CN114678439A - 一种对称叉指结构的2deg紫外探测器及制备方法 - Google Patents
一种对称叉指结构的2deg紫外探测器及制备方法 Download PDFInfo
- Publication number
- CN114678439A CN114678439A CN202210244562.5A CN202210244562A CN114678439A CN 114678439 A CN114678439 A CN 114678439A CN 202210244562 A CN202210244562 A CN 202210244562A CN 114678439 A CN114678439 A CN 114678439A
- Authority
- CN
- China
- Prior art keywords
- layer
- algan
- gan
- 2deg
- ultraviolet detector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 6
- 229910002704 AlGaN Inorganic materials 0.000 claims abstract description 57
- 239000002184 metal Substances 0.000 claims abstract description 19
- 230000004888 barrier function Effects 0.000 claims abstract description 13
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000000151 deposition Methods 0.000 claims description 14
- 238000005530 etching Methods 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 10
- 230000005533 two-dimensional electron gas Effects 0.000 claims description 9
- 238000002955 isolation Methods 0.000 claims description 6
- 229910015844 BCl3 Inorganic materials 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- FAQYAMRNWDIXMY-UHFFFAOYSA-N trichloroborane Chemical compound ClB(Cl)Cl FAQYAMRNWDIXMY-UHFFFAOYSA-N 0.000 claims description 4
- 238000005229 chemical vapour deposition Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 claims description 3
- 239000002131 composite material Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims 1
- 238000010168 coupling process Methods 0.000 claims 1
- 238000005859 coupling reaction Methods 0.000 claims 1
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 claims 1
- 230000004044 response Effects 0.000 abstract description 16
- 238000004519 manufacturing process Methods 0.000 abstract description 5
- 239000004065 semiconductor Substances 0.000 abstract description 5
- 230000035945 sensitivity Effects 0.000 abstract description 5
- 230000010354 integration Effects 0.000 abstract description 4
- 230000003287 optical effect Effects 0.000 abstract description 3
- 238000009825 accumulation Methods 0.000 abstract description 2
- 230000007547 defect Effects 0.000 abstract description 2
- 238000005520 cutting process Methods 0.000 abstract 1
- 230000000694 effects Effects 0.000 description 3
- 238000005286 illumination Methods 0.000 description 3
