WO2020011201A1 - 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法 - Google Patents

基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法 Download PDF

Info

Publication number
WO2020011201A1
WO2020011201A1 PCT/CN2019/095431 CN2019095431W WO2020011201A1 WO 2020011201 A1 WO2020011201 A1 WO 2020011201A1 CN 2019095431 W CN2019095431 W CN 2019095431W WO 2020011201 A1 WO2020011201 A1 WO 2020011201A1
Authority
WO
WIPO (PCT)
Prior art keywords
algan
type
layer
field plate
avalanche photodetector
Prior art date
Application number
PCT/CN2019/095431
Other languages
English (en)
French (fr)
Inventor
陈敦军
游海帆
谢自力
Original Assignee
南京集芯光电技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京集芯光电技术研究院有限公司 filed Critical 南京集芯光电技术研究院有限公司
Publication of WO2020011201A1 publication Critical patent/WO2020011201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions

Definitions

  • the invention relates to an AlGaN or GaN ultraviolet avalanche photodetector based on a field plate structure and a preparation method thereof, and belongs to the technical field of semiconductor optoelectronic materials.
  • Group III nitride semiconductors represented by aluminum gallium nitride have a direct band gap and stable physical and chemical properties. They are new third-generation semiconductor materials that have been researched and developed at home and abroad in recent years. GaN and AlN semiconductor materials have band gap widths of 3.4 eV and 6.2 eV, respectively. By forming an Al x Ga 1-x N multi-component compound, the band gap width can be continuously changed from 3.4 to 6.2 eV, and the wavelength range covers 200 to 365 nm. Preferred materials for making UV detectors.
  • the photodetectors of AlGaN-based semiconductor materials Compared with traditional silicon-based UV detectors and UV photomultiplier tubes, the photodetectors of AlGaN-based semiconductor materials have higher sensitivity, can directly achieve visible light or even day blind operation, and can be used in harsh environments such as high temperature and strong radiation. Obvious advantages such as work.
  • Ultraviolet AlGaN based avalanche photodetector having a high response speed, gain more than 105, even (Geiger mode) work, enabling rapid measurement of the UV signal is weak in the single-photon detection mode.
  • Avalanche photodiodes generally use a PIN structure, which is characterized by adding a low-doped intrinsic semiconductor layer between the P and N semiconductor materials. When the diode is reverse biased, the voltage drops almost entirely on the deeply depleted I layer.
  • the avalanche photodiode can work in a state slightly lower than the avalanche breakdown voltage (linear mode), or it can work in a state slightly higher than the avalanche breakdown state (Geiger mode).
  • junction termination Since AlGaN and APD need to work in a high electric field mode, reliable junction termination is the key to the stable operation of the device.
  • common junction termination structures include floating field rings, field plates, junction termination extensions, and bevel terminations.
  • the junction termination technology of the field plate structure is widely used in power devices due to its simple process and stable effect.
  • the Schottky barrier diode shown in FIG. 1 forms a MOS structure between the field plate and the insulating layer and the semiconductor, so that the depletion region at the Schottky junction is further expanded.
  • the equipotential lines at the Schottky junction with the field plate structure (as shown in Fig. 3) become thinner, the electric field strength is weakened, and the breakdown voltage is effectively improved.
  • An object of the present invention is to provide an AlGaN or GaN ultraviolet avalanche photodetector based on a field plate structure.
  • An AlGaN or GaN ultraviolet avalanche photodetector based on a field plate structure includes an AlGaN or GaN APD device. Both sides of the AlGaN or GaN APD device form a slope at an angle of 15 ° -30 °, and a metal field plate is arranged on the slope. The field plate covers the junction region, is connected to the p-type electrode, and is not connected to the n-type electrode.
  • the structure of the AlGaN ultraviolet avalanche photodetector includes:
  • a slope is formed on both sides of the device.
  • the slope extends from the p + -type GaN layer to the surface or inside of the n-type AlGaN layer.
  • An insulating layer is grown on the slope, and a p-type electrode is evaporated on the p + -type GaN layer to form a p-type ohmic contact.
  • the n-type AlGaN layer is exposed, the n-type electrode is vapor-deposited on the n-type AlGaN layer to form an n-type ohmic contact, and the metal field plate is vapor-deposited on the insulating layer.
  • the insulating layer is SiO 2 or Si 3 N 4 .
  • the structure of the GaN ultraviolet avalanche photodetector from bottom to top includes:
  • a slope is formed on both sides of the device.
  • the slope extends from the p + -type GaN layer to the surface or inside of the n-type AlGaN layer.
  • An insulating layer is grown on the slope, and a p-type electrode is evaporated on the p + -type GaN layer to form a p-type ohmic contact.
  • the n-type GaN layer is exposed, the n-type electrode is evaporated on the n-type GaN layer to form an n-type ohmic contact, and the metal field plate is evaporated on the insulating layer.
  • the insulating layer is SiO 2 or Si 3 N 4 .
  • the invention also discloses a method for preparing the above-mentioned AlGaN ultraviolet avalanche photodetector, and the steps include:
  • Photolithography making photoresist with a thickness ranging from 6 to 8 ⁇ m on the surface of AlGaN APD devices;
  • Photoresist reflow baking the photoresist to reflow the photoresist to form a tilt angle of 12 ° -20 °;
  • Pattern transfer Using the ICP dry etching method, the tilt angle of the photoresist is transferred to the device to form an AlGaN slope from the p + -type GaN layer to the i-type AlGaN layer or the n-type AlGaN layer. When the tilt angle is enlarged to 15 ° -30 °;
