CN116387398A - 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法 - Google Patents

一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法 Download PDF

Info

Publication number
CN116387398A
CN116387398A CN202310053859.8A CN202310053859A CN116387398A CN 116387398 A CN116387398 A CN 116387398A CN 202310053859 A CN202310053859 A CN 202310053859A CN 116387398 A CN116387398 A CN 116387398A
Authority
CN
China
Prior art keywords
algan
gan
photoelectric detector
plasma treatment
based plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310053859.8A
Other languages
English (en)
Inventor
吴春艳
周昆楠
王俊
王秀娟
邢琨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hefei University of Technology
Original Assignee
Hefei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hefei University of Technology filed Critical Hefei University of Technology
Priority to CN202310053859.8A priority Critical patent/CN116387398A/zh
Publication of CN116387398A publication Critical patent/CN116387398A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1856Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising nitride compounds, e.g. GaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,是利用F基等离子体轰击AlGaN/GaN基紫外光电探测器,在AlGaN势垒层引入强电负性的F离子,降低二维电子气浓度,实现光电探测器暗电流的降低和光/暗电流比的提升,同时,在沟道上表面形成一薄层绝缘的氟化物,钝化表面缺陷,提升光电探测器的响应速度。本发明为传统宽禁带材料基紫外光电探测器的性能提升提供了一个简单、高效的途径。