- 238000009616 inductively coupled plasma Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000005516 deep trap Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0304—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L31/03046—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
- H01L31/03048—Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
- H01L31/184—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
- H01L31/1844—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
- H01L31/1848—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种对称叉指结构的2DEG紫外探测器及制备方法,属于半导体器件制造技术领域。所述紫外探测器从下而上依次包括:衬底层、AlN缓冲层、GaN沟道层、AlGaN势垒层和金属电极层。本发明采用具有对称叉指结构2DEG电极,利用AlGaN/GaN异质结构中的价带偏移,该界面上的空穴积累导致电子进入导带的势垒能降低,从而解决了传统器件结构紫外探测器的低响应和低量子效率的缺点,提高了响应度和增益,通过GaN断开2DEG导电通道,降低了器件的暗电流,提高了光暗电流比,有效地减少了响应时间、同时提升了器件灵敏度和信噪比。此外,本发明的制造工艺简单,便于单片集成,进而能够实现光学传感系统的芯片集成。
Description
技术领域
本发明涉及一种对称叉指结构的2DEG紫外探测器及制备方法,属于半导体器件制造技术领域。
背景技术
随着紫外光电探测器在工业生产、环境监测、军用弹道导向预测战略领域、生物医学研究、医学和紫外天文学等方面的广泛应用,半导体紫外光电探测器引起了光探测器领域的广泛关注。紫外光电探测器的性能对紫外信号的探测的可靠性和准确性有着至关重要的影响。因此,在大多数应用中,理想的紫外探测器应该表现出高响应率实现最大化信号,以及低暗电流实现最小化静态功率。
近年来,随着半导体材料的发展,Al(GaN)成为第三代宽带隙半导体材料的典型代表,因其具有高击穿电场、耐高温、优良的化学稳定性、可调节的禁带宽度(3.4-6.2eV)和固有的太阳盲特性使得GaN材料在紫外光电探测器领域备受关注。此外,基于GaN紫外探测器克服了以紫外光电倍增管和Si基紫外探测器为代表的紫外探测器的应用局限性,如:需要使用滤光片来抑制太阳能盲应用中的可见光波段,体积大、效率低且笨重。因此,基于这些优点,许多类型的Al(GaN)基紫外探测器,如p-i-n、肖特基势垒、雪崩和金属-半导体-金属(MSM)叉指结构得到了广泛的研究。但是,由于这些器件通常缺乏内部增益机制,从而限制了实现高响应的能力,导致(Al)GaN基光电探测器的灵敏度较低,远远落后于目前最先进的光电应用的要求。
此外,AlGaN/GaN异质结构界面处形成的具有较高饱和速度和电子迁移率的高导电二维电子气(Two-Dimensional Electron Gas,2DEG)通道可能有利于高电流,使得基于这种结构的光电探测器应具有优异的响应性和高增益。然而,尽管基于AlGaN/GaN异质结构的探测器表现出较大的响应度,但是又同时存在一些缺点,例如高暗电流、低光暗电流比导致的信噪比低以及由于光电导效应导致响应时间过长。因此,高增益常伴随着高暗电流,且响应时间长,灵敏度和信噪比之间存在矛盾。
发明内容
为了解决目前紫外探测器存在的灵敏度低、信噪比低、响应时间过长的问题,本发明提供了一种对称叉指结构的2DEG紫外探测器,利用GaN沟道层断开2DEG导电通道,形成对称叉指2DEG电极从而可以在获得高响应的同时降低了器件的暗电流,所述紫外探测器从下而上依次包括:衬底层、AlN缓冲层、GaN沟道层、AlGaN势垒层和金属电极层;
所述GaN沟道层和所述AlGaN势垒层形成二维电子气2DEG;
所述AlGaN势垒层为:通过刻蚀AlGaN层而形成的对称叉指形状的AlGaN 2DEG电极;所述AlGaN 2DEG电极被所述GaN沟道层隔开;
所述金属电极层与所述AlGaN 2DEG电极形成欧姆接触。
可选的,所述金属电极层的材料为:Ti/Al/Ti/Au复合金属。
可选的,所述衬底层材料为:蓝宝石。
可选的,所述AlGaN势垒层的Al组分为0.18。
可选的,所述紫外探测器的制备方法为在衬底层上生长器件外延异质结构,包括:
步骤1:将未掺杂GaN沉积在AlN缓冲层上;
步骤2:GaN层生长之后,在所述GaN层上沉积未掺杂AlGaN,形成AlGaN层,同时在AlGaN/GaN异质结构界面处形成二维电子气2DEG;
步骤3:对AlGaN层进行台面隔离刻蚀,形成所述对称叉指形状的AlGaN 2DEG电极;
步骤4:沉积金属电极层。
可选的,所述对称叉指形状的AlGaN 2DEG电极形成的传感器阵列,电极的尺寸为宽30μm,长400μm,间距为5μm。
本发明还提供一种对称叉指结构的2DEG紫外探测器的制备方法,所述方法通过在衬底层上生长器件外延异质结构,包括:
