CN108400196A - 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法 - Google Patents

一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法 Download PDF

Info

Publication number
CN108400196A
CN108400196A CN201810170996.9A CN201810170996A CN108400196A CN 108400196 A CN108400196 A CN 108400196A CN 201810170996 A CN201810170996 A CN 201810170996A CN 108400196 A CN108400196 A CN 108400196A
Authority
CN
China
Prior art keywords
layer
type
nio
layers
mgnio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201810170996.9A
Other languages
English (en)
Inventor
孙月静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuxi Huayi Investment Co Ltd
Original Assignee
Wuxi Huayi Investment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuxi Huayi Investment Co Ltd filed Critical Wuxi Huayi Investment Co Ltd
Priority to CN201810170996.9A priority Critical patent/CN108400196A/zh
Publication of CN108400196A publication Critical patent/CN108400196A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/105Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PIN type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Led Devices (AREA)

Abstract

本发明公开了一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法。该紫外光电探测器的结构包括:由下至上依次设置的衬底(101)、缓冲层(102)、n型GaN层(103)、非掺杂i型NiO/GaN超晶格吸收层(104)、p型GaN层(105)、p型MgNiO层(106),在n型GaN层(103)上引出的n型欧姆电极(108),在p型MgNiO层(106)上引出的p型欧姆电极(107)。本发明提供的采用多周期非掺杂i型NiO/GaN超晶格作为吸收层的结构,能够有效解决紫外光电探测器中由于电子和空穴的离化系数相近而导致的紫外探测器不灵敏,有助于提高探测器对紫外信号的响应度和稳定性。

Description

一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法
技术领域
本发明涉及半导体光电子器件领域,具体涉及一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法。
背景技术
紫外光电探测器在军用和民用方面都具有重要的应用价值和发展前景,如:紫外告警与制导、碳氢化合物燃烧火焰的探测、生化基因的检测、紫外天文学的研究、短距离的通信以及皮肤病的治疗等。PIN结构紫外光电探测器具有体积小、重量轻、寿命长、抗震性好、工作电压低、耐高温、耐腐蚀、抗辐照、量子效率高和无需滤光片等优点,最近已成为光电探测领域的研究热点。
NiO作为一种本征P型直接带隙半导体材料,与GaN形成异质结结构的紫外探测器具有优良的性能,原因在于异质结结构中内建电场的存在可以大大促进光生电子空穴对的有效分离,提高紫外探测器的探测灵敏度和响应速度。由于NiO材料自身的优点,展现了极好紫外探测性能,并且其具有工作电压较低、能耗较小、体积小、重量轻等优点,近年来已成为紫外探测研究的热点。
NiO薄膜材料的常规制备方法包括水浴法、煅烧法等。这些方法维持的周期一般而言都比较长,耗能较多,且重复性较差。与此同时,材料在与表面淀积的金属形成肖特基结时界面存在大量的缺陷,使得有源区变薄,遂穿机制明显,导致暗电流很大,因而严重制约了此类结构探测器的探测性能的提高。
目前报道的NiO纳米线制作的紫外光探测器,生长方向垂直于基底平面,并依靠部分未溶解的模板作为支撑形成阵列。虽然有序性有所提高,但与电极部分接触少,使得探测器的灵敏度和稳定性较差。如何有效解决紫外光电探测器中由于电子和空穴的离化系数相近而导致的紫外探测器不灵敏,进一步提高探测器对紫外信号的响应度是紫外光电探测器目前存在的一大难题。
发明内容
为了克服上述现有技术存在的不足,本发明的目的在于提供一种多周期非掺杂超晶格作为吸收层的结构,能够有效解决紫外光电探测器中由于电子和空穴的离化系数相近而导致的紫外探测器不灵敏,有助于提高探测器对紫外信号的响应度和稳定性。由于多周期超晶格结构的高吸收系数、高横向载流子迁移率和强极化效应,可以有效增加吸收层的电场,有助于提高紫外探测器的响应度。
为实现上述目的,本发明采用的技术方案为:
一种具有超晶格结构氮化镓基紫外光电探测器,包括由下至上依次设置的衬底、缓冲层、n型GaN层、非掺杂i型NiO/GaN超晶格吸收层、p型GaN层、p型MgNiO层,在n型GaN层上引出的n型欧姆电极,在p型MgNiO层上引出的p型欧姆电极。
其特征在于所述的非掺杂i型吸收层由多周期NiO/GaN超晶格组成。
优选地,所述衬底为为蓝宝石晶体。
优选地,所述缓冲层为GaN,且厚度为200~800nm,所述n型GaN厚度为400~1000nm,所述非掺杂i型NiO/GaN超晶格吸收层厚度为100~200nm,所述p型GaN层厚度为50~100nm,所述p型MgNiO层厚度为100~200nm。
优选地,所述非掺杂i型NiO/GaN超晶格吸收层中,单周期中NiO层厚度为5~10nm,GaN层厚度为5~10nm。
优选地,所述非掺杂i型NiO/GaN超晶格吸收层中,超晶格的重复周期数为1~10个。
优选地,所述p型MgNiO层中空穴浓度介于1016~1018cm-3之间。
优选地,所述n型欧姆电极为Ti/Al/Ti/Au合金电极,p型欧姆电极为Ni/Au合金电极。
本发明还提供了上述一种具有超晶格结构氮化镓基紫外光电探测器的制备方法,其步骤包括:
(1)在衬底上生长一层缓冲层;
(2)在缓冲层上生长一层n型GaN层;
(3)在n型GaN层上生长一层非掺杂i型NiO/GaN超晶格吸收层;
(4)在非掺杂i型NiO/GaN超晶格吸收层上生长一层p型GaN层;
(5)在p型GaN层上生长一层p型MgNiO层;
(6)在p型MgNiO层上进行台面刻蚀,露出n型GaN层;
(7)在p型MgNiO层上蒸镀p型Ni/Au欧姆电极,并且对电极进行退火处理;
(8)在n型GaN层台面上蒸镀n型Ti/Al/Ti/Au欧姆电极,并且对电极进行退火处理。
本技术方案的有益效果为:本发明提供的是一种采用多周期NiO/GaN超晶格作为吸收层的新型PIN结构紫外探测器。由于多周期超晶格结构的高吸收系数、高横向载流子迁移率和强极化效应,可有效增加吸收层的电场,因此能够有效实现空穴和电子对的空间上的分离。有助于提高探测器对紫外信号的响应度和稳定性。
附图说明
图1是实施例中的一种具有超晶格结构氮化镓基紫外光电探测器结构示意图;
其中数字的含义为:衬底101、缓冲层102、n型GaN层103、非掺杂i型NiO/GaN超晶格吸收层104、p型GaN层105、p型MgNiO层106,在p型MgNiO层106上引出的p型欧姆电极107,在n型GaN层103上引出的n型欧姆电极108。
具体实施方式
实施例1
下面结合附图对本发明作进一步的说明。
如图1所示为一种具有超晶格结构氮化镓基紫外光电探测器,包括由下至上依次设置的蓝宝石衬底(101)、GaN缓冲层(102)、n型GaN层(103)、非掺杂i型NiO/GaN超晶格吸收层(104)、p型GaN层(105)、p型MgNiO层(106),在p型MgNiO层(106)上引出的p型欧姆电极(107),在n型GaN层(103)上引出的n型欧姆电极(108)。
所述衬底(101)为C面蓝宝石晶体。
所述缓冲层(102)为GaN层,厚度为400nm。
所述n型GaN层(103)的厚度为700nm,利用Si进行掺杂,其中Si的掺杂浓度大于8×1019cm-3
所述非掺杂i型NiO/GaN超晶格吸收层(104),单周期中NiO层厚度为5nm,GaN层厚度为10nm。
所述非掺杂i型NiO/GaN超晶格吸收层(104)的重复周期数为10个。
所述p型GaN层(105)的厚度为60nm,采用的Mg进行掺杂,并且掺杂浓度为5×1017cm-3
所述p型MgNiO层(106)的厚度为200nm,其中的空穴浓度为5×1016cm-3
在p型MgNiO层(106)上进行光刻,刻蚀出电极台面,露出n型GaN层(103),对刻蚀后的台面进行处理。
在n型GaN层(103)台面上蒸镀n型欧姆电极(108),电极为Ni/Au合金电极,电极尺寸为0.3×0.3mm2,蒸镀后在850℃的N2环境下退火2分钟。
在p型MgNiO层(106)上蒸镀p型欧姆电极(107),电极为Ti/Al/Ti/Au合金电极,蒸镀后在600℃的N2环境下退火3分钟。
实施例2
如图1所示为一种具有超晶格结构氮化镓基紫外光电探测器,包括由下至上依次设置的蓝宝石衬底(101)、GaN缓冲层(102)、n型GaN层(103)、非掺杂i型NiO/GaN超晶格吸收层(104)、p型GaN层(105)、p型MgNiO层(106),在p型MgNiO层(106)上引出的p型欧姆电极(107),在n型GaN层(103)上引出的n型欧姆电极(108)。
所述衬底(101)为C面硅晶体。
所述缓冲层(102)为GaN层,厚度为200nm。
所述n型GaN层(103)的厚度为400nm,利用Si进行掺杂,其中Si的掺杂浓度大于5×1019cm-3
所述非掺杂i型NiO/GaN超晶格吸收层(104),单周期中NiO层厚度为7nm,GaN层厚度为5nm。
所述非掺杂i型NiO/GaN超晶格吸收层(104)的重复周期数为1个。
所述p型GaN层(105)的厚度为20nm,采用的Mg进行掺杂,并且掺杂浓度为5×1016cm-3
所述p型MgNiO层(106)的厚度为100nm,其中的空穴浓度为5×1017cm-3
在p型MgNiO层(106)上进行光刻,刻蚀出电极台面,露出n型GaN层(103),对刻蚀后的台面进行处理。
在n型GaN层(103)台面上蒸镀n型欧姆电极(108),电极为Ni/Au合金电极,电极尺寸为0.3×0.3mm2,蒸镀后在850℃的N2环境下退火2分钟。
在p型MgNiO层(106)上蒸镀p型欧姆电极(107),电极为Ti/Al/Ti/Au合金电极,蒸镀后在600℃的N2环境下退火3分钟。
实施例3
如图1所示为一种具有超晶格结构氮化镓基紫外光电探测器,包括由下至上依次设置的蓝宝石衬底(101)、GaN缓冲层(102)、n型GaN层(103)、非掺杂i型NiO/GaN超晶格吸收层(104)、p型GaN层(105)、p型MgNiO层(106),在p型MgNiO层(106)上引出的p型欧姆电极(107),在n型GaN层(103)上引出的n型欧姆电极(108)。
所述衬底(101)为C面氮化镓晶体。
所述缓冲层(102)为GaN层,厚度为1000nm。
所述n型GaN层(103)的厚度为1000nm,利用Si进行掺杂,其中Si的掺杂浓度大于8×1019cm-3
所述非掺杂i型NiO/GaN超晶格吸收层(104),单周期中NiO层厚度为10nm,GaN层厚度为7nm。
所述非掺杂i型NiO/GaN超晶格吸收层(104)的重复周期数为5个。
所述p型GaN层(105)的厚度为100nm,采用的Mg进行掺杂,并且掺杂浓度为5×1016cm-3
所述p型MgNiO层(106)的厚度为400nm,其中的空穴浓度为5×1018cm-3
在p型MgNiO层(106)上进行光刻,刻蚀出电极台面,露出n型GaN层(103),对刻蚀后的台面进行处理。
在n型GaN层(103)台面上蒸镀n型欧姆电极(108),电极为Ni/Au合金电极,电极尺寸为0.3×0.3mm2,蒸镀后在850℃的N2环境下退火2分钟。
在p型MgNiO层(106)上蒸镀p型欧姆电极(107),电极为Ti/Al/Ti/Au合金电极,蒸镀后在600℃的N2环境下退火3分钟。
必须指出的是:本发明不仅适用于氮化镓基紫外光电探测器,对于肖特基势垒型氮化镓基紫外雪崩光电探测器也同样适用。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以根据实际需要做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (7)