Description

一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器 性能的方法
技术领域
本发明属于光电探测器技术领域,具体涉及一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法。
背景技术
紫外光电探测器是将紫外光信号转化为电信号的半导体光电器件。随着科学技术的日益进步,紫外探测技术已经被广泛的应用在军事和生活中,在信息通讯、情报传递、紫外预警、医学检查等领域都扮演重要的角色。目前的紫外探测领域中,第一代元素半导体材料Si在商业领域依旧占据主流市场。常用的硅基光电倍增管通常在高偏压下工作,且由于其禁带宽度为1.12eV,需要采用复杂滤光系统来消除可见光和近红外光谱的影响。第二代化合物半导体以GaAs、InP为代表,由于禁带较窄,器件的热稳定性较差,满足不了器件在高温和高功率的极端情况下工作的需求,限制了其在该领域的发展和应用。
SiC、GaN为代表的第三代半导体材料由于较宽的直接带隙(>3.4eV)、良好的热稳定性和抗辐射能力,在紫外光电探测领域有着显著的优势。其中,AlGaN/GaNHEMT外延薄膜结构引起了人们特别的关注。AlGaN势垒层与GaN沟道层在界面处存在极大的导带偏移量,并且产生很强自发极化和压电极化,会在结区附近的GaN处形成电子积累,即产生二维电子气(2DEG)。电子输运过程是在GaN沟道层中进行,与提供电子供给的AlGaN势垒层在空间分离,减少了电子在输运过程中所受的电离杂质散射的作用,从而大大提高了电子迁移率,因而AlGaN/GaN基紫外光电探测器具有高响应度,可在高温高压等极端环境下稳定工作。
另一方面,由于二维电子气在异质结界面处形成的导电通道,AlGaN/GaN基紫外光电探测器具有较高的暗电流、较低的开关比。Lyu等(Appl.Phys.Lett.2020,117,071101)通过在AlGaN层上增加一个p-GaN栅,耗尽部分区域的二维电子气,降低器件暗电流,实现了开光比为108、响应度达2×104AW-1的紫外光电探测。Satterthwaite等(ACSPhotonics2018,5,4277)去除部分的AlGaN势垒层,在中间留下GaN沟道层,制备了开关比为107、响应度为7800AW-1的紫外光电探测器。然而,以上方法需要通过MOCVD生长、光刻和刻蚀等工艺步骤来完成,工艺复杂、实验条件要求高,显著增加了高性能紫外光电探测器的制作难度和成本。因此寻求一种易实现的、可靠的AlGaN/GaN基紫外光电探测器运用的方法成为一个迫在眉睫的问题。
发明内容
基于上述现有技术存在的问题,本发明提供一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法。
本发明为解决技术问题,采用如下技术方案:
一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特点在于:利用F基等离子体轰击AlGaN/GaN基紫外光电探测器,从而降低光电探测器暗电流,提高光/暗电流比,同时提升光电探测器的响应速度,此外还可以提高光电探测器的响应度。
进一步地,所述AlGaN/GaN基紫外光电探测器是在AlGaN/GaN外延薄膜上逐层蒸镀20-30nm厚的Ti、20-30nm厚的Al、20-30nm厚的Ni和40-60nm厚的Au作为多层电极,然后在Ar气氛中850℃退火35s形成欧姆接触而制备的光电导型光电探测器。
进一步地,所述AlGaN/GaN外延薄膜的结构自上而下包括20nm厚的AlGaN势垒层、1-2nm厚的AlN插入层和250-300nm厚的GaN沟道层。
进一步地,所述F基等离子体是采用高纯C4F8、CF4或CHF3刻蚀气体,在电感耦合等离子刻蚀系统中电离形成的,其中F基等离子体的产生条件为:气体流量15-25sccm,ICPPower源功率250-300W,RFPower源功率70-100W,腔室气压为1-3Pa。
进一步地,在利用F基等离子体轰击之后,将光电探测器在Ar气氛中300℃退火10min以修复等离子轰击带来的半导体晶格损伤。
进一步地,F基等离子体的轰击时间为120-300s。
进一步地,本发明通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,是按如下步骤进行:
步骤1、预处理:将形成有AlGaN/GaNHEMT外延薄膜的衬底依次通过酒精、丙酮、去离子水各超声清洗15min,吹干并且加热以保证彻底去除表面水分;
步骤2、通过紫外曝光光刻技术和电子束蒸发技术,在AlGaN/GaNHEMT外延薄膜表面沉积一对叉指电极结构,该电极是自下而上依次为Ti/Al/Ni/Au(20-30nm/20-30nm/20-30nm/40-60nm)的多层金属电极,然后在Ar气氛中850℃快速退火35s,形成欧姆接触;
步骤3、将样品放入电感耦合等离子刻蚀系统中,先利用机械泵将腔体内真空抽至5Pa以下,再利用分子泵抽腔体内真空至5×10-3Pa以下,通入F基等离子体反应气体(C4F8、CF4或CHF3),气体流量为15-25sccm,腔室气压为1-3Pa,设置ICPPower源功率为250-300W,RFPower源功率为70-100W,对样品表面等离子体处理120-300s;
步骤4、将F基等离子体处理过的样品放入退火炉中,在Ar气氛中300℃退火10min以修复等离子体轰击带来的半导体晶格损伤,完成高性能AlGaN/GaN基紫外光电探测器的制备。
与已有技术相比,本发明的有益效果体现在:
1.本发明是通过F基等离子体处理在半导体表面引入强电负性的F-离子,消耗了沟道的二维电子气(2DEG)浓度,F-离子在势垒层中充当负电中心,即负电荷,中和了势垒层中原有的“固定正电荷”,显著降低了器件的暗电流,增强了器件的开关比。
2.本发明的制备工艺简单、可靠性高,且具有较低的制作成本。传统的二维电子气沟道耗尽工艺,往往需要多次套刻,或者使用有毒Cl基气体的刻蚀工艺。本发明通过较为简单的工艺,利用F基等离子体处理,即可实现AlGaN/GaN基紫外光电探测器电流开关比、响应速度等的提升。
3.本发明通过F基等离子体处理在半导体表面进行无意的表面钝化。传统AlGaN/GaN HEMT制备的关键往往需要在表面蒸镀SiNx或者SiO2,来降低由于AlGaN势垒层中存在的大量表面态和陷阱对导电沟道中的电子的俘获,即电流崩塌效应。本发明通过F基等离子体处理,会在半导体表面形成一层很薄的氟化物,可以填补AlGaN势垒层中存在的大量表面态和陷阱,起到表面钝化的作用,提升了器件的响应速度。
附图说明
图1(a)和图1(b)分别为本发明AlGaN/GaN基紫外光电探测器的结构示意图和光学显微镜照片。
图2为图1所示AlGaN/GaN基紫外光电探测器在F基等离子处理前的暗电流(Idark)和365nm光照下的光电流(Ilight)。
