CN106653893A - 基于多孔氮化镓的紫外光电探测器及制备方法 - Google Patents

基于多孔氮化镓的紫外光电探测器及制备方法 Download PDF

Info

Publication number
CN106653893A
CN106653893A CN201710053207.9A CN201710053207A CN106653893A CN 106653893 A CN106653893 A CN 106653893A CN 201710053207 A CN201710053207 A CN 201710053207A CN 106653893 A CN106653893 A CN 106653893A
Authority
CN
China
Prior art keywords
layer
nitride porous
porous gallium
photodetector
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710053207.9A
Other languages
English (en)
Inventor
刘磊
杨超
赵丽霞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Semiconductors of CAS
Original Assignee
Institute of Semiconductors of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Semiconductors of CAS filed Critical Institute of Semiconductors of CAS
Priority to CN201710053207.9A priority Critical patent/CN106653893A/zh
Publication of CN106653893A publication Critical patent/CN106653893A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03044Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds comprising a nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明提供了一种多孔氮化镓的紫外光电探测器,包括:衬底;缓冲层,位于所述衬底之上;n型多孔氮化镓层,位于所述缓冲层之上;一对电极,分别叠置于所述型多孔氮化镓层之上。此外,本发明还提供了一种多孔氮化镓的紫外光电探测器的制备方法,包括:在衬底上生长缓冲层;在缓冲层上制备n型多孔氮化镓层;在n型多孔氮化镓层上生长一对电极。本发明采用多孔氮化镓结构,使得氮化镓与电极形成的肖特基结界面处会有大量的表面态密度,降低结势垒高度,增强光效应。