步骤1:将未掺杂GaN沉积在AlN缓冲层上;
步骤2:GaN层生长之后,在所述GaN层上沉积未掺杂AlGaN,形成AlGaN层,同时在AlGaN/GaN异质结构界面处形成二维电子气2DEG;
步骤3:对AlGaN层进行台面隔离刻蚀,形成所述对称叉指形状的AlGaN 2DEG电极;
步骤4:沉积金属电极层。
可选的,所述在衬底层上生长器件外延异质结构采用:金属有机化学气相沉积MOCVD方法。
可选的,所述步骤3采用电感耦合等离子体与BCl3/Cl2气体进行台面刻蚀。
可选的,所述步骤3中对称叉指形状的AlGaN 2DEG电极形成的传感器阵列,电极的尺寸为宽30μm,长400μm,间距为5μm。
本发明有益效果是:
1)本发明的对称叉指结构的AlGaN/GaN 2DEG基紫外探测器,利用高导电性的二维电子气2DEG,由于AlGaN/GaN异质结构中的价带偏移,该界面上的空穴积累导致电子进入导带的势垒能降低,从而解决了传统器件结构紫外探测器的低响应和低量子效率的缺点,达到了高响应和高增益的效果。
2)本发明利用具有对称叉指结构2DEG电极,通过GaN断开2DEG导电通道,降低了器件的暗电流,提高了光暗电流比,相比于现有的紫外光电探测器,有效地减少了响应时间、提升了器件灵敏度和信噪比。
3)本发明的制造工艺简单,便于单片集成,进而能够实现光学传感系统的芯片集成。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明具有叉指状AlGaN/GaN异质结紫外探测器的层结构示意图。
图2是本发明的器件在室温条件下无光照和360nm光照下-20-20V偏压下的I-V曲线特性图。
图3是本发明的2DEG基叉指紫外探测器在2和10V之间的不同偏置电压下的光谱响应和光谱外量子效率图。
图4是2DEG基叉指紫外探测器在在2和10V之间的不同偏置电压下的时间响应特性图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
实施例一:
本实施例提供一种对称叉指结构的2DEG紫外探测器,紫外探测器从下而上依次包括:蓝宝石衬底、AlN缓冲层、GaN沟道层、Al组分为0.18的叉指状AlGaN势垒层和30/150/50/20nm Ti/Al/Ti/Au欧姆金属电极层;
AlN缓冲层的厚度为450nm,GaN缓冲层未进行任何掺杂,其厚度为1.8μm,通过生长22nm厚的Al0.18Ga0.82N势垒层来形成2DEG。
使用具有BCl3/Cl2气体的电感耦合等离子体进行台面蚀刻,台面结构的叉指型AlGaN电极的尺寸为宽30μm,长400μm,间距为5μm。因此,30μm宽的AlGaN 2DEG台面电极被5μm宽的本征GaN缓冲通道隔开,构成基于2DEG的叉指紫外探测器。
实施例二:
本实施例提供一种对称叉指结构的2DEG紫外探测器的制备方法,通过在蓝宝石衬底上通过金属有机化学气相沉积(MOCVD)生长器件外延异质结构,包括:
步骤1:将未掺杂GaN沉积在AlN缓冲层上;
步骤2:GaN层生长之后,在所述GaN层上沉积未掺杂AlGaN,形成AlGaN层,同时在AlGaN/GaN异质结构界面处形成二维电子气2DEG;
步骤3:使用电感耦合等离子体与BCl3/Cl2气体对AlGaN层进行台面隔离刻蚀,形成对称叉指形状的AlGaN 2DEG电极;
步骤4:在台面隔离刻蚀后,沉积了标准的Ti/Al/Ti/Au(30/150/50/20nm)欧姆金属堆栈。
为了进一步说明本发明能够达到的有益效果,进行了一系列实验。
图2展示了本发明的紫外探测器分别在黑暗条件和在360nm单色光照明下的I-V曲线。在室温下测得偏置电压为-3V时的暗电流小于9nA,光电流可达到4μA。因此,由测试结果可知,器件具有较低暗电流以及近似103的光暗电流比。
图3展示了紫外探测器在2-10V之间不同偏置电压下的光谱响应以及对应的光谱外量子效率。可以看出,该器件的截止波长约为365nm,与GaN吸收层的禁带带宽一致。此外,响应度随外加偏压的增大而增大,在10V时峰值响应度高达800A/W,量子效率为3305%。这是由于可能的机制是在GaN层中的深能级缺陷处进行空穴捕获,AlGaN/GaN异质结构中的价带偏移是实现这种高响应的关键。值得注意的是,响应谱中出现了300~360nm范围内的宽峰,这有利于弱紫外信号的检测应用。
图4展示了在2和10V之间的不同偏置电压下,紫外探测器用发光波长为265nm的LED 2Hz紫外光信号照射下的光电流瞬态。在灯关闭后250ms内,电流没有完全达到初始暗电流值,这可归因于持久的光电导效应,对于AlGaN/GaN光电探测器器件是常见的。此外,定义光电流从其最终值的10%到90%所需的时间为上升、下降时间,测量得到在2V偏压下器件的上升和下降时间为25ms和21ms。这比具有类似增益的光电导型的紫外探测器的上升/下降时间有显著的改进。同时,器件的上升下降时间不受偏压的影响。
综上所述,本发明的紫外探测器可以实现较低的暗电流,具有较高的响应度和较高的量子效率,同时器件的上升/下降时间有显著的改进,因此器件的响应时间减少,整体性能得到了有效地提升。
本发明实施例中的部分步骤,可以利用软件实现,相应的软件程序可以存储在可读取的存储介质中,如光盘或硬盘等。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (10)