1.一种具有超晶格结构氮化镓基紫外光电探测器,其特征在于:由下至上依次设置的衬底(101)、缓冲层(102)、n型GaN层(103)、非掺杂i型NiO/GaN超晶格吸收层(104)、p型GaN层(105)、p型MgNiO层(106),在n型GaN层(103)上引出的n型欧姆电极(108),在p型MgNiO层(106)上引出的p型欧姆电极(107)。
2.根据权利要求1所述的一种具有超晶格结构氮化镓基紫外光电探测器,其特征在于:所述非掺杂i型NiO/GaN超晶格吸收层(104)中,单周期中NiO层厚度为5~10nm,GaN层厚度为5~10nm。
3.根据权利要求1所述的一种具有超晶格结构氮化镓基紫外光电探测器,其特征在于:所述非掺杂i型NiO/GaN超晶格吸收层(104)中,超晶格的重复周期数为1~10个。
4.根据权利要求1所述的一种具有超晶格结构氮化镓基紫外光电探测器,其特征在于:所述衬底(101)为蓝宝石、硅、氮化镓、氮化铝、碳化硅衬底中的任意一种。
5.根据权利要求1所述的一种具有超晶格结构氮化镓基紫外光电探测器,其特征在于:所述缓冲层(102)厚度为200~1000nm,所述n型GaN层(103)厚度为400~1000nm,所述非掺杂i型NiO/GaN超晶格吸收层(104)厚度为100~200nm,所述p型GaN层(105)厚度为20~100nm,所述p型MgNiO层(106)厚度为100~400nm。
6.根据权利要求1所述的一种具有超晶格结构氮化镓基紫外光电探测器,其特征在于:所述p型MgNiO层(106)空穴浓度介于1016~1018cm-3之间。
7.一种关于权利要求1所述的一种具有超晶格结构氮化镓基紫外光电探测器的制备方法,其工艺步骤如下:
(1)在衬底(101)上生长一层缓冲层(102);
(2)在缓冲层(102)上生长一层n型GaN层(103);
(3)在n型GaN层(103)上生长一层非掺杂i型NiO/GaN超晶格吸收层(104);
(4)在非掺杂i型NiO/GaN超晶格吸收层(104)上生长一层p型GaN层(105);
(5)在p型GaN层(105)上生长一层p型MgNiO层(106);
(6)在p型MgNiO层(106)上进行台面刻蚀,露出n型GaN层(103);
(7)在p型MgNiO层(106)上蒸镀p型Ni/Au欧姆电极(107),并且对电极进行退火处理;
(8)在n型GaN层(103)台面上蒸镀n型Ti/Al/Ti/Au欧姆电极(108),并且对电极进行退火处理。
CN201810170996.9A 2018-03-01 2018-03-01 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法 Pending CN108400196A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810170996.9A CN108400196A (zh) 2018-03-01 2018-03-01 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810170996.9A CN108400196A (zh) 2018-03-01 2018-03-01 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN108400196A true CN108400196A (zh) 2018-08-14