Description

基于多孔氮化镓的紫外光电探测器及制备方法
技术领域
本发明涉及光电探测器技术领域,尤其涉及一种基于多孔氮化镓(GaN)的紫外光电探测器及制备方法。
背景技术
紫外光探测器是紫外预警系统,紫外成像系统的核心组成部分,氮化镓是一种优良的紫外光电探测器材料。在紫外探测领域,可应用于可见光盲波段(小于380nm)的材料主要是硅(Si)。
Si的禁带宽度为1.12eV左右,其光响应波段覆盖紫外光到可见光到近红外光波段。因此,Si基探测器在用于紫外光探测时,其对可见光及近红外光的光电响应会成为一种强烈的背景噪声。为了排除这种背景噪声,用于紫外光探测的Si基光电探测器通常需要配合紫外滤波片使用。但滤波片引入会降低器件的响应度,且增加器件的复杂性和成本,降低系统的可靠性,同时还会面对器件小型化及集成化的问题。
GaN的禁带宽度为3.43eV左右,这种宽禁带使得GaN本身不会对可见光和近红外光有响应,即GaN具有本征的紫外吸收窗口,不需要加入额外的滤波片。因此,基于GaN的紫外光电探测器在器件小型化及集成化上,比Si更具优势。
GaN是一种直接带隙半导体,相比于间接带隙的半导体Si,具有带边光吸收系数高,带边截止特性显著的特点。
相比于Si,GaN具有更快的载流子饱和漂移速度,在紫外光波段具有更高的吸收系数。因此,GaN更有利于制作高频高响应度的紫外光电探测器。同时GaN还具有极高的热稳定性及化学稳定性,并且具有较强的抗辐照能力,这使得GaN基光电探测器可在极端的条件下工作。
虽然GaN材料具有高的光吸收系数,但从目前报道过的GaN基光电探测器的性能来看,其量子效率,响应度及探测度依然较低,无法满足实际应用的需求,尤其是弱紫外光探测的需求。
发明内容
(一)要解决的技术问题
本发明的目的在于提供一种基于多孔氮化镓的紫外光电探测器,以解决上述的至少一项技术问题。
(二)技术方案
本发明提供了一种基于多孔氮化镓的紫外光电探测器,包括:
衬底;
缓冲层,位于所述衬底之上;
n型多孔氮化镓层,位于所述缓冲层之上;
一对电极,分别叠置于所述型多孔氮化镓层之上。
优选地,所述n型多孔氮化镓层中可以包含掺杂剂,掺杂剂包括硅烷。
优选地,所述n型多孔氮化镓层可以并入有Al组分。
优选地,所述n型多孔氮化镓层的多孔孔径可以为1nm~100nm。
优选地,所述缓冲层材料可以包括石墨烯、氮化镓或氧化锌。
优选地,所述电极可以为镍/金、钛/金、铂/金或钛/铝电极。
优选地,所述电极形状包括插指状、圆柱状、三角状或长方体状。
优选地,所述衬底的材料可以为蓝宝石、硅、碳化硅或者玻璃,衬底结构为平面或图形。
基于同一发明构思,本发明还提供了一种基于多孔氮化镓的紫外光电探测器的制备方法,包括:
S1、在衬底上生长缓冲层;
S2、在缓冲层上制备n型多孔氮化镓层;
S3、在n型多孔氮化镓层上生长一对电极。
优选地,步骤S2中,所述n型多孔氮化镓层可以通过对氮化镓进行电化学腐蚀或热退火转化得到。
(三)有益效果
多孔结构的GaN具有极大的表面-体积比,而表面会引入表面态。因此在,GaN与金属电极形成的肖特基结界面处会有大量的表面态密度。在多孔氮化镓受到紫外光照射后,在这些界面处存在的大量表面态会捕获大量光生空穴,并在界面集聚。这些大量集聚的光生空穴,会使得GaN与金属形成的肖特基结势垒高度大大降低,从而使得越过势垒的热电子大大增多,并得到极大的光电流。相比于常规的基于薄膜GaN材料的紫外光电探测器,这种基于多孔结构的GaN基光电探测在有光照后,会有更强的光电响应。
附图说明
图1为本发明实施例的基于多孔氮化镓的紫外光电探测器的纵剖面结构示意图;
图2为本发明实施例的基于多孔氮化镓的紫外光电探测器横截面扫描电子显微镜示意图;
图3为本发明实施例的基于多孔氮化镓的紫外光电探测器在340nm的紫外光照射下的光响应度及探测度随电压的变化曲线图;
图4为基于多孔氮化镓的紫外光电探测器的制备方法流程图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明作进一步的详细说明。
图1为本发明实施例的基于多孔氮化镓紫外光电探测器的纵剖面结构示意图,如图1所示,基于多孔氮化镓的紫外光电探测器自下而上包括:衬底10、缓冲层11、n型多孔氮化镓层12和一对电极13。
所述衬底10的材料为蓝宝石、硅、碳化硅(SiC)或者玻璃,衬底10结构为平面或图形,本发明实施例中选择碳化硅作为紫外光电探测器的衬底10。
所述缓冲层11位于所述衬底10之上,缓冲层11材料包括石墨烯、氮化镓或氧化锌。本发明实施例的缓冲层11的制备工艺为:以高纯氨气作为氮源,三甲基镓或三乙基镓作为Ga源,先低温生长GaN形核层,再高温生长非故意掺杂GaN层。
所述n型多孔氮化镓层12,位于所述缓冲层11之上;所述n型多孔氮化镓层12中包含掺杂剂,掺杂剂包括硅烷。所述n型多孔氮化镓层12通过对氮化镓进行电化学腐蚀或热退火转化得到。更进一步地,所述n型多孔氮化镓层12的孔径优选为1nm~100nm。此外,通过在n型多孔氮化镓层12中并入Al组分,组成AlGaN三元化合物半导体。通过调节Al组分,可以调节AlGaN的禁带宽度,使其可以实现日盲波段(小于280nm)的探测。
所述一对电极13,分别叠置于所述型多孔氮化镓层之上,且互不连接。所述电极13为镍/金(Ni/Au)、钛/金(Ti/Au)、铂/金(Pt/Au)或钛/铝(Ti/Al)电极。本发明实施例采用Ni/Au作为电极13。
本发明实施例提供的基于多孔氮化镓的紫外光电探测器为金属-半导体-金属型光电探测器,电子从一电极流动至n型多孔氮化镓层12,最后流向另一电极。此外,所述电极13形状包括插指状、圆柱状、三角状或长方体状,优选为插指状,可以增强本实施例中金属-半导体-金属型光电探测器的电流流动速度,增大电压。
此外,其它可实施的器件结构还包括肖特基势垒型光电探测器及p-i-n型光电探测器。
图2为本发明实施例的基于多孔氮化镓的紫外光电探测器横截面扫描电子显微镜示意图,如图2所示,图2以500nm为参考比例,所述多孔GaN的横截面的孔的形貌介于三角形和圆形之间,所述n型多孔氮化镓层12的孔径优选为1nm~100nm。在本实施例中,GaN平均孔径约为40nm。此外,所述多孔GaN形状大小可以不一致,不均匀排列。
图3为本发明实施例的基于多孔GaN的紫外光电探测器在340nm的紫外光照射下的光响应度及探测度随电压的变化曲线图,如图3所示,所述紫外光电探测器(PD_A)在光功率密度为1.68毫瓦每平方厘米(mW/cm2)的340nm的紫外光照射下的光响应度(Responsivity)及探测度(specific detectivity)随电压(Voltage)的变化曲线。在1V偏压下,响应度大于13000安培每瓦特(A/W),探测度约为1.0×1014琼斯(Jones)。由此可见,该基于多孔GaN的紫外光电探测器的光响应度及探测度远远大于现有的GaN基光电探测器。
图4为本发明实施的基于多孔氮化镓的紫外光电探测器的制备方法流程图,如图4所示,包括:
S1、在衬底10上生长缓冲层11;
S2、在缓冲层11上制备n型多孔氮化镓层12;
S3、在n型多孔氮化镓层12上生长一对电极13。
其中,步骤S2的具体步骤为:先在缓冲层11上生长n型氮化镓层;将所述n型氮化镓层通过电化学腐蚀或热退火转化得到n型多孔氮化镓层12。其中,所述n型多孔氮化镓层12中包含掺杂剂,掺杂剂包括硅烷。更进一步地,所述n型多孔氮化镓层12的孔径优选为1nm~100nm。此外,通过在n型多孔氮化镓层12中并入Al组分,组成AlGaN三元化合物半导体。通过调节Al组分,可以调节AlGaN的禁带宽度,使其可以实现日盲波段(小于280nm)的探测。
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于多孔氮化镓的紫外光电探测器,其特征在于,包括:
衬底;
缓冲层,位于所述衬底之上;
n型多孔氮化镓层,位于所述缓冲层之上;
一对电极,分别叠置于所述型多孔氮化镓层之上。
2.根据权利要求1所述的紫外光电探测器,其特征在于,所述n型多孔氮化镓层中包含掺杂剂,掺杂剂包括硅烷。
3.根据权利要求1所述的紫外光电探测器,其特征在于,所述n型多孔氮化镓层并入有Al组分。
4.根据权利要求1所述的紫外光电探测器,其特征在于,所述n型多孔氮化镓层的孔径为1nm~100nm。
5.根据权利要求1所述的紫外光电探测器,其特征在于,所述缓冲层材料包括石墨烯、氮化镓或氧化锌。
6.根据权利要求1所述的紫外光电探测器,其特征在于,所述电极为镍/金、钛/金、铂/金或钛/铝电极。
7.根据权利要求1所述的紫外光电探测器,其特征在于,所述电极形状包括插指状、圆柱状、三角状或长方体状。
8.根据权利要求1所述的紫外光电探测器,其特征在于,所述衬底的材料为蓝宝石、硅、碳化硅或者玻璃,衬底结构为平面或图形。
9.一种基于多孔氮化镓的紫外光电探测器的制备方法,其特征在于,包括:
S1、在衬底上生长缓冲层;
S2、在缓冲层上制备n型多孔氮化镓层;
S3、在n型多孔氮化镓层上生长一对电极。
10.根据权利要求9所述的制备方法,其特征在于,步骤S2中,所述n型多孔氮化镓层通过对氮化镓进行电化学腐蚀或热退火转化得到。
CN201710053207.9A 2017-01-22 2017-01-22 基于多孔氮化镓的紫外光电探测器及制备方法 Pending CN106653893A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710053207.9A CN106653893A (zh) 2017-01-22 2017-01-22 基于多孔氮化镓的紫外光电探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710053207.9A CN106653893A (zh) 2017-01-22 2017-01-22 基于多孔氮化镓的紫外光电探测器及制备方法

Publications (1)

Publication Number Publication Date
CN106653893A true CN106653893A (zh) 2017-05-10

Family

ID=58841276

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710053207.9A Pending CN106653893A (zh) 2017-01-22 2017-01-22 基于多孔氮化镓的紫外光电探测器及制备方法

Country Status (1)

Country Link
CN (1) CN106653893A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113745361A (zh) * 2021-07-20 2021-12-03 五邑大学 一种多孔GaN窄带紫外光电二极管及其制备方法
WO2022099850A1 (zh) * 2020-11-13 2022-05-19 中国科学技术大学 基于氮化镓的极性翻转型波长可分辨光探测器及制备方法
CN114530519A (zh) * 2020-11-23 2022-05-24 中国科学院宁波材料技术与工程研究所 一种自驱动msm紫外探测器及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617358A (zh) * 2004-10-29 2005-05-18 南京大学 提高氮化镓光导型紫外光电探测器响应度方法及探测器
US20130200391A1 (en) * 2010-09-28 2013-08-08 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1617358A (zh) * 2004-10-29 2005-05-18 南京大学 提高氮化镓光导型紫外光电探测器响应度方法及探测器
US20130200391A1 (en) * 2010-09-28 2013-08-08 North Carolina State University Gallium nitride based structures with embedded voids and methods for their fabrication

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. S. CHUAH 等: "《Enhanced UV photodetector responsivity in porous GaN/Si(111) by metal-assisted electroless etching》", 《ADVANCED MATERIALS RESEARCH》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022099850A1 (zh) * 2020-11-13 2022-05-19 中国科学技术大学 基于氮化镓的极性翻转型波长可分辨光探测器及制备方法
CN114530519A (zh) * 2020-11-23 2022-05-24 中国科学院宁波材料技术与工程研究所 一种自驱动msm紫外探测器及其制备方法
CN114530519B (zh) * 2020-11-23 2024-04-02 中国科学院宁波材料技术与工程研究所 一种自驱动msm紫外探测器及其制备方法
CN113745361A (zh) * 2021-07-20 2021-12-03 五邑大学 一种多孔GaN窄带紫外光电二极管及其制备方法

Similar Documents

Publication Publication Date Title
US6104074A (en) Schottky barrier detectors for visible-blind ultraviolet detection
CN107863413B (zh) 一种AlGaN基日盲紫外雪崩异质结光电晶体管探测器及其制备方法
Su et al. GaN metal-semiconductor-metal ultraviolet sensors with various contact electrodes
CN106571405B (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
JPH0370183A (ja) 光起電力素子
CN107403848B (zh) 一种背照式级联倍增雪崩光电二极管
US9893227B2 (en) Enhanced deep ultraviolet photodetector and method thereof
CN109935655B (zh) 一种AlGaN/SiC双色紫外探测器
CN104465849A (zh) 半导体光检测装置
CN109494275A (zh) 一种AlGaN基日盲紫外光电晶体管探测器及其制作方法
CN102176489A (zh) 晶格匹配体系上裁剪带隙波长提高光电探测器性能的方法
CN106653893A (zh) 基于多孔氮化镓的紫外光电探测器及制备方法
CN109478586A (zh) 半导体元件
US8455756B2 (en) High efficiency solar cell using IIIB material transition layers
CN1198338C (zh) 光盲紫外探测器
CN110137277B (zh) 非极性自支撑GaN基pin紫外光电探测器及制备方法
CN111863981A (zh) 一种氧化镓日盲光电探测器及其制备方法
CN106409965A (zh) 一种高速饱和单行载流子紫外光电二极管及制备方法
Chang et al. Zn/Mg co-alloyed for higher photoelectric performance and unchanged spectral response in β-Ga2O3 solar-blind photodetector
CN108899380B (zh) 红外半导体雪崩探测器及其制备方法
WO1989003593A1 (en) Low noise photodetection and photodetector therefor
KR101393092B1 (ko) Ⅲ-ⅴ족 화합물 태양전지 및 그 제조방법
US10686091B2 (en) Semiconductor device
CN112018210B (zh) 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法
CN112420397B (zh) 基于氮化镓的极性翻转型波长可分辨光探测器及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20170510

RJ01 Rejection of invention patent application after publication