1.一种对称叉指结构的2DEG紫外探测器,其特征在于,所述紫外探测器从下而上依次包括:衬底层、AlN缓冲层、GaN沟道层、AlGaN势垒层和金属电极层;
所述GaN沟道层和所述AlGaN势垒层形成二维电子气2DEG;
所述AlGaN势垒层为:通过刻蚀AlGaN层而形成的对称叉指形状的AlGaN 2DEG电极;所述AlGaN 2DEG电极被所述GaN沟道层隔开;
所述金属电极层与所述AlGaN 2DEG电极形成欧姆接触。
2.根据权利要求1所述的紫外探测器,其特征在于,所述金属电极层的材料为:Ti/Al/Ti/Au复合金属。
3.根据权利要求1所述的紫外探测器,其特征在于,所述衬底层材料为:蓝宝石。
4.根据权利要求1所述的紫外探测器,其特征在于,所述AlGaN势垒层的Al组分为0.18。
5.根据权利要求1所述的紫外探测器,其特征在于,所述紫外探测器的制备方法为在衬底层上生长器件外延异质结构,包括:
步骤1:将未掺杂GaN沉积在AlN缓冲层上;
步骤2:GaN层生长之后,在所述GaN层上沉积未掺杂AlGaN,形成AlGaN层,同时在AlGaN/GaN异质结构界面处形成二维电子气2DEG;
步骤3:对AlGaN层进行台面隔离刻蚀,形成所述对称叉指形状的AlGaN 2DEG电极;
步骤4:沉积金属电极层。
6.根据权利要求1所述的紫外探测器,其特征在于,所述对称叉指形状的AlGaN 2DEG电极形成的传感器阵列,电极的尺寸为宽30μm,长400μm,间距为5μm。
7.一种对称叉指结构的2DEG紫外探测器的制备方法,其特征在于,所述方法通过在衬底层上生长器件外延异质结构,包括:
步骤1:将未掺杂GaN沉积在AlN缓冲层上;
步骤2:GaN层生长之后,在所述GaN层上沉积未掺杂AlGaN,形成AlGaN层,同时在AlGaN/GaN异质结构界面处形成二维电子气2DEG;
步骤3:对AlGaN层进行台面隔离刻蚀,形成所述对称叉指形状的AlGaN 2DEG电极;
步骤4:沉积金属电极层。
8.根据权利要求7所述的制备方法,其特征在于,所述在衬底层上生长器件外延异质结构采用:金属有机化学气相沉积MOCVD方法。
9.根据权利要求7所述的制备方法,其特征在于,所述步骤3采用电感耦合等离子体与BCl3/Cl2气体进行台面刻蚀。
10.根据权利要求7所述的制备方法,其特征在于,所述步骤3中对称叉指形状的AlGaN2DEG电极形成的传感器阵列,电极的尺寸为宽30μm,长400μm,间距为5μm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210244562.5A CN114678439B (zh) | 2022-03-14 | 2022-03-14 | 一种对称叉指结构的2deg紫外探测器及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210244562.5A CN114678439B (zh) | 2022-03-14 | 2022-03-14 | 一种对称叉指结构的2deg紫外探测器及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114678439A true CN114678439A (zh) | 2022-06-28 |
CN114678439B CN114678439B (zh) | 2023-07-25 |
Family
ID=82075141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202210244562.5A Active CN114678439B (zh) | 2022-03-14 | 2022-03-14 | 一种对称叉指结构的2deg紫外探测器及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114678439B (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024072325A1 (en) * | 2022-09-26 | 2024-04-04 | National University Of Singapore | Ultra-low voltage ultraviolet photodetector |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109065663A (zh) * | 2018-08-14 | 2018-12-21 | 中国电子科技集团公司第三十八研究所 | 一种双异质结紫外探测器 |
CN109540988A (zh) * | 2018-11-09 | 2019-03-29 | 中山大学 | 基于叉指凹槽结构的无参比电极GaN基pH传感器及其制备方法 |
CN111524973A (zh) * | 2020-05-06 | 2020-08-11 | 南京冠鼎光电科技有限公司 | 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法 |
US20210043793A1 (en) * | 2019-08-08 | 2021-02-11 | Tower Semiconductor Ltd. | Gallium Nitride Based Ultra-Violet Sensor With Intrinsic Amplification and Method of Operating Same |