  • Electrode opening window The RIE dry etching method is used to remove the insulating layer on the n-type AlGaN layer and the p + -type GaN layer at which the electrode position is to be used for making an ohmic contact electrode;
  • Electrodes using electron beam evaporation method, n-type electrodes and p-type electrodes are vapor-deposited on AlGaN APD devices and quickly annealed to form n-type and p-type ohmic contacts;
  • the AlGaN APD device to be etched is sequentially subjected to ultrasonic cleaning with acetone, absolute ethanol, and deionized water, and dried at 120 ° C. for 2 minutes to remove surface moisture.
  • the strong oxidant in step (5) is 98% concentrated sulfuric acid and 30% hydrogen peroxide, and is mixed in a volume ratio of 3: 1.
  • the thickness of the insulating layer in step (6) is 150-500 nm.
  • the metal in step (9) is Al, Ti, Ni or Au.
  • the feature of the invention is that a gentle inclined sidewall is formed on the AlGaN APD device by the method of thick film photoresist reflow.
  • the length of the field plate extending on the sidewall can be controlled, which can achieve the coverage of the junction area without exceeding the effective range, and further exert the MOS effect between the field plate, the insulation layer, and the semiconductor, and expand the device junction.
  • the width of the depletion region of the region suppresses the peak electric field in the junction region of the device.
  • the method provided by the invention has the advantages of strong controllability and high repeatability. It is mainly reflected in the following two aspects:
  • the peak electric field at the junction region and the edge of the field plate can be changed.
  • Increasing the length of the field plate will reduce the peak electric field at the junction region and increase the peak electric field at the edge of the field plate.
  • By changing the length of the field plate it is possible to reduce the peak electric field in the junction region as much as possible while ensuring that the peak value at the edge of the field plate is reasonable (the breakdown of the passivation layer does not occur).
  • the peak electric field at the junction region and the edge of the field plate can also be changed. Decreasing the thickness of the insulating layer will reduce the peak electric field in the junction region and increase the peak electric field at the edge of the field plate. By changing the thickness of the insulating layer, it is possible to reduce the peak electric field in the junction region as much as possible while ensuring that the field plate edge peaks are reasonable (without the passivation layer breakdown).
  • changing the dielectric constant of the insulating layer can also change the peak electric field at the junction region and the edge of the field plate.
  • the larger the dielectric constant of the insulating layer the better the effect of the field plate and the lower the peak electric field in the junction region.
  • FIG. 1 is a structural diagram of a Schottky diode device having a metal field plate structure.
  • FIG. 2 is a schematic diagram of potential distribution at a Schottky junction without a field plate structure.
  • Figure 3 is a schematic diagram of potential distribution at a Schottky junction with a field plate structure.
  • Figure 4 is a schematic diagram of an AlGaN APD device before processing.
  • FIG. 5 is a schematic diagram of an AlGaN APD device after photolithography.
  • FIG. 6 is a schematic diagram of an AlGaN APD device after photoresist reflow.
  • FIG. 7 is a schematic diagram of an AlGaN APD device after pattern transfer.
  • FIG. 8 is a schematic diagram of an AlGaN APD device with a slope.
  • FIG. 9 is a schematic diagram of an AlGaN APD device after passivation.
  • FIG. 10 is a schematic diagram of an AlGaN APD device after electrode evaporation.
  • FIG. 11 is a schematic diagram of an AlGaN APD device with a field plate structure in Embodiment 1.
  • FIG. 11 is a schematic diagram of an AlGaN APD device with a field plate structure in Embodiment 1.
  • FIG. 12 is a schematic diagram of an electric field distribution of an AlGaN APD device without a field plate structure under a reverse bias voltage of 120V.
  • FIG. 13 is a schematic diagram of an electric field distribution of the AlGaN APD device of Embodiment 1 under a 120V reverse bias voltage.
  • FIG. 14 is a schematic diagram of an AlGaN APD device having a field plate structure in Embodiment 2.
  • FIG. 14 is a schematic diagram of an AlGaN APD device having a field plate structure in Embodiment 2.
  • FIG. 15 is a schematic diagram of an electric field distribution of the AlGaN APD device of Embodiment 2 under a 120V reverse bias voltage.
  • FIG. 16 is a schematic diagram of the electric field distribution of a GaN APD device without a field plate structure under a reverse bias voltage of 120V.
  • FIG. 17 is a schematic diagram of an electric field distribution of a GaN APD device with a field plate structure under a reverse bias voltage of 120 V in Embodiment 3.
  • FIG. 17 is a schematic diagram of an electric field distribution of a GaN APD device with a field plate structure under a reverse bias voltage of 120 V in Embodiment 3.
  • Embodiment 1 Preparation method of AlGaN ultraviolet avalanche photodetector based on field plate structure
  • the AlGaN APD device to be etched is subjected to ultrasonic cleaning with acetone, absolute ethanol, and deionized water, and dried at 120 ° C / 2min to remove surface moisture, as shown in Fig. 4, where the structure of the AlGaN APD device is From bottom to top, they include: a substrate layer 1; an n-type AlGaN layer 2; an i-type AlGaN layer 3; a p-type GaN layer 4; a p + -type GaN layer 5;
  • Photoresist reflow The photoresist is hardened at a high temperature to form an inclination angle of about 13.5 °, as shown in FIG. 6.
  • the high temperature hard film temperature is 180 ° C and the time is 10 minutes.
  • Pattern transfer Using inductively coupled plasma (ICP) dry etching method, during the etching of the sample, the tilt angle of the photoresist is also transferred to the sample, forming an AlGaN oblique table, as shown in the figure. As shown in FIG. 7, the surface of the n-type AlGaN layer is etched.
  • ICP inductively coupled plasma
  • a SiO 2 insulating layer 7 with a thickness of about 200 nm is grown on the AlGaN APD device sample after degumming, as shown in FIG. 9.
  • the detailed experimental parameters are as follows: growth temperature is 350 ° C, SiH4 / N2 flow rate is 100 sccm, N2O flow rate is 400 sccm, growth power is 10W, chamber air pressure is 300mTorr, and growth time is 10min.
  • Electrode opening window The RIE dry etching method is used to remove the insulation layers at the n-type and p-type positions, and is used to make an ohmic contact electrode.
  • the detailed experimental parameters are as follows: CF 4 flow is 30 sccm, O 2 flow is 5 sccm, RF power is 150 W, chamber pressure is 5 Pa, and etching time is 70 s.
  • n-electrode 9 and p-electrode 8 are vapor-deposited on AlGaN APD devices using an electron beam evaporation method, respectively, and then rapidly annealed to form n-type and p-type ohmic contacts, as shown in FIG. 10.
  • FIG. 12 The electric field distribution of the AlGaN APD device without the field plate structure shown in FIG. 10 under a 120V reverse bias is shown in FIG. 12, and the electric field distribution of the AlGaN APD device with a field plate structure under a 120V reverse bias is shown in FIG. 13. As shown.
  • the introduction of field plates reduces the peak electric field in the junction region of AlGaN APD devices, effectively preventing early breakdown.
  • Embodiment 2 Preparation method of AlGaN ultraviolet avalanche photodetector based on field plate structure
  • Pretreatment The AlGaN APD device to be etched is subjected to ultrasonic cleaning with acetone, absolute ethanol, and deionized water, and dried at 120 ° C / 2min to remove surface moisture.
  • Photoresist reflow The photoresist is hardened at a high temperature to form an inclined angle of about 18 °.
  • the high temperature hard film temperature is 180 ° C and the time is 10 minutes.
  • Pattern transfer The inductively coupled plasma (ICP) dry etching method is used. During the etching of the sample, the tilt angle of the photoresist is also transferred to the sample to form an AlGaN oblique mesa.
  • ICP inductively coupled plasma
  • the corner mesa APD has a mesa depth of 0.5 ⁇ m and an inclination angle of 30 °.
  • the n-type AlGaN layer is also etched about 100 nm to ensure that the n-type region is exposed.
  • Electrode opening window The RIE dry etching method is used to remove the insulation layers at the n-type and p-type positions, and is used to make an ohmic contact electrode.
  • the detailed experimental parameters are as follows: CF 4 flow is 30 sccm, O 2 flow is 5 sccm, RF power is 150 W, chamber pressure is 5 Pa, and etching time is 90 s.
  • the electron beam evaporation method is used to vapor-deposit n-type and p-type electrodes on AlGaN APD devices and quickly anneal to form n-type and p-type ohmic contacts.
  • Embodiment 3 Preparation method of GaN ultraviolet avalanche photodetector based on field plate structure
  • the GaN APD device to be etched is cleaned by acetone, absolute ethanol, deionized water, and dried at 120 ° C / 2min to remove surface water vapor.
  • the structure of the GaNAPD device from bottom to top includes: a substrate layer An n-type GaN layer; an i-type GaN layer; a p-type GaN layer; a p + -type GaN layer.
  • Photoresist reflow The photoresist is hardened at a high temperature to form an inclination angle of about 12 °.
  • the high temperature hard film temperature is 180 ° C and the time is 10 minutes.
  • Pattern transfer The inductively coupled plasma (ICP) dry etching method is used. In the process of etching the sample, the tilt angle of the photoresist is also transferred to the sample to form a GaN oblique angle mesa.
  • ICP inductively coupled plasma
  • the corner table APD has a depth of 0.5 ⁇ m and an inclination angle of ⁇ 15 °.
  • a SiO 2 insulating layer with a thickness of about 500 nm is grown on the AlGaN APD device sample after degumming, as shown in FIG. 9.
  • the detailed experimental parameters are as follows: growth temperature is 350 ° C, SiH 4 / N 2 flow rate is 100 sccm, N 2 O flow rate is 400 sccm, growth power is 10 W, chamber pressure is 300 mTorr, and growth time is 25 min.
  • Electrode opening window The RIE dry etching method is used to remove the insulation layers at the n-type and p-type positions, and is used to make an ohmic contact electrode.
  • the detailed experimental parameters are as follows: CF 4 flow is 30 sccm, O 2 flow is 5 sccm, RF power is 150 W, chamber pressure is 5 Pa, and etching time is 120 s.
  • N-type and p-type ohmic contacts are formed by evaporating n-type and p-type electrodes on the GaN APD device and quickly annealing them by using an electron beam evaporation method.
  • FIG. 16 The electric field distribution of a GaN APD device without a field plate structure under a 120V reverse bias is shown in FIG. 16, and the electric field distribution of a GaN APD device with a field plate structure under a 120V reverse bias is shown in FIG. 17.
  • the introduction of a field plate reduces the peak electric field in the junction region of a GaN APD device, effectively preventing early breakdown.
  • Embodiment 4 Preparation method of GaN ultraviolet avalanche photodetector based on field plate structure
  • This embodiment is basically the same as Example 3, except that the metal forming the field plate is Au, and the insulating layer uses Si 3 N 4 at 350 nm.
  • the detailed experimental parameters are as follows: the growth temperature is 350 ° C, and the flow rate of SiH 4 / N 2 is 25 sccm. , N 2 flow is 900 sccm, growth power is 15 W, chamber pressure is 600 mTorr, and growth time is 53 min.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