Family

ID=63091401

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810170996.9A Pending CN108400196A (zh) 2018-03-01 2018-03-01 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN108400196A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686809A (zh) * 2018-12-25 2019-04-26 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN111048636A (zh) * 2019-12-23 2020-04-21 江苏如高第三代半导体产业研究院有限公司 一种氧化镓基紫外发光二极管及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042390A1 (en) * 2011-02-16 2014-02-13 The Regents Of University Of California Interpenetrating networks of carbon nanostructures and nano-scale electroactive materials
CN205582956U (zh) * 2016-04-21 2016-09-14 常熟理工学院 一种pin结构紫外光电探测器
CN106960885A (zh) * 2017-05-02 2017-07-18 常熟理工学院 一种pin结构紫外光电探测器及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140042390A1 (en) * 2011-02-16 2014-02-13 The Regents Of University Of California Interpenetrating networks of carbon nanostructures and nano-scale electroactive materials
CN205582956U (zh) * 2016-04-21 2016-09-14 常熟理工学院 一种pin结构紫外光电探测器
CN106960885A (zh) * 2017-05-02 2017-07-18 常熟理工学院 一种pin结构紫外光电探测器及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109686809A (zh) * 2018-12-25 2019-04-26 中山大学 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN111048636A (zh) * 2019-12-23 2020-04-21 江苏如高第三代半导体产业研究院有限公司 一种氧化镓基紫外发光二极管及其制备方法

Similar Documents

Publication Publication Date Title
CN108376716A (zh) 一种新型氧化镓基pin结构紫外光电探测器及其制备方法
CN103918082B (zh) 肖特基势垒二极管
US10090425B2 (en) Axially-integrated epitaxially-grown tandem wire arrays
CN103887360A (zh) InAs/GaSb超晶格红外光电探测器及其制备方法
CN100438083C (zh) δ掺杂4H-SiC PIN结构紫外光电探测器及其制备方法
CN104882510B (zh) 一种新型小倾角半台面结构的碳化硅雪崩光电二极管
CN100514680C (zh) 一种δ掺杂4H-SiC雪崩紫外光电探测器及其制备方法
CN106960887B (zh) 一种铝镓氮基日盲紫外探测器及其制备方法
CN104393093B (zh) 应用石墨烯的高探测率氮化镓基肖特基型紫外探测器
CN106571405B (zh) 一种带有GaN纳米线阵列的紫外探测器及其制作方法
CN106711253A (zh) 一种iii族氮化物半导体雪崩光电探测器
CN106960885B (zh) 一种pin结构紫外光电探测器及其制备方法
CN106711249A (zh) 一种基于铟砷锑(InAsSb)材料的双色红外探测器的制备方法
CN104576811A (zh) 近中红外波双色探测器及其制备方法
CN110571301B (zh) 氧化镓基日盲探测器及其制备方法
CN102361046B (zh) AlGaN基MSM结构日盲型紫外探测器及其制备方法
CN108400197B (zh) 具有球冠结构的4H-SiC紫外光电探测器及制备方法
CN108400196A (zh) 一种具有超晶格结构氮化镓基紫外光电探测器及其制备方法
CN105655437A (zh) 一种紫外雪崩光电探测器
CN106129166A (zh) 一种GaN‑MoS2分波段探测器及其制备方法
CN109980040A (zh) 一种氧化镓mis结构紫外探测器
WO2023051242A1 (zh) 单光子探测器及其制作方法、单光子探测器阵列
CN109192796A (zh) 一种UVC增强型PIN结构的4H-SiC紫外探测器
CN105448375B (zh) 采用α放射源的碳化硅PIN型同位素电池及其制造方法
CN209447826U (zh) 一种低暗电流台面型雪崩单光子探测器

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20180814