-
2022
- 2022-03-14 CN CN202210244562.5A patent/CN114678439B/zh active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109065663A (zh) * | 2018-08-14 | 2018-12-21 | 中国电子科技集团公司第三十八研究所 | 一种双异质结紫外探测器 |
CN109540988A (zh) * | 2018-11-09 | 2019-03-29 | 中山大学 | 基于叉指凹槽结构的无参比电极GaN基pH传感器及其制备方法 |
US20210043793A1 (en) * | 2019-08-08 | 2021-02-11 | Tower Semiconductor Ltd. | Gallium Nitride Based Ultra-Violet Sensor With Intrinsic Amplification and Method of Operating Same |
CN111524973A (zh) * | 2020-05-06 | 2020-08-11 | 南京冠鼎光电科技有限公司 | 叉指状p-GaN栅结构HEMT型紫外探测器及其制备方法 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2024072325A1 (en) * | 2022-09-26 | 2024-04-04 | National University Of Singapore | Ultra-low voltage ultraviolet photodetector |
Also Published As
Publication number | Publication date |
---|---|
CN114678439B (zh) | 2023-07-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Alaie et al. | Recent advances in ultraviolet photodetectors | |
CN106847933B (zh) | 单片集成紫外-红外双色雪崩光电二极管及其制备方法 | |
CN108305911B (zh) | 吸收、倍增层分离结构的ⅲ族氮化物半导体雪崩光电探测器 | |
CN109935655B (zh) | 一种AlGaN/SiC双色紫外探测器 | |
CN102361046B (zh) | AlGaN基MSM结构日盲型紫外探测器及其制备方法 | |
CN111244203B (zh) | 基于Ga2O3/CuI异质PN结的日光盲紫外探测器 | |
CN111739960B (zh) | 一种增益型异质结紫外光电探测器 | |
CN109119508B (zh) | 一种背入射日盲紫外探测器及其制备方法 | |
CN110660882B (zh) | 一种栅控PIN结构GaN紫外探测器及其制备方法 | |
CN105655437A (zh) | 一种紫外雪崩光电探测器 | |
US20050012113A1 (en) | [uv photodetector] | |
CN102201484B (zh) | 具有二次台面包裹电极的AlGaN紫外探测器及制备方法 | |
US8350290B2 (en) | Light-receiving device and manufacturing method for a light-receiving device | |
CN109980040A (zh) | 一种氧化镓mis结构紫外探测器 | |
CN113471326B (zh) | 一种ⅲ族氮化物异质结光电探测器 | |
CN109285914B (zh) | 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法 | |
CN109686809A (zh) | 一种iii族氮化物半导体可见光雪崩光电探测器及制备方法 | |
CN110676272A (zh) | 一种半导体紫外光电探测器 | |
CN114678439B (zh) | 一种对称叉指结构的2deg紫外探测器及制备方法 | |
CN109545883B (zh) | 一种低暗电流台面型雪崩单光子探测器及制备方法 | |
CN202134542U (zh) | 具有二次台面包裹电极的AlGaN紫外探测器 | |
CN116799092A (zh) | 一种基于氧化镓基的日盲紫外探测器及其制备方法 | |
Monroy et al. | Application and performance of GaN based UV detectors | |
Jiang et al. | Visible-blind metal-semiconductor-metal photodetectors based on undoped AlGaN/GaN high electron mobility transistor structure | |
CN112018210B (zh) | 极化增强窄带AlGaNp-i-n型紫外探测器及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |