CN113097320B - 一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法 - Google Patents
一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法 Download PDFInfo
- Publication number
- CN113097320B CN113097320B CN202110344916.9A CN202110344916A CN113097320B CN 113097320 B CN113097320 B CN 113097320B CN 202110344916 A CN202110344916 A CN 202110344916A CN 113097320 B CN113097320 B CN 113097320B
- Authority
- CN
- China
- Prior art keywords
- tio
- snse
- heterojunction
- preparation
- argon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910010413 TiO 2 Inorganic materials 0.000 title claims abstract description 83
- 238000002360 preparation method Methods 0.000 title claims abstract description 30
- 239000002071 nanotube Substances 0.000 claims abstract description 27
- 239000002135 nanosheet Substances 0.000 claims abstract description 23
- 239000012298 atmosphere Substances 0.000 claims abstract description 19
- 238000004528 spin coating Methods 0.000 claims abstract description 11
- 238000005245 sintering Methods 0.000 claims abstract description 10
- 230000003647 oxidation Effects 0.000 claims abstract description 9
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 9
- 239000000084 colloidal system Substances 0.000 claims abstract description 5
- 239000012300 argon atmosphere Substances 0.000 claims abstract description 4
- 238000013329 compounding Methods 0.000 claims abstract description 3
- 239000000203 mixture Substances 0.000 claims abstract description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 72
- 238000010438 heat treatment Methods 0.000 claims description 44
- 229910052786 argon Inorganic materials 0.000 claims description 36
- 239000007789 gas Substances 0.000 claims description 22
- 239000010453 quartz Substances 0.000 claims description 22
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 22
- 238000011144 upstream manufacturing Methods 0.000 claims description 12
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 9
- 239000001257 hydrogen Substances 0.000 claims description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims description 8
- 239000007787 solid Substances 0.000 claims description 6
- 238000004321 preservation Methods 0.000 claims description 4
- YZCKVEUIGOORGS-OUBTZVSYSA-N Deuterium Chemical compound [2H] YZCKVEUIGOORGS-OUBTZVSYSA-N 0.000 claims description 2
- 239000011669 selenium Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 11
- 238000001514 detection method Methods 0.000 abstract description 5
- 230000004298 light response Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000003786 synthesis reaction Methods 0.000 description 8
- 239000004065 semiconductor Substances 0.000 description 7
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- 238000001035 drying Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001878 scanning electron micrograph Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000003491 array Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 239000002064 nanoplatelet Substances 0.000 description 2
- 239000002070 nanowire Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- IHCCLXNEEPMSIO-UHFFFAOYSA-N 2-[4-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]piperidin-1-yl]-1-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)ethanone Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1CCN(CC1)CC(=O)N1CC2=C(CC1)NN=N2 IHCCLXNEEPMSIO-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 239000000370 acceptor Substances 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000006555 catalytic reaction Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000002086 nanomaterial Substances 0.000 description 1
- 231100000956 nontoxicity Toxicity 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/0328—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
- H01L31/0336—Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/08—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
- H01L31/10—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
- H01L31/101—Devices sensitive to infrared, visible or ultraviolet radiation
- H01L31/102—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
- H01L31/109—Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Light Receiving Elements (AREA)
- Luminescent Compositions (AREA)
Abstract
本发明提供了一种C3N4/SnSe2/H‑TiO2异质结光电探测器的制备方法,包括以下步骤:(1)采用阳极氧化法制备TiO2纳米管;(2)使用双温区真空气氛管式炉生长SnSe2纳米片,得到SnSe2/H‑TiO2异质结;(3)制备含有g‑C3N4纳米片的胶体溶液,通过旋涂法将g‑C3N4纳米片复合到SnSe2/H‑TiO2异质结上,最后在氩气气氛中烧结制备出C3N4/SnSe2/H‑TiO2异质结。本发明方法制得的C3N4/SnSe2/H‑TiO2异质结光电探测器件具有较大的光响应值和探测率。
Description
技术领域
本发明属于异质结光电探测器件的技术领域,具体涉及一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法。
背景技术
光电探测器是能将光信号转换为电信号的一种器件,而今随着电子信息技术的迅速发展,其在传感、通讯、环境遥感监控、遥控、安保、医用监测、和生化检测等方面应用广泛。半导体材料的光生伏特效应在光电探测器中非常重要,它能在光电通信系统中将光转换为电。半导体材料既可应用于光催化技术,又可用于光电探测技术,所以研究半导体材料非常重要。随着科技的不断更新与发展,传统的半导体材料已不能满足需求,而科研工作者发现二维半导体材料的光催化性能和光电性能比传统半导体材料强,故而把注意力转移到了二维半导体材料。
TiO2纳米管因其具有较好的化学稳定性、无毒、价格便宜等优点而在不同的领域应用广泛。由于一维结构的光捕获效应,一维纳米线(管)可以有效地将吸收的光子转换为电子-空穴对,而一维纳米线(管)/二维异质结构中的电子受体和转运体可以帮助电子-空穴对分离来提高光电器件的响应速率。SnSe2等二维材料可以通过改变尺寸、插层、异质结构、合金化和光调谐来进行带隙调谐,这对提高阵列器件的性能和获得最佳性能至关重要。g-C3N4独特的类石墨层状堆积结构和sp2杂化的π共轭电子能带结构,使其具有多种优异的物理和化学性质,在材料、催化、电子和光学等领域具有诱人的应用前景。由此我们制备了一种C3N4/SnSe2/H-TiO2异质结光电探测器。
发明内容
本发明的目的在于提供一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,解决现有光电探测器光响应度较低的不足。
本发明的目的是通过以下技术方案来实现的:
一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,包括以下步骤:
(1)采用阳极氧化法制备TiO2纳米管;
(2)使用双温区真空气氛管式炉生长SnSe2纳米片:分别以硒粉和SnCl4·5H2O作为Se源和Sn源,在氩气和氢气混合气体的环境下,在TiO2纳米管上生长SnSe2纳米片,待管式炉降至室温后得到SnSe2/H-TiO2异质结;
(3)制备含有g-C3N4纳米片的胶体溶液,通过旋涂法将g-C3N4纳米片复合到SnSe2/H-TiO2异质结上,最后在氩气气氛中烧结制备出C3N4/SnSe2/H-TiO2异质结。
本发明方法通过阳极氧化法将钛片氧化为TiO2纳米管阵列,然后在双温区管式炉内在TiO2纳米管阵列基底材料上生长SnSe2纳米片,最后采用旋涂法在SnSe2/H-TiO2异质结上复合g-C3N4纳米片得到新的C3N4/SnSe2/H-TiO2异质结。
本发明制备方法可以进一步做以下改进:
步骤(2)中硒粉和SnCl4·5H2O的质量比为0.3-0.5:0.2-0.4。