图3为实施例1中AlGaN/GaN外延薄膜在F基等离子处理后的XPS能谱。
图4(a)和4(b)分别为实施例1所制备的AlGaN/GaN基紫外光电探测器在不同RFPower源功率下,F基等离子体处理60s后的暗电流(Idark)和365nm光照下的光电流(Ilight)。
图5为实施例1所制备的AlGaN/GaN基紫外光电探测器在不同RFPower源功率下,F基等离子体处理60s后,5V偏压下的光暗电流开关比变化。
图6(a)和6(b)分别为实施例2所制备的AlGaN/GaN基紫外光电探测器在RFPower源功率为70W时处理不同时间的暗电流(Idark)和365nm光照下的光电流(Ilight)。
图7为实施例2所制备的AlGaN/GaN基紫外光电探测器在RFPower源功率为70W时处理不同时间后,5V偏压下的光暗电流开关比变化。
图8为实施例3所制备的F基等离子处理的AlGaN/GaN基紫外光电探测器的暗电流(Idark)和365nm光照下的光电流(Ilight)。
图9为实施例3所制备的AlGaN/GaN基紫外光电探测器在不同波长光照射下的电流-电压曲线(I-V)。
图10为实施例3所制备的AlGaN/GaN基紫外光电探测器在不同功率的365nm波长光照射下的电流随光强变化曲线。
图11(a)和11(b)分别为实施例1中未处理时的AlGaN/GaN基紫外光电探测器与实施例3中处理后的AlGaN/GaN基紫外光电探测器的响应速度对比。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
器件结构示意图参见图1(a),本实施例的AlGaN/GaN基紫外光电探测器是在AlGaN/GaN HEMT外延薄膜(自上而下包括20nm厚的AlGaN势垒层、1-2nm厚的AlN插入层和250-300nm厚的GaN沟道层,衬底为Si衬底)上蒸镀Ti/Al/Ni/Au(30nm/20nm/30nm/50nm)并快速退火形成欧姆接触电极,制备出光电导型光电探测器。图1(b)为上述器件的光学显微镜照片,其中叉指长度为2500μm,电极宽度为100μm,电极间距为100μm,有效光照面积为0.056cm2
图2为图1所示AlGaN/GaN基紫外光电探测器在F基等离子处理前的暗电流(Idark)和365nm光照下的光电流(Ilight)。从图中看出,未经F基等离子处理的器件光暗电流变化并不显著,在10V偏压下光/暗电流比仅为1.17。
本实施例通过F基等离子处理优化性能,制备AlGaN/GaN基紫外光电探测器的步骤如下:
步骤1、预处理:将形成有AlGaN/GaNHEMT外延薄膜的衬底依次通过酒精、丙酮、去离子水超声清洗15min,吹干并且在100℃的真空干燥箱加热5min,以保证彻底去除表面水分。
步骤2、通过紫外曝光光刻技术,在AlGaN/GaN基外延薄膜表面光刻叉指电极图案形成掩膜,以便形成叉指欧姆电极。
在经上述处理后的样品上通过电子束蒸发或热蒸发沉积Ti/Al/Ni/Au(30nm/20nm/30nm/50nm)金属电极层,然后利用丙酮去除未曝光的光刻胶,最后利用快速退火炉在Ar气氛中850℃退火35s,使得沉积的多层金属高温中形成欧姆接触电极。
步骤3、将样品放入电感耦合等离子刻蚀系统中,先利用机械泵将腔体内真空抽至5Pa以下,再利用分子泵抽腔体内真空至5×10-3Pa以下,通入等离子体反应气体C4F8,流量为20sccm,腔室压力为1.5Pa;设置ICPPower源功率300W、RFPower源功率20-100W,处理时间60s。
步骤4、将F基等离子体处理过的样品放入退火炉中,在Ar气氛中300℃退火10min以修复等离子体轰击带来的半导体晶格损伤,完成高性能AlGaN/GaN基紫外光电探测器的制备。
图3为本实施例AlGaN/GaN外延薄膜在F基等离子处理后(对应RFPower源功率70W的样品)的XPS能谱。F1s峰位于~686eV处,但有明显的宽化现象,经分峰处理可见,在~688.6eV处有一个肩峰,表明在经过F基等离子处理以后,薄膜表面形成了一薄层绝缘性的GaFx
图4(a)和4(b)为本实施例所制备的AlGaN/GaN基紫外光电探测器在不同RFPower源功率下F基等离子体处理60s后的暗电流和365nm光照下的光电流。从图中看出,随着RFPower源功率的增加,器件暗电流显著减小,而光电流随着RFPower源功率的增加仅略有减小。
图5为本实施例所制备的AlGaN/GaN基紫外光电探测器在不同RFPower源功率下F基等离子体处理60s后,5V偏压下的光暗电流开关比变化,可见,在RFPower偏压功率为70W时器件开关比是最大的。
实施例2
本实施例的器件结构和实验步骤与实施例1大致相同,区别仅在于:步骤3中的ICPPower源功率为300W,RFPower源功率为70W,处理时间为0-150s。
图6(a)和6(b)分别为本实施例所制备的AlGaN/GaN基紫外光电探测器在RFPower源功率为70W时处理不同时间的暗电流(Idark)和365nm光照下的光电流(Ilight)。从图中可以看出,随着处理时间的增加,暗电流显著下降,当处理时间达120s以后,器件暗电流趋于稳定。同时,光电流相比未处理前略有降低。
图7为本实施例所制备的AlGaN/GaN基紫外光电探测器在RFPower源功率为70W时处理不同时间后,5V偏压下的光/暗电流开关比变化。可见,处理时间达120s后,开关比趋于稳定。
实施例3
本实施例的器件结构和实验步骤与实施例1大致相同,区别仅在于:步骤3中的F基等离子处理参数设置为相对较优的实验条件,即RFPower偏压功率为70W、处理时间为120s。
图8为本实施例所制备的F基等离子处理的AlGaN/GaN基紫外光电探测器的暗电流和365nm光照下的光电流。经过F基等离子处理后的AlGaN/GaN基紫外光电探测器的暗电流显著降低,5V偏压下光/暗电流开关比为702,性能较未处理器件显著提升。
图9为本实施例所制备的AlGaN/GaN基紫外光电探测器在不同波长光照射下的电流-电压曲线(I-V)。从图中可以看出光电探测器在紫外波段(265nm、300nm、365nm)均有比较明显的响应,而在可见波段无明显响应,有望用作紫外光电探测器。
图10为本实施例所制备的AlGaN/GaN基紫外光电探测器在不同功率的365nm波长光照射下的电流随光强变化曲线。光强从5.56μWcm-2增加到1220μWcm-2时,光电流也缓慢增加。
图11(a)和11(b)为实施例1中未处理时的AlGaN/GaN基紫外光电探测器与本实施例处理后的AlGaN/GaN基紫外光电探测器的响应速度对比。F基等离子体处理之前,响应速度较慢,下降时间达526s。而F基等离子体处理之后的下降时间显著提升为2.1s。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (6)

1.一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特征在于:利用F基等离子体轰击AlGaN/GaN基紫外光电探测器,从而降低光电探测器暗电流、提高光/暗电流比,同时提升光电探测器的响应速度。
2.根据权利要求1所述的通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特征在于:所述AlGaN/GaN基紫外光电探测器是在AlGaN/GaN外延薄膜上逐层蒸镀20-30nm厚的Ti、20-30nm厚的Al、20-30nm厚的Ni和40-60nm厚的Au作为多层电极,然后在Ar气氛中850℃退火35s形成欧姆接触而制备的光电导型光电探测器。
3.根据权利要求2所述的通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特征在于:所述AlGaN/GaN外延薄膜的结构自上而下包括20nm厚的AlGaN势垒层、1-2nm厚的AlN插入层和250-300nm厚的GaN沟道层。
4.根据权利要求1所述的一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特征在于:所述F基等离子体是采用高纯C4F8、CF4或CHF3刻蚀气体,在电感耦合等离子刻蚀系统中电离形成的,其中F基等离子体的产生条件为:气体流量15-25sccm,ICPPower源功率250-300W,RFPower源功率70-100W,腔室气压为1-3Pa。
5.根据权利要求1所述的一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特征在于:在利用F基等离子体轰击之后,将光电探测器在Ar气氛中300℃退火10min以修复等离子轰击带来的半导体晶格损伤。
6.根据权利要求1所述的一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法,其特征在于:F基等离子体的轰击时间为120-300s。
CN202310053859.8A 2023-02-03 2023-02-03 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法 Pending CN116387398A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310053859.8A CN116387398A (zh) 2023-02-03 2023-02-03 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310053859.8A CN116387398A (zh) 2023-02-03 2023-02-03 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法

Publications (1)

Publication Number Publication Date
CN116387398A true CN116387398A (zh) 2023-07-04

Family

ID=86966217

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310053859.8A Pending CN116387398A (zh) 2023-02-03 2023-02-03 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法

Country Status (1)

Country Link
CN (1) CN116387398A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239001A (zh) * 2023-11-13 2023-12-15 合肥美镓传感科技有限公司 光电探测器及其制备方法、检测方法、光电探测器阵列

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117239001A (zh) * 2023-11-13 2023-12-15 合肥美镓传感科技有限公司 光电探测器及其制备方法、检测方法、光电探测器阵列

Similar Documents

Publication Publication Date Title
CN101252088B (zh) 一种增强型A1GaN/GaN HEMT器件的实现方法
KR101456355B1 (ko) 금속 산화물의 표면 처리 방법과 박막 트랜지스터를 제조하는 방법
CN101246902A (zh) InA1N/GaN异质结增强型高电子迁移率晶体管结构及制作方法
WO2020011201A1 (zh) 基于场板结构的AlGaN或GaN紫外雪崩光电探测器及其制备方法
CN116387398A (zh) 一种通过F基等离子体处理提升AlGaN/GaN基紫外光电探测器性能的方法
CN104037218B (zh) 一种基于极化效应的高性能AlGaN/GaN HEMT高压器件结构及制作方法
CN104037221B (zh) 一种基于极化效应的复合场板高性能AlGaN/GaN HEMT器件结构及制作方法
CN109449238A (zh) 一种大规模小像元铟镓砷焦平面探测器制备方法
CN104538463B (zh) 一种改善表面钝化的平面型铟镓砷光敏芯片及制备方法
CN104282764A (zh) 具有坡形栅极的4H-SiC金属半导体场效应晶体管及制作方法
CN104681618B (zh) 一种具有双凹陷缓冲层的4H‑SiC金属半导体场效应晶体管
Motayed et al. Two-step surface treatment technique: Realization of nonalloyed low-resistance Ti/Al/Ti/Au ohmic contact to n-GaN
CN104037217B (zh) 一种基于复合偶极层的AlGaN/GaN HEMT开关器件结构及制作方法
CN104037215B (zh) 一种基于聚合物的增强型AlGaN/GaN MISHEMT器件结构及其制作方法
CN114242800B (zh) 日盲AlGaN紫外光电探测器及其制备方法
CN107452833B (zh) 微孔负电极结构的阻挡杂质带探测器的制备方法及探测器
CN213782022U (zh) 一种二维半导体材料的金属接触结构
CN110164994B (zh) InGaN/GaN多量子阱太阳能电池
CN210607281U (zh) 一种InGaN纳米柱阵列基GSG型可调谐光电探测器
KR100377509B1 (ko) 아연산화물 반도체의 금속배선 형성방법
CN104916731B (zh) 一种低损伤的铟镓砷探测器p+n结制备方法
CN112466930A (zh) 一种二维半导体材料的金属接触结构及其制备方法
CN112018177A (zh) 全垂直型Si基GaN UMOSFET功率器件及其制备方法
CN114823982B (zh) 一种GaN-GaON紫外-深紫外宽波段探测器制备方法
CN114664967A (zh) 一种嵌入式msm结构的六方氮化硼深紫外光电探测器及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination