底选择蓝宝石或AlN。
步骤S120:在所述衬底上生长AlN模板。
具体地,利用MOCVD、MBE或HVPE等生长方法在所述衬底上生长AlN模板,优选的生长温度1300℃。
步骤S130:在所述AlN模板上生长n-Al xGa 1-xN,x>=0.45。
具体地,利用MOCVD或MBE等外延方法在AlN模板上生长n-Al xGa 1-xN外延层。
在一些较佳的实施例中,所述n-Al xGa 1-xN的厚度300nm,组分为0.45,掺杂浓度>5e18cm -3
步骤S140:在所述n-Al xGa 1-xN上生长i-Al yGa 1-yN,y>x。
具体地,利用MOCVD或MBE等生长方法在n-Al xGa 1-xN外延层上生长i-Al yGa 1-yN外延层。
在一些较佳的实施例中,所述i-Al yGa 1-yN的厚度200~300nm,组分为0.6,非故意掺杂。
步骤S150:在所述i-Al yGa 1-yN上生长p-Al zGa 1-zN,0.45<=z<y。
具体地,利用MOCVD或MBE等生长方法在i-Al yGa 1-yN外延层上生长p-Al zGa 1-zN外延层。
在一些较佳的实施例中,所述p-Al zGa 1-zN的厚度10~50nm,组分为0.45,掺杂浓度>2e18cm -3
步骤S160:在所述p-Al zGa 1-zN上生长p-GaN。
具体地,利用MOCVD或MBE等生长方法在p-Al zGa 1-zN外延层上生长p-GaN外延层。
在一些较佳的实施例中,所述p-GaN的厚度50~150nm,掺杂浓度>5e18cm -3
步骤S170:在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面。
具体地,利用感应耦合等离子体(ICP)刻蚀技术,在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面,台面刻蚀气体为Cl 2与BCl 3,刻蚀深度至n-Al xGa 1-xN层,刻蚀深度由刻蚀时间决定。
步骤S180:在所述光敏台面刻蚀环形沟道,并刻蚀至i-Al yGa 1-yN层。
具体地,利用感应耦合等离子体(ICP)刻蚀技术,在所述光敏台面刻蚀环形沟道,环形隔离沟道刻蚀气体为Cl 2与BCl 3,刻蚀深度至i-Al yGa 1-yN层。
步骤S190:在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,并刻蚀至p-Al zGa 1-zN层。
具体地,利用感应耦合等离子体(ICP)刻蚀技术在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,刻蚀气体为Cl 2与BCl 3,刻蚀深度至p-Al zGa 1-zN层。
步骤S210:在经过刻蚀的光敏台面周围镀n电极,并快速热退火。
具体地,利用光刻在n-Al xGa 1-xN层上形成电极制备区,利用真空蒸发或者磁控溅射等方式沉积n-Al xGa 1-xN欧姆接触电极金属。
在一些较佳的实施例中,所述n电极选择Ti/Al/Ni/Au。
步骤S220:在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火。
具体地,利用光刻在环形隔离沟道外侧p-GaN外延层上形成电极制备区,利用真空蒸发或者磁控溅射等方式沉积p-GaN欧姆接触电极金属。
在一些较佳的实施例中,所述p电极选择Ni/Au。
请参阅图2,为本发明上述制备方法制备得到的AlGaN单极载流子日盲紫外探测器的结构示意图,其中,蓝宝石衬底1;AlN外延层2;n-Al xGa 1-xN 3;i-Al yGa 1-yN 4;p-Al zGa 1-zN 5;p-GaN 6;n型欧姆电极7;p型欧姆电极8。
本发明上述实施例提供的AlGaN单极载流子日盲紫外探测器的制备方法,工艺简单,适合工业化生产;制备得到的AlGaN单极载流子日盲紫外探测器,基于AlGaN极化效应,利用p-Al zGa 1-zN/i-Al yGa 1-yN/n-Al xGa 1-xN(0.45=<x,z<y)的双异质结作为探测器的主要结构,充分利用由n型AlGaN指向p型AlGaN的极化内建电场增强i型吸收区的电场强度,增强载流子吸收分离效率;同时,利用p-Al zGa 1-zN/i-Al yGa 1-yN异质结的价带带阶有效限制空穴进入吸收区与电子复合,提高载流子寿命;与此同时,在器件制备时设计结构,令光生空穴难以参与到光电导中,实现电子单极导电,从而获得高响应速度和高增益电流。
当然本发明的AlGaN单极载流子日盲紫外探测器还可具有多种变换及改型,并不局限于上述实施方式的具体结构。总之,本发明的保护范围应包括那些对于本领域普通技术人员来说显而易见的变换或替代以及改型。

Claims (9)

  1. 一种AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,包括下述步骤:
    提供一氮化物材料生长的衬底;
    在所述衬底上生长AlN模板;
    在所述AlN模板上生长n-Al xGa 1-xN,x>=0.45;
    在所述n-Al xGa 1-xN上生长i-Al yGa 1-yN,y>x;
    在所述i-Al yGa 1-yN上生长p-Al zGa 1-zN,0.45<=z<y;
    在所述p-Al zGa 1-zN上生长p-GaN;
    在上述步骤完成后形成的晶圆上刻蚀探测器光敏台面;
    在所述光敏台面刻蚀环形沟道,并刻蚀至i-Al yGa 1-yN层;
    在具有所述环形沟道的光敏台面上刻蚀环形沟道包围的p-GaN层,并刻蚀至p-Al zGa 1-zN层;
    在经过刻蚀的光敏台面周围镀n电极,并快速热退火;
    在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火。
  2. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在提供一氮化物材料生长的衬底的步骤中,所述氮化物材料生长衬底选择蓝宝石或AlN。
  3. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述AlN模板上生长n-Al xGa 1-xN,x>=0.45的步骤中,所述n-Al xGa 1-xN的厚度为300nm,组分为0.45,掺杂浓度>5e18cm -3
  4. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述n-Al xGa 1-xN上生长i-Al yGa 1-yN,y>x的步骤中,所述i-Al yGa 1-yN的厚度为200~300nm,组分为0.6,非故意掺杂。
  5. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述i-Al yGa 1-yN上生长p-Al zGa 1-zN的步骤中,所述p-Al zGa 1-zN的厚度为10~50nm,组分为0.45,掺杂浓度为>2e18cm -3
  6. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在所述p-Al zGa 1-zN上生长p-GaN的步骤中,所述p-GaN的厚度为50~150nm,掺杂浓度>5e18cm -3
  7. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在经过刻蚀的光敏台面周围镀n电极,并快速热退火的步骤中,所述n电极选择Ti/Al/Ni/Au。
  8. 如权利要求1所述的AlGaN单极载流子日盲紫外探测器的制备方法,其特征在于,在将周围镀有n电极的光敏台面的环形沟道外侧p-GaN层上镀p电极,并快速热退火的步骤中,所述p电极选择Ni/Au。
  9. 一种AlGaN单极载流子日盲紫外探测器,其特征在于,由权利要求1至8任一项所述的制备方法制备得到。
PCT/CN2020/110792 2020-04-17 2020-08-24 一种AlGaN单极载流子日盲紫外探测器及其制备方法 WO2021208316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/324,118 US11495707B2 (en) 2020-04-17 2021-05-19 AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010305301.0 2020-04-17
CN202010305301.0A CN111446332A (zh) 2020-04-17 2020-04-17 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/324,118 Continuation US11495707B2 (en) 2020-04-17 2021-05-19 AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2021208316A1 true WO2021208316A1 (zh) 2021-10-21

Family

ID=71653223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/110792 WO2021208316A1 (zh) 2020-04-17 2020-08-24 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Country Status (2)

Country Link
CN (2) CN111446332A (zh)
WO (1) WO2021208316A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296736A (zh) * 2022-07-21 2022-11-04 中国科学院半导体研究所 日盲紫外通讯探测器、制备方法及通讯方法
CN116532808A (zh) * 2023-05-17 2023-08-04 泰兰特激光技术(武汉)有限公司 一种局域改变无机非金属材料表面载流子浓度的方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11495707B2 (en) 2020-04-17 2022-11-08 Changchun Institute Of Optics, Fine Mechanics And Physics, Chinese Academy Of Sciences AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN111446332A (zh) * 2020-04-17 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201484A (zh) * 2011-05-06 2011-09-28 中国科学院上海技术物理研究所 具有二次台面包裹电极的AlGaN紫外探测器及制备方法
US20130292685A1 (en) * 2012-05-05 2013-11-07 Texas Tech University System Structures and Devices Based on Boron Nitride and Boron Nitride-III-Nitride Heterostructures
CN107452820A (zh) * 2017-08-15 2017-12-08 中国电子科技集团公司第三十八研究所 一种同质界面二维δ掺杂型PIN紫外探测器
CN107863413A (zh) * 2017-11-02 2018-03-30 中山大学 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN111446332A (zh) * 2020-04-17 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5278435A (en) * 1992-06-08 1994-01-11 Apa Optics, Inc. High responsivity ultraviolet gallium nitride detector
US6559038B2 (en) * 1997-11-18 2003-05-06 Technologies And Devices International, Inc. Method for growing p-n heterojunction-based structures utilizing HVPE techniques
US6483130B1 (en) * 1999-03-24 2002-11-19 Honeywell International Inc. Back-illuminated heterojunction photodiode
CN101640227B (zh) * 2009-09-07 2012-12-05 中国科学院微电子研究所 具有自增益的日盲型AlGaN紫外探测器及其制备方法
JP6721816B2 (ja) * 2015-06-29 2020-07-15 株式会社タムラ製作所 窒化物半導体テンプレート及び紫外線led
CN105261668B (zh) * 2015-11-23 2017-03-29 南京大学 异质结倍增层增强型AlGaN日盲雪崩光电二极管及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102201484A (zh) * 2011-05-06 2011-09-28 中国科学院上海技术物理研究所 具有二次台面包裹电极的AlGaN紫外探测器及制备方法
US20130292685A1 (en) * 2012-05-05 2013-11-07 Texas Tech University System Structures and Devices Based on Boron Nitride and Boron Nitride-III-Nitride Heterostructures
CN107452820A (zh) * 2017-08-15 2017-12-08 中国电子科技集团公司第三十八研究所 一种同质界面二维δ掺杂型PIN紫外探测器
CN107863413A (zh) * 2017-11-02 2018-03-30 中山大学 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
CN111446332A (zh) * 2020-04-17 2020-07-24 中国科学院长春光学精密机械与物理研究所 一种AlGaN单极载流子日盲紫外探测器及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115296736A (zh) * 2022-07-21 2022-11-04 中国科学院半导体研究所 日盲紫外通讯探测器、制备方法及通讯方法
CN115296736B (zh) * 2022-07-21 2023-07-25 中国科学院半导体研究所 日盲紫外通讯探测器、制备方法及通讯方法
CN116532808A (zh) * 2023-05-17 2023-08-04 泰兰特激光技术(武汉)有限公司 一种局域改变无机非金属材料表面载流子浓度的方法

Also Published As

Publication number Publication date
CN112038448B (zh) 2021-03-19
CN111446332A (zh) 2020-07-24
CN112038448A (zh) 2020-12-04

Similar Documents

Publication Publication Date Title
WO2021208316A1 (zh) 一种AlGaN单极载流子日盲紫外探测器及其制备方法
CN106847933B (zh) 单片集成紫外-红外双色雪崩光电二极管及其制备方法
CN106711253B (zh) 一种iii族氮化物半导体雪崩光电二极管探测器
CN101872798B (zh) 一种紫外红外双色探测器及制作方法
WO2018010545A1 (zh) 一种异质结终端的碳化硅功率器件及其制备方法
CN110660882B (zh) 一种栅控PIN结构GaN紫外探测器及其制备方法
CN104282793A (zh) 一种三台面p-π-n结构III族氮化物半导体雪崩光电探测器及其制备方法
CN109119508B (zh) 一种背入射日盲紫外探测器及其制备方法
CN109285914B (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
CN213601879U (zh) 一种ii类超晶格长波红外探测器
CN114267747B (zh) 具有金属栅结构的Ga2O3/AlGaN/GaN日盲紫外探测器及其制备方法
CN114220878A (zh) 一种具有载流子传输层的Ga2O3/GaN日盲紫外探测器及其制备方法
CN112701171B (zh) 红外探测器及其制作方法
Lv et al. InGaN/GaN visible-light heterojunction phototransistor featuring high responsivity, high speed, and bias-controlled wavelength-selectivity
US11495707B2 (en) AlGaN unipolar carrier solar-blind ultraviolet detector and manufacturing method thereof
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN210349846U (zh) 一种吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器
CN116666487A (zh) 一种具有自供电工作模式的GaN/Ga2O3 pn结紫外光电探测器及其制备方法
CN114678439B (zh) 一种对称叉指结构的2deg紫外探测器及制备方法
JP6454981B2 (ja) 半導体積層体および受光素子
CN110911518B (zh) 一种iii族氮化物半导体雪崩光电探测器及其制备方法
CN108269866B (zh) 一种混合极性InGaN太阳能电池结构
CN111739946B (zh) 一种同型异质结构impatt二极管及其制作方法
CN113113506B (zh) 一种iii族氮化物增益型光电探测器及其制备方法
CN109378361A (zh) 一种实现低电压下AlGaN探测器雪崩倍增的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20930797

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20930797

Country of ref document: EP

Kind code of ref document: A1