一种基于场板结构的AlGaN或GaN紫外雪崩光电探测器,包括一AlGaN或GaN APD器件,AlGaN或GaN APD器件的两侧形成角度在15°-30°的斜坡,斜坡上设置有金属场板(10),所述场板(10)覆盖结区,与p型电极(8)相连,与n型电极(9)不相连。还公开了其制备方法。利用厚膜光刻胶回流的方法,在AlGaN APD器件上形成平缓的倾斜侧壁。利用倾斜侧壁,可以控制场板(10)在侧壁上延伸的长度,既能实现对结区的覆盖,又不超过有效范围,进而发挥场板(10)、绝缘层(7)、半导体之间的MOS效应,扩展器件结区的耗尽区宽度,抑制器件结区的峰值电场。

Description

基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法 技术领域
本发明涉及一种基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法,属于半导体光电子材料技术领域。
背景技术
以铝镓氮(AlGaN)为代表的III族氮化物半导体,具有直接带隙,物理、化学性质稳定,是近年来国内外重点研究和发展的新型第三代半导体材料。GaN和AlN半导体材料的禁带宽度分别为3.4eV和6.2eV,通过形成Al xGa 1-xN多元化合物,其禁带宽度可从3.4~6.2eV连续变化,波长范围覆盖200~365nm,是制备紫外探测器的优选材料。与传统的硅基紫外探测器和紫外光电倍增管相比,AlGaN基半导体材的光电探测器具有更高的灵敏度,可直接实现可见光盲甚至日盲操作,可在高温、强辐射等恶劣环境下工作等明显的优势。
AlGaN基紫外雪崩光电探测器(APD)具有高的响应速度、10 5以上的增益,甚至可在单光子探测模式下(Geiger模式)工作,可实现对微弱紫外信号的快速测量。雪崩光电二极管一般采用PIN结构,其特征是在P和N半导体材料之间加入一层低掺杂的本征(Intrinsic)半导体层。二极管在反向偏压时,电压几乎全部降落在深耗尽的I层上。当二极管被加上足够高的反向偏压时,耗尽层内运动的载流子就可能因碰撞电离效应而获得雪崩倍增;当载流子的雪崩增益非常高时,二极管就进入到雪崩击穿状态。根据应用需求,雪崩光电二极管既可以工作在略低于雪崩击穿电压的状态(线性模式),也可以工作在略高于雪崩击穿状态(盖革模式)。
由于AlGaN APD需要工作在高电场模式下,因此,可靠的结终端(termination)的是器件能够稳定工作的关键。目前,常用的结终端结构包括浮空场环、场板、结终端扩展和斜角终端等。其中,场板结构的结终端技术,以其工艺简单,效果稳定而广泛应用在功率器件中。如图1所示的肖特基势垒二极管,场板与绝缘层、半导体间构成了MOS结构,使得肖特基结处的耗尽区进一步扩展。相比于无场板结构(如图2所示),有场板结构的肖特基结处(如图3所示)等势线变稀疏,电场强度减弱,击穿电压得到了有效提升。
发明内容
本发明的目的在于提供一种基于场板结构的AlGaN或GaN紫外雪崩光电探测器。
本发明的目的通过以下技术方案实现:
一种基于场板结构的AlGaN或GaN紫外雪崩光电探测器,包括一AlGaN或GaN APD器件,AlGaN或GaN APD器件的两侧形成角度在15°-30°的斜坡,斜坡上设置有金属场板,所述场板覆盖结区,与p型电极相连,与n型电极不相连。
优选的,AlGaN紫外雪崩光电探测器的结构自下至上依次包括:
一衬底层;
一n型AlGaN层;
一i型AlGaN层;
一p型GaN层;
一p +型GaN层;
其中器件两侧形成斜坡,斜坡从p +型GaN层至n型AlGaN层表面或内部,在斜坡上生长有绝缘层,p +型GaN层上蒸镀有p型电极,形成p型欧姆接触,n型AlGaN层露出,n型电极蒸镀在n型AlGaN层上,形成n型欧姆接触,所述金属场板蒸镀在绝缘层上。
优选的,所述绝缘层为SiO 2或Si 3N 4
优选的,GaN紫外雪崩光电探测器的结构自下至上依次包括:
一衬底层;
一n型GaN层;
一i型GaN层;
一p型GaN层;
一p +型GaN层;
其中器件两侧形成斜坡,斜坡从p +型GaN层至n型AlGaN层表面或内部,在斜坡上生长有绝缘层,p +型GaN层上蒸镀有p型电极,形成p型欧姆接触,n型GaN层露出,n型电极蒸镀在n型GaN层上,形成n型欧姆接触,所述金属场板蒸镀在绝缘层上。
优选的,所述绝缘层为SiO 2或Si 3N 4
本发明还公开了上述的AlGaN紫外雪崩光电探测器的制备方法,其步骤包括:
(1)预处理:清洗AlGaN APD器件表面;
(2)光刻:在AlGaN APD器件表面制作厚度范围在6-8μm的光刻胶;
(3)光刻胶回流:对光刻胶进行烘烤,使光刻胶回流,形成12°-20°的倾斜角度;
(4)图形转移:采用ICP干法刻蚀方法,将光刻胶的倾斜角度转移到了器件中,形成自p +型GaN层至i型AlGaN层或n型AlGaN层的AlGaN斜坡,在图形转移的时候,倾斜角度会放大至15°-30°;
(5)去胶:刻蚀完成后,将器件放入强氧化剂中去除残留光刻胶掩蔽层,然后清洗器件;
(6)钝化:采用PECVD法,在去胶后的AlGaN APD器件上生长一层的绝缘层进行钝化;
(7)电极开窗口:采用RIE干法刻蚀方法,将n型AlGaN层和p +型GaN层上准备设置电极位置的绝缘层去除,用于制作欧姆接触电极;
(8)制作电极:采用电子束蒸发方法,在AlGaN APD器件上分别蒸镀n型电极和p型电极并快速退火,形成n型和p型欧姆接触;
(9)制作场板:采用电子束蒸发方法,在绝缘层上蒸镀一层覆盖斜坡上结区,并与p型电极相连的金属,形成场板。
优选的,步骤(1)中对待刻蚀的AlGaN APD器件依次进行丙酮、无水乙醇、去离子水超声清洗,120℃、2min烘干,去除表面水汽。
优选的,步骤(5)中所述强氧化剂为98%的浓硫酸和30%的过氧化氢,按照体积比3:1混合。
优选的,步骤(6)中绝缘层的厚度为150-500nm。
优选的,步骤(9)中所述金属为Al、Ti、Ni或Au。
本发明的特点是:利用厚膜光刻胶回流的方法,在AlGaN APD器件上形成平缓的倾斜侧壁。利用倾斜侧壁,可以控制场板在侧壁上延伸的长度,既能实现对结区的覆盖,又不超过有效范围,进而发挥场板、绝缘层、半导体之间的 MOS效应,扩展器件结区的耗尽区宽度,抑制器件结区的峰值电场。
本发明提供的方法具有可控性强、可重复性高的优点。主要体现在以下两个方面:
一方面,通过对场板长度的控制,可以改变结区和场板边缘的峰值电场。场板的长度增加,会降低结区的峰值电场,而增加场板边缘的峰值电场。通过改变场板长度,可以在保证场板边缘峰值合理(不发生钝化层的击穿)的情况下,尽量降低结区的峰值电场。
另一方面,通过调节场板下方绝缘层的厚度,也可以改变结区和场板边缘的峰值电场。绝缘层厚度的降低,会降低结区的峰值电场,而增加场板边缘的峰值电场。通过改变绝缘层厚度,可以在保证场板边缘峰值合理(不发生钝化层的击穿)的情况下,尽量降低结区的峰值电场。
同时,改变绝缘层的介电常数,也可以改变结区和场板边缘的峰值电场。绝缘层的介电常数越大,场板发挥的效果越好,结区的峰值电场越低。
附图说明
图1为具有金属场板结构的肖特基二极管器件结构图。
图2为无场板结构肖特基结处电势分布示意图。
图3为有场板结构肖特基结处电势分布示意图。
图4为未处理前的AlGaN APD器件示意图。
图5为光刻后的AlGaN APD器件示意图。
图6为光刻胶回流后的AlGaN APD器件示意图。
图7为图形转移后的AlGaN APD器件示意图。
图8为具有斜坡的AlGaN APD器件示意图。
图9为钝化后的AlGaN APD器件示意图。
图10为电极蒸镀后的AlGaN APD器件示意图。
图11为实施例1的场板结构的AlGaN APD器件示意图。
图12为无场板结构的AlGaN APD器件在120V反向偏压下的电场分布示意图。
图13为实施例1的AlGaN APD器件在120V反向偏压下的电场分布示意图。
图14为实施例2的场板结构的AlGaN APD器件示意图。
图15为实施例2的AlGaN APD器件在120V反向偏压下的电场分布示意图。
图16为无场板结构的GaN APD器件在120V反向偏压下的电场分布示意图。
图17为实施例3的有场板结构的GaN APD器件在120V反向偏压下的电场分布示意图。
具体实施方式
实施例1:基于场板结构的AlGaN紫外雪崩光电探测器的制备方法
(1)预处理:对待刻蚀的AlGaN APD器件进行丙酮、无水乙醇、去离子水超声清洗,120℃/2min烘干,去除表面水汽,如图4所示,其中AlGaN APD器件的结构自下至上依次包括:一衬底层1;一n型AlGaN层2;一i型AlGaN层3;一p型GaN层4;一p +型GaN层5;
(2)光刻:采用安智电子材料有限公司生产的厚胶AZ P4620作为干法刻蚀所需掩蔽层6,依次经历匀胶、软烘、曝光、显影、后烘等工艺步骤,如图5所示。详细实验参数如下:匀胶转速为4000r/min,时间为60s;软烘温度为100℃,时间为5min;光刻机光强为10mW/cm2,曝光时间为60s,;显影溶液为AZ 400K:H2O=1:4的稀释液,显影时间为80s,后烘温度为110℃,时间为1min。经台阶仪测量,此时光刻胶的膜厚约7μm。
(3)光刻胶回流:对光刻胶进行高温坚膜,形成约13.5°的倾斜角度,如图6所示。高温坚膜温度为180℃,时间为10min。
(4)图形转移:采用感应耦合等离子体(ICP)干法刻蚀方法,在刻蚀样片的过程中,也将光刻胶的倾斜角度转移到了样片中,形成了AlGaN斜角台面,如图7所示,刻蚀到n型AlGaN层表面。
(5)去胶:刻蚀完成后,将样片放入强氧化剂中去除残留掩蔽层,再依次采用丙酮、无水乙醇进行超声清洗,最后用大量去离子水漂洗,氮气吹干,得到AlGaN斜角台面APD,台面的深度为0.5μm,倾斜角度为~18°,如图8所示。
(6)钝化:使用PECVD,在去胶后的AlGaN APD器件样品上生长一层约200nm的SiO 2绝缘层7进行钝化,如图9所示。详细实验参数如下:生长温 度为350℃,SiH4/N2流量为100sccm,N2O流量为400sccm,生长功率为10W,腔室气压为300mTorr,生长时间为10min。
(7)电极开窗口:采用RIE干法刻蚀方法,将n型和p型位置的绝缘层去除,用于制作欧姆接触电极。详细实验参数如下:CF 4流量为30sccm,O 2流量为5sccm,RF功率为150W,腔室气压为5Pa,刻蚀时间为70s。
(8)制作电极:采用电子束蒸发方法,在AlGaN APD器件上分别蒸镀n型电极9和p型电极8并快速退火,形成n型和p型欧姆接触,如图10所示。
(9)制作场板:采用电子束蒸发方法,蒸镀一层覆盖斜台面上结区,并与p型电极相连的金属Al,形成场板10,如图11所示。场板末端与结区11的水平位置持平。详细实验参数如下:蒸发功率为8.4%,蒸发速率为0.3nm/s,蒸发厚度为100nm。
图10所示的无场板结构的AlGaN APD器件在120V反向偏压下的电场分布如图12所示,有场板结构的AlGaN APD器件在120V反向偏压下的电场分布如图13所示。场板的引入,使得AlGaN APD器件结区的峰值电场降低,有效防止了提前击穿。
实施例2:基于场板结构的AlGaN紫外雪崩光电探测器的制备方法
(1)预处理:对待刻蚀的AlGaN APD器件进行丙酮、无水乙醇、去离子水超声清洗,120℃/2min烘干,去除表面水汽。
(2)光刻:采用安智电子材料有限公司生产的厚胶AZ P4620作为干法刻蚀所需掩蔽层,依次经历匀胶、软烘、曝光、显影、后烘等工艺步骤。详细实验参数如下:匀胶转速为3500r/min,时间为60s;软烘温度为100℃,时间为5min;光刻机光强为10mW/cm2,曝光时间为65s,;显影溶液为AZ 400K:H 2O=1:4的稀释液,显影时间为85s,后烘温度为110℃,时间为1min。经台阶仪测量,此时光刻胶的膜厚约8μm。
(3)光刻胶回流:对光刻胶进行高温坚膜,形成约18°的倾斜角度。高温坚膜温度为180℃,时间为10min。
(4)图形转移:采用感应耦合等离子体(ICP)干法刻蚀方法,在刻蚀样片的过程中,也将光刻胶的倾斜角度转移到了样片中,形成了AlGaN斜角台面。
(5)去胶:刻蚀完成后,将样片放入强氧化剂中去除残留掩蔽层,再依次采用丙酮、无水乙醇进行超声清洗,最后用大量去离子水漂洗,氮气吹干,得到AlGaN斜角台面APD,台面的深度为0.5μm,倾斜角度为30°,n型AlGaN层也被刻蚀100nm左右,以保证n型区域暴露出来。
(6)钝化:使用PECVD,在去胶后的AlGaN APD器件样品上生长一层约150nm的Si 3N 4绝缘层进行钝化。详细实验参数如下:生长温度为350℃,SiH 4/N 2流量为25sccm,N 2流量为900sccm,生长功率为15W,腔室气压为600mTorr,生长时间为23min。
(7)电极开窗口:采用RIE干法刻蚀方法,将n型和p型位置的绝缘层去除,用于制作欧姆接触电极。详细实验参数如下:CF 4流量为30sccm,O 2流量为5sccm,RF功率为150W,腔室气压为5Pa,刻蚀时间为90s。
(8)制作电极:采用电子束蒸发方法,在AlGaN APD器件上分别蒸镀n型和p型电极并快速退火,形成n型和p型欧姆接触。
(9)制作场板:采用电子束蒸发方法,蒸镀一层覆盖斜台面上结区,并与p型电极相连的金属Ni,形成场板,如图14所示。场板末端低于结区的水平位置100nm。详细实验参数如下:蒸发功率为8.4%,蒸发速率为0.3nm/s,蒸发厚度为100nm。
有场板结构的AlGaN APD器件在120V反向偏压下的电场分布如图15所示。场板的引入,使得AlGaN APD器件结区的峰值电场降低,有效防止了提前击穿。
实施例3:基于场板结构的GaN紫外雪崩光电探测器的制备方法
(1)预处理:对待刻蚀的GaN APD器件进行丙酮、无水乙醇、去离子水超声清洗,120℃/2min烘干,去除表面水汽,GaNAPD器件的结构自下至上依次包括:一衬底层;一n型GaN层;一i型GaN层;一p型GaN层;一p +型GaN层。
(2)光刻:采用安智电子材料有限公司生产的厚胶AZ P4620作为干法刻蚀所需掩蔽层,依次经历匀胶、软烘、曝光、显影、后烘等工艺步骤。详细实验参数如下:匀胶转速为5000r/min,时间为60s;软烘温度为100℃,时间为5min; 光刻机光强为10mW/cm2,曝光时间为52s,;显影溶液为AZ 400K:H 2O=1:4的稀释液,显影时间为70s,后烘温度为110℃,时间为1min。经台阶仪测量,此时光刻胶的膜厚约6μm。
(3)光刻胶回流:对光刻胶进行高温坚膜,形成约12°的倾斜角度。高温坚膜温度为180℃,时间为10min。
(4)图形转移:采用感应耦合等离子体(ICP)干法刻蚀方法,在刻蚀样片的过程中,也将光刻胶的倾斜角度转移到了样片中,形成了GaN斜角台面。
(5)去胶:刻蚀完成后,将样片放入强氧化剂中去除残留掩蔽层,再依次采用丙酮、无水乙醇进行超声清洗,最后用大量去离子水漂洗,氮气吹干,得到GaN斜角台面APD,台面的深度为0.5μm,倾斜角度为~15°。
(6)钝化:使用PECVD,在去胶后的AlGaN APD器件样品上生长一层约500nm的SiO 2绝缘层进行钝化,如图9所示。详细实验参数如下:生长温度为350℃,SiH 4/N 2流量为100sccm,N 2O流量为400sccm,生长功率为10W,腔室气压为300mTorr,生长时间为25min。
(7)电极开窗口:采用RIE干法刻蚀方法,将n型和p型位置的绝缘层去除,用于制作欧姆接触电极。详细实验参数如下:CF 4流量为30sccm,O 2流量为5sccm,RF功率为150W,腔室气压为5Pa,刻蚀时间为120s。
(8)制作电极:采用电子束蒸发方法,在GaN APD器件上分别蒸镀n型和p型电极并快速退火,形成n型和p型欧姆接触。
(9)制作场板:采用电子束蒸发方法,蒸镀一层覆盖斜台面上结区,并与p型电极相连的金属Ti,形成场板。场板末端低于结区的水平位置100nm。详细实验参数如下:蒸发功率为18%,蒸发速率为0.2nm/s,蒸发厚度为100nm。
无场板结构的GaN APD器件在120V反向偏压下的电场分布如图16所示,有场板结构的GaN APD器件在120V反向偏压下的电场分布如图17所示。场板的引入,使得GaN APD器件结区的峰值电场降低,有效防止了提前击穿。
实施例4:基于场板结构的GaN紫外雪崩光电探测器的制备方法
本实施例与实施例3基本相同,区别在于形成场板的金属为Au,绝缘层采用350nm的Si 3N 4,详细实验参数如下:生长温度为350℃,SiH 4/N 2流量为25 sccm,N 2流量为900sccm,生长功率为15W,腔室气压为600mTorr,生长时间为53min。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于场板结构的AlGaN或GaN紫外雪崩光电探测器,包括一AlGaN或GaN APD器件,其特征在于:AlGaN或GaN APD器件的两侧形成角度在15°-30°的斜坡,斜坡上设置有金属场板,所述场板覆盖结区,与p型电极相连,与n型电极不相连。
  2. 根据权利要求1所述的AlGaN紫外雪崩光电探测器,其特征在于:AlGaN紫外雪崩光电探测器的结构自下至上依次包括:
    一衬底层;
    一n型AlGaN层;
    一i型AlGaN层;
    一p型GaN层;
    一p +型GaN层;
    其中器件两侧形成斜坡,斜坡从p +型GaN层至n型AlGaN层表面或内部,在斜坡上生长有绝缘层,p +型GaN层上蒸镀有p型电极,形成p型欧姆接触,n型AlGaN层露出,n型电极蒸镀在n型AlGaN层上,形成n型欧姆接触,所述金属场板蒸镀在绝缘层上。
  3. 根据权利要求1或2所述的AlGaN紫外雪崩光电探测器,其特征在于:所述绝缘层为SiO 2或Si 3N 4
  4. 根据权利要求1所述的GaN紫外雪崩光电探测器,其特征在于:AlGaN紫外雪崩光电探测器的结构自下至上依次包括:
    一衬底层;
    一n型GaN层;
    一i型GaN层;
    一p型GaN层;
    一p +型GaN层;
    其中器件两侧形成斜坡,斜坡从p +型GaN层至n型AlGaN层表面或内部,在斜坡上生长有绝缘层,p +型GaN层上蒸镀有p型电极,形成p型欧姆接触,n型GaN层露出,n型电极蒸镀在n型GaN层上,形成n型欧姆接触,所述金属场板蒸镀在绝缘层上。
  5. 根据权利要求4所述的GaN紫外雪崩光电探测器,其特征在于:所述绝缘 层为SiO 2或Si 3N 4
  6. 权利要求1、2或3中任一项所述的AlGaN紫外雪崩光电探测器的制备方法,其步骤包括:
    (1)预处理:清洗AlGaN APD器件表面;
    (2)光刻:在AlGaN APD器件表面制作厚度范围在6-8μm的光刻胶;
    (3)光刻胶回流:对光刻胶进行烘烤,使光刻胶回流,形成12°-20°的倾斜角度;
    (4)图形转移:采用ICP干法刻蚀方法,将光刻胶的倾斜角度转移到了器件中,形成自p +型GaN层至i型AlGaN层或n型AlGaN层的AlGaN斜坡;
    (5)去胶:刻蚀完成后,将器件放入强氧化剂中去除残留光刻胶掩蔽层,然后清洗器件;
    (6)钝化:采用PECVD法,在去胶后的AlGaN APD器件上生长一层的绝缘层进行钝化;
    (7)电极开窗口:采用RIE干法刻蚀方法,将n型AlGaN层和p +型GaN层上准备设置电极位置的绝缘层去除,用于制作欧姆接触电极;
    (8)制作电极:采用电子束蒸发方法,在AlGaN APD器件上分别蒸镀n型电极和p型电极并快速退火,形成n型和p型欧姆接触;
    (9)制作场板:采用电子束蒸发方法,在绝缘层上蒸镀一层覆盖斜坡上结区,并与p型电极相连的金属,形成场板。
  7. 根据权利要求6所述的AlGaN紫外雪崩光电探测器的制备方法,其特征在于:步骤(1)中对待刻蚀的AlGaN APD器件依次进行丙酮、无水乙醇、去离子水超声清洗,120℃、2min烘干,去除表面水汽。
  8. 根据权利要求7所述的AlGaN紫外雪崩光电探测器的制备方法,其特征在于:步骤(5)中所述强氧化剂为98%的浓硫酸和30%的过氧化氢,按照体积比3:1混合。
  9. 根据权利要求8所述的AlGaN紫外雪崩光电探测器的制备方法,其特征在于:步骤(6)中绝缘层的厚度为150-500nm。
  10. 根据权利要求9所述的AlGaN紫外雪崩光电探测器的制备方法,其特征在 于:步骤(9)中所述金属为Al、Ti、Ni或Au。
PCT/CN2019/095431 2018-07-10 2019-07-10 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法 WO2020011201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810749505.6A CN109004056A (zh) 2018-07-10 2018-07-10 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法
CN201810749505.6 2018-07-10

Publications (1)

Publication Number Publication Date
WO2020011201A1 true WO2020011201A1 (zh) 2020-01-16

Family

ID=64599956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095431 WO2020011201A1 (zh) 2018-07-10 2019-07-10 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法

Country Status (2)

Country Link
CN (1) CN109004056A (zh)
WO (1) WO2020011201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167630A1 (en) * 2022-03-01 2023-09-07 Advanced Micro Foundry Pte. Ltd. Waveguide-based single-photon avalanche diode (spad)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004056A (zh) * 2018-07-10 2018-12-14 南京南大光电工程研究院有限公司 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法
CN111403566A (zh) * 2020-03-27 2020-07-10 天津赛米卡尔科技有限公司 具有侧壁场板的发光二极管器件结构及其制备方法
CN111595884B (zh) * 2020-07-07 2024-03-15 中国工程物理研究院电子工程研究所 一种适用于薄层超晶格材料的扫描电子显微镜检测方法
CN111933740B (zh) * 2020-07-22 2022-11-29 中国电子科技集团公司第十三研究所 紫外光电二极管及其制备方法
CN111933723A (zh) * 2020-07-22 2020-11-13 中国电子科技集团公司第十三研究所 透明场板结构的紫外探测器及其制作方法
CN111933724B (zh) * 2020-07-22 2023-05-09 中国电子科技集团公司第十三研究所 光电二极管及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507078A (zh) * 2002-12-10 2004-06-23 ͨ�õ�����˾ 恶劣环境下使用的雪崩光电二极管
CN101752367A (zh) * 2008-12-08 2010-06-23 通用电气公司 半导体器件及系统
US20110291109A1 (en) * 2010-05-27 2011-12-01 U.S. Government As Represented By The Secretary Of The Army Polarization enhanced avalanche photodetector and method thereof
CN106409967A (zh) * 2016-11-08 2017-02-15 中国电子科技集团公司第四十四研究所 p‑i‑n—‑n型GaN单光子雪崩探测器
CN206672951U (zh) * 2016-12-27 2017-11-24 北京世纪金光半导体有限公司 一种SiC雪崩光电二极管
CN109004056A (zh) * 2018-07-10 2018-12-14 南京南大光电工程研究院有限公司 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3940699B2 (ja) * 2003-05-16 2007-07-04 株式会社東芝 電力用半導体素子

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1507078A (zh) * 2002-12-10 2004-06-23 ͨ�õ�����˾ 恶劣环境下使用的雪崩光电二极管
CN101752367A (zh) * 2008-12-08 2010-06-23 通用电气公司 半导体器件及系统
US20110291109A1 (en) * 2010-05-27 2011-12-01 U.S. Government As Represented By The Secretary Of The Army Polarization enhanced avalanche photodetector and method thereof
CN106409967A (zh) * 2016-11-08 2017-02-15 中国电子科技集团公司第四十四研究所 p‑i‑n—‑n型GaN单光子雪崩探测器
CN206672951U (zh) * 2016-12-27 2017-11-24 北京世纪金光半导体有限公司 一种SiC雪崩光电二极管
CN109004056A (zh) * 2018-07-10 2018-12-14 南京南大光电工程研究院有限公司 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023167630A1 (en) * 2022-03-01 2023-09-07 Advanced Micro Foundry Pte. Ltd. Waveguide-based single-photon avalanche diode (spad)

Also Published As

Publication number Publication date
CN109004056A (zh) 2018-12-14

Similar Documents

Publication Publication Date Title
WO2020011201A1 (zh) 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法
CN103646997B (zh) 倏逝波耦合型高速高功率光电探测器的制作方法
CN1291793A (zh) 制造半导体器件的方法
Shao et al. Ionization-enhanced AlGaN heterostructure avalanche photodiodes
CN109285913A (zh) 低表面漏电流台面型光电探测器及其制作方法
CN110047955A (zh) 一种AlGaN紫外雪崩光电二极管探测器及其制备方法
JP6265032B2 (ja) 半導体受光素子
CN110690323B (zh) 紫外光电探测器的制备方法及紫外光电探测器
CN108493301A (zh) AlGaN斜角台面APD器件刻蚀方法
CN110323295B (zh) 一种插入AlGaN结构的多量子阱InGaN太阳能电池
Wang Uniform and high gain GaN pin ultraviolet APDs enabled by beveled-mesa edge termination
CN104617184B (zh) PIN台面型InGaAs红外探测器及其制备方法
You et al. Al 0.1 Ga 0.9 N pin Ultraviolet Avalanche Photodiodes With Avalanche Gain Over 10 6
KR101153377B1 (ko) 개선된 후면구조를 구비한 후면접합 태양전지 및 그 제조방법
CN110335904B (zh) 一种插入AlInGaN势垒层结构的InGaN/GaN多量子阱太阳能电池
JP5779005B2 (ja) 紫外線受光素子及びそれらの製造方法
CN111900253A (zh) 一种基于钙钛矿的新型异质结光电器件及其制备方法
JP3207869B2 (ja) 半導体装置の製造およびパッシベーション方法
CN116387398A (zh) 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法
CN110676327A (zh) 一种集成增透膜层的紫外探测器及其制备方法
CN110676340B (zh) 一种紫外探测器
CN111524973A (zh) 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法
CN212412083U (zh) 一种基于钙钛矿的新型异质结光电器件
CN110797421B (zh) 一种日盲紫外单光子雪崩探测器
CN219419031U (zh) 一种正装GaN HEMT-LED光电集成芯片

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19833905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19833905

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19833905

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 19833905

Country of ref document: EP

Kind code of ref document: A1