步骤(2)中在双温区真空气氛管式炉进行SnSe2纳米片的生长,具体操作如下:将硒粉放入位于上游中心加热区的一个石英舟中,将SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并且石英舟置于下游加热区域上端,距离下游加热中心5cm处;将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。
进一步地,双温区真空气氛管式炉上游的加热温度为300-500℃,下游的加热温度为400-600℃,两个温区同时升温到达设定温度,保温时间为10-30min。
进一步地,通入氩气排除空气操作如下:加热过程前,通入氩气时间为30min;升温过程中的气路系统氩气流量设置为80s.c.c.m,保温阶段通入氩气和氢气的混合气体,将氩气流量切换为60s.c.c.m,氢气流量切换为20s.c.c.m,降温阶段只通入氩气,流量为80s.c.c.m。
步骤(3)中旋涂的次数为5-20次,旋涂机转速为500r/min。
步骤(3)中真空气氛管式炉中烧结C3N4/SnSe2/H-TiO2异质结的具体参数为:以2℃/min的速率升温至300-500℃,保温1-3h,通入氩气的流量为50s.c.c.m。
与现有技术相比,本发明具有以下有益效果:
(1)本发明C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,在H-TiO2纳米管阵列表面化学气相沉积SnSe2纳米片,然后采用旋涂法使C3N4纳米片与SnSe2/H-TiO2异质结相复合,最后在氩气氛中烧结获得C3N4/SnSe2/H-TiO2异质结材料,该复合材料具有特殊的多级机构,具有较大的比表面积,电子能够较快的从纳米片经过纳米管阵列传递到电极上,具有较高的光电响应性能。
(2)本发明制备方法简单、成本低、反应条件容易控制,为结合阳极氧化法、化学气相沉积法和旋涂法制备多级复合纳米材料提供了一种有益的参考。
附图说明
图1为本发明实施例4所得的C3N4/SnSe2/H-TiO2异质结光电探测器材料的XRD图谱。
图2为本发明实施例4所得的C3N4/SnSe2/H-TiO2异质结光电探测器材料的SEM图。
图3为本发明实施例4所得的C3N4/SnSe2/H-TiO2异质结光电探测器材料的紫外-可见光吸收光谱。
图4为本发明实施例4所得的C3N4/SnSe2/H-TiO2异质结光电探测器材料的I-V曲线图。
图5为本发明实施例4所得的C3N4/SnSe2/H-TiO2异质结光电探测器材料的I-T曲线图。
具体实施方式
以下结合具体的实施例对本发明作进一步的说明,以便本领域技术人员更好理解和实施本发明的技术方案。
实施例1
一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,包括以下步骤:
(1)采用阳极氧化法制备TiO2纳米管阵列。
(2)使用双温区真空气氛管式炉合成SnSe2/H-TiO2异质结。在合成过程中,将0.4g硒粉放入位于上游中心加热区的一个石英舟中。将0.3g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并且石英舟置于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在样品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热至温度为450℃,同时上游中心加热区加热至温度为350℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。保温时间为15min。然后迅速将氩气气流转换为80s.c.c.m.。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
(3)采用旋涂法使g-C3N4纳米片与SnSe2/H-TiO2异质结相结合得到C3N4/SnSe2/H-TiO2异质结。把SnSe2/H-TiO2异质结放在旋涂机上,转速设置为500r/min,时间为10s,滴一滴g-C3N4纳米片溶液启动一次旋涂机,重复10次后放入60℃烘箱烘干。在真空气氛管式炉中烧结烘干后的样品,把其放入位于加热中心的石英舟中,以2℃/min的速率升温至350℃,保温1h,通入氩气的流量为50s.c.c.m。待管式炉降至室温后得到C3N4/SnSe2/H-TiO2异质结。
实施例2
一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,包括以下步骤:
(1)采用阳极氧化法制备TiO2纳米管阵列。
(2)使用双温区真空气氛管式炉合成SnSe2/H-TiO2异质结。在合成过程中,将0.5g硒粉放入位于上游中心加热区的一个石英舟中。将0.4g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并且石英舟置于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在样品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热至温度为400℃,同时上游中心加热区加热至温度为300℃。升温时气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。保温时间10min。然后迅速将氩气气流转换为80s.c.c.m.。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
(3)采用旋涂法使g-C3N4纳米片与SnSe2/H-TiO2异质结相结合得到C3N4/SnSe2/H-TiO2异质结。把SnSe2/H-TiO2异质结放在旋涂机上,转速设置为500r/min,时间为10s,滴一滴g-C3N4纳米片溶液启动一次旋涂机,重复5次后放入60℃烘箱烘干。在真空气氛管式炉中烧结烘干后的样品,把其放入位于加热中心的石英舟中,以2℃/min的速率升温至300℃,保温3h,通入氩气的流量为50s.c.c.m。待管式炉降至室温后得到C3N4/SnSe2/H-TiO2异质结。
实施例3
一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,包括以下步骤:
(1)采用阳极氧化法制备TiO2纳米管阵列。
(2)使用双温区真空气氛管式炉合成SnSe2/H-TiO2异质结。在合成过程中,将0.3g硒粉放入位于上游中心加热区的一个石英舟中。将0.2g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并且石英舟置于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在样品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热温度为600℃,同时上游中心加热区加热温度为500℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。整个氢气通入时间持续30min。然后迅速将氩气气流转换为80s.c.c.m.。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
(3)采用旋涂法使g-C3N4纳米片与SnSe2/H-TiO2异质结相结合得到C3N4/SnSe2/H-TiO2异质结。把SnSe2/H-TiO2异质结放在旋涂机上,转速设置为500r/min,时间为10s,滴一滴g-C3N4纳米片溶液启动一次旋涂机,重复15次后放入60℃烘箱烘干。在真空气氛管式炉中烧结烘干后的样品,把其放入位于加热中心的石英舟中,以2℃/min的速率升温至400℃,保温2h,通入氩气的流量为50s.c.c.m。待管式炉降至室温后得到C3N4/SnSe2/H-TiO2异质结。
实施例4
一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,包括以下步骤:
(1)采用阳极氧化法制备TiO2纳米管阵列。
(2)使用双温区真空气氛管式炉合成SnSe2/H-TiO2异质结。在合成过程中,将0.4g硒粉放入位于上游中心加热区的一个石英舟中。将0.2g SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并且石英舟置于下游加热区域上端,距离下游加热中心5cm处。将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。在样品放置管式炉之后加热过程之前,CVD系统用高纯度氩气(99.99%)通气30min消除空气降低其他气体对实验的污染。然后,将下游中心加热区在大气压力下加热至温度为500℃,同时上游中心加热区加热至温度为600℃。此时的气路系统设置为氩气80s.c.c.m.。当温度达到设定值时,将气路系统切换为含有60s.c.c.m.氩气和20s.c.c.m.氢气的混合气体。保温时间20min。然后迅速将氩气气流转换为80s.c.c.m.。待管式炉降至室温后得到SnSe2/H-TiO2异质结。
(3)采用旋涂法使g-C3N4纳米片与SnSe2/H-TiO2异质结相结合得到C3N4/SnSe2/H-TiO2异质结。把SnSe2/H-TiO2异质结放在旋涂机上,转速设置为500r/min,时间为10s,滴一滴g-C3N4纳米片溶液启动一次旋涂机,重复20次后放入60℃烘箱烘干。在真空气氛管式炉中烧结烘干后的样品,把其放入位于加热中心的石英舟中,以2℃/min的速率升温至500℃,保温1h,通入氩气的流量为50s.c.c.m。待管式炉降至室温后得到C3N4/SnSe2/H-TiO2异质结。
电化学性能测试:分别将实施例1-4中制备的材料制作成器件。在生长了C3N4/SnSe2/H-TiO2处点上银胶并粘附上铜箔作为一端电极,另一端在打磨好的钛片基底上点上银胶并粘附上铜箔作为另一端电极,制备出垂直的光电探测器件。将制作好的光电器件在-1V偏压及370-520nm波长下进行LSV曲线测试并在0.5V偏压下进行I-T曲线测试。
如图1所示,为实施例4制备的电极材料的XRD图谱。图中TiO2纳米管(JCPDF21-1272)阵列的衍射峰与锐钛矿相匹配得很好,其结晶度较高。对于TiO2纳米管阵列,具有2θ分别为25.18°,36.93°,37.92°,47.87°,53.93°和70.37°的衍射峰。对于SnSe2/H-TiO2异质结样品的XRD图谱,SnSe2的特征衍射峰出现在2θ=14.4°,26.99°,30.73°,40.07°,47.69°,50.08°和56.82°,分别对应于SnSe2的CdI 2型六方晶型结构的标准卡片(JCPDS PDFNo.089-3197)中的(001)、(100)、(011)、(012)、(110)、(111)和(112)晶面的衍射峰。对于C3N4/SnSe2/H-TiO2异质结的XRD图谱,与SnSe2/H-TiO2异质结的图谱极为相似,是因为g-C3N4纳米片的衍射峰较弱,查阅文献得知在2θ=13.2°、27.5时有特征衍射峰。在C3N4/SnSe2/H-TiO2的XRD图谱中,没有检测到其他杂质的衍射峰,说明了C3N4/SnSe2/H-TiO2异质结被合成出来,且制备的样品具有高纯度和高结晶性。
如图2所示,为实施例4制备的电极材料的SEM图。图2a为TiO2纳米管阵列、b为SnSe2/H-TiO2异质结、c、d为不同倍率下C3N4/SnSe2/H-TiO2异质结的SEM图。从a图中可以看出TiO2纳米管孔径均匀,其平均内管直径约为160nm,具有160-200nm较大孔径的多孔网络可以防止管束捆扎,并允许较高的管束堆积密度,有利于比表面积的利用。b图多数SnSe2纳米片垂直生长在TiO2纳米管上,少数呈六边形平铺在TiO2纳米管上并且分布密集。图c、d为g-C3N4纳米片在SnSe2/H-TiO2异质结上生长的不同倍率下的SEM图,可以看到g-C3N4纳米片呈簇状密集分布在一起。
如图3所示,为实施例4制备的电极材料的紫外-可见光吸收光谱。从图中可以看出C3N4/SnSe2/H-TiO2异质结样品在可见光区有更高的的光吸收强度,说明有更高的光响应度。
如图4所示,为实施例4制备的电极材料的I-V曲线图。从图中看出曲线具有非线性关系,表明银电极与C3N4/SnSe2/H-TiO2之间形成了欧姆接触而各半导体材料之间为非欧姆接触。在370nm、450nm、520nm波长下,C3N4/SnSe2/H-TiO2光电器件都具有光响应能力。随着光照从可见到紫外的变化可以看出器件在紫外光区域具有较好的光响应能力,在370nm波长下具有最大的光电流0.032mA/cm2。
如图5所示,为实施例4制备的电极材料的I-T曲线图。从图中可以看出通过100s的线性伏安扫描发现材料在370nm、450nm和520nm波长下曲线都很稳定,且在370nm下光照和黑暗切换的环境中电流变化最为明显。
以上实施实例对本发明的实施过程进行了详细的阐述,但是本发明的实施方式并不仅限于此,所属技术领域的普通技术人员依据本发明中公开的内容,均可实现本发明的目的,任何基于本发明构思基础上做出的改进和变形均落入本发明的保护范围之内,具体保护范围以权利要求书记载的为准。
Claims (7)
1.一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,包括以下步骤:
(1)采用阳极氧化法制备TiO2纳米管;
(2)使用双温区真空气氛管式炉生长SnSe2纳米片:分别以硒粉和SnCl4·5H2O作为Se源和Sn源,在氩气和氢气混合气体的环境下,在TiO2纳米管上生长SnSe2纳米片,待管式炉降至室温后得到SnSe2/H-TiO2异质结;
(3)制备含有g-C3N4纳米片的胶体溶液,通过旋涂法将g-C3N4纳米片复合到SnSe2/H-TiO2异质结上,最后在氩气气氛中烧结制备出C3N4/SnSe2/H-TiO2异质结。
2.根据权利要求1所述C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,其特征在于,步骤(2)中硒粉和SnCl4·5H2O的质量比为0.3-0.5:0.2-0.4。
3.根据权利要求1所述C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,其特征在于,步骤(2)中在双温区真空气氛管式炉进行SnSe2纳米片的生长,具体操作如下:将硒粉放入位于上游中心加热区的一个石英舟中,将SnCl4·5H2O固体置于位于双温区管式炉下游中心加热区的另一个石英舟中并且石英舟置于下游加热区域上端,距离下游加热中心5cm处;将步骤(1)中得到的TiO2纳米管置于下游区域的末端,距离下游加热中心7cm。
4.根据权利要求3所述C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,其特征在于,双温区真空气氛管式炉上游的加热温度为300-500℃,下游的加热温度为400-600℃,两个温区同时升温到达设定温度,保温时间为10-30min。
5.根据权利要求3所述C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,其特征在于,通入氩气排除空气操作如下:加热过程前,通入氩气时间为30min;升温过程中的气路系统氩气流量设置为80s.c.c.m,保温阶段通入氩气和氢气的混合气体,将氩气流量切换为60s.c.c.m,氢气流量切换为20s.c.c.m,降温阶段只通入氩气,流量为80s.c.c.m。
6.根据权利要求1所述C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,其特征在于,步骤(3)中旋涂的次数为5-20次,旋涂机转速为500r/min。
7.根据权利要求1所述C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法,其特征在于,步骤(3)中真空气氛管式炉中烧结C3N4/SnSe2/H-TiO2异质结的具体参数为:以2℃/min的速率升温至300-500℃,保温1-3h,通入氩气的流量为50s.c.c.m。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110344916.9A CN113097320B (zh) | 2021-03-31 | 2021-03-31 | 一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110344916.9A CN113097320B (zh) | 2021-03-31 | 2021-03-31 | 一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN113097320A CN113097320A (zh) | 2021-07-09 |
CN113097320B true CN113097320B (zh) | 2023-12-05 |
Family
ID=76671867
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110344916.9A Active CN113097320B (zh) | 2021-03-31 | 2021-03-31 | 一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN113097320B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110449176A (zh) * | 2019-08-16 | 2019-11-15 | 江南大学 | 一种非贵金属单原子催化剂的制备方法及应用 |
CN110639581A (zh) * | 2019-09-01 | 2020-01-03 | 桂林理工大学 | 一种WP2/g-C3N4异质结光催化剂的制备方法 |
AU2020102640A4 (en) * | 2020-09-18 | 2020-11-26 | Qilu University Of Technology | PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016022527A1 (en) * | 2014-08-05 | 2016-02-11 | Massachusetts Institute Of Technology | Engineered band gaps |
-
2021
- 2021-03-31 CN CN202110344916.9A patent/CN113097320B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110449176A (zh) * | 2019-08-16 | 2019-11-15 | 江南大学 | 一种非贵金属单原子催化剂的制备方法及应用 |
CN110639581A (zh) * | 2019-09-01 | 2020-01-03 | 桂林理工大学 | 一种WP2/g-C3N4异质结光催化剂的制备方法 |
AU2020102640A4 (en) * | 2020-09-18 | 2020-11-26 | Qilu University Of Technology | PREPARATION METHOD AND APPLICATION OF g-C3N4/(101)-(001)-TiO2 COMPOSITE MATERIAL |
Non-Patent Citations (2)
Title |
---|
SnS2 Nanosheets/H-TiO2 Nanotube Arrays as a Type II Heterojunctioned Photoanode for Photoelectrochemical Water Splitting;Jianfei Lin等;《ChemSusChem Communications》;第12卷;961-967 * |
Synergistic wide spectrum response and directional carrier transportation characteristics of Se/SnSe2/TiO2 multiple heterojunction for efficient photoelectrochemical simultaneous degradation of Cr (VI) and RhB;Jianglong Mu等;《Applied Surface Science》;第542卷(第148673期);1-15 * |
Also Published As
Publication number | Publication date |
---|---|
CN113097320A (zh) | 2021-07-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pang et al. | Boosting performance of perovskite solar cells with Graphene quantum dots decorated SnO2 electron transport layers | |
Wang et al. | In situ synthesis of monoclinic β-Ga2O3 nanowires on flexible substrate and solar-blind photodetector | |
Ji et al. | Ultraviolet photodetectors based on selectively grown ZnO nanorod arrays | |
Murugadoss et al. | An efficient electron transport material of tin oxide for planar structure perovskite solar cells | |
Hassan et al. | High sensitivity and fast response and recovery times in a ZnO nanorod array/p-Si self-powered ultraviolet detector | |
Shabannia et al. | ZnO nanorod ultraviolet photodetector on porous silicon substrate | |
Wang et al. | Technology ready use of single layer graphene as a transparent electrode for hybrid photovoltaic devices | |
Sim et al. | Implementation of graphene as hole transport electrode in flexible CIGS solar cells fabricated on Cu foil | |
CN112382691A (zh) | 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法 | |
Hsueh et al. | Crystalline-Si photovoltaic devices with ZnO nanowires | |
Wang et al. | A wire-shaped and high-sensitivity photoelectrochemical ultraviolet photodetector based on TiO2 nanotube arrays | |
Ren et al. | 50° C low-temperature ALD SnO2 driven by H2O2 for efficient perovskite and perovskite/silicon tandem solar cells | |
CN111211230B (zh) | 一种全光谱吸收的多层钙钛矿/量子点太阳能电池器件及制备方法 | |
Lin et al. | Direct growth of graphene nanowalls on quartz substrates as transparent conductive electrodes for perovskite solar cells | |
Hussain et al. | Length dependent performance of Cu2O/ZnO nanorods solar cells | |
Xia et al. | Infrared-transparent polymer solar cells | |
Jiang et al. | Fabrication, material regulation, and healthcare applications of flexible photodetectors | |
CN113097320B (zh) | 一种C3N4/SnSe2/H-TiO2异质结光电探测器的制备方法 | |
CN110491966B (zh) | 碲化铂/甲基氨铅溴钙钛矿单晶异质结光电探测器及其制作方法 | |
Xu et al. | High-performance photoelectrochemical (PEC) type self-powered ultraviolet photodetectors (PDs) based on three-dimensional ZnO film/carbon fiber paper | |
CN112635587A (zh) | 基于TiO2/Ga2O3纳米相结的柔性日盲紫外探测器及其制备方法 | |
CN113097321B (zh) | 一种MoS2/SnSe2/H-TiO2异质结光电探测器的制备方法 | |
Zhao et al. | Lead-free perovskite/ZnO heterostructure for flexible visible-blind ultraviolet photodetection | |
Guo et al. | Durable and stable UV–Vis perovskite photodetectors based on CH 3 NH 3 PbI 3 crystals synthesized via a solvothermal method | |
Lu et al. | Towards high photoresponse of perovskite nanowire/copper phthalocyanine heterostructured photodetector |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |