CN111739963A - 一种硅基宽光谱光电探测器的制备方法 - Google Patents

一种硅基宽光谱光电探测器的制备方法 Download PDF

Info

Publication number
CN111739963A
CN111739963A CN202010525007.0A CN202010525007A CN111739963A CN 111739963 A CN111739963 A CN 111739963A CN 202010525007 A CN202010525007 A CN 202010525007A CN 111739963 A CN111739963 A CN 111739963A
Authority
CN
China
Prior art keywords
silicon
type
quantum dots
silicon substrate
doping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010525007.0A
Other languages
English (en)
Other versions
CN111739963B (zh
Inventor
郑理
周文
程新红
俞跃辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Institute of Microsystem and Information Technology of CAS
Original Assignee
Shanghai Institute of Microsystem and Information Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Institute of Microsystem and Information Technology of CAS filed Critical Shanghai Institute of Microsystem and Information Technology of CAS
Priority to CN202010525007.0A priority Critical patent/CN111739963B/zh
Publication of CN111739963A publication Critical patent/CN111739963A/zh
Application granted granted Critical
Publication of CN111739963B publication Critical patent/CN111739963B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/09Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • H01L31/1812Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table including only AIVBIV alloys, e.g. SiGe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种硅基宽光谱光电探测器的制备方法,包括:将n型掺杂硅衬底清洗;在所述n型掺杂硅衬底底侧进行掺杂,形成N+区域;在所述N+区域底侧沉积金属接触材料,然后经过退火使所述金属接触材料与对应区域的所述顶层硅反应形成金属硅化物;在所述n型掺杂硅衬底顶侧进行钝化,形成钝化层;在所述钝化层表面形成n型/p型双层量子点;在所述量子点表面形成图形化透明电极。该方法制备得到的探测器从可见光到红外光均有高探测效率,并且可以与Si基CMOS集成电路相兼容,而且不会对衬底造成污染。

Description

一种硅基宽光谱光电探测器的制备方法
技术领域
本发明属于光电探测器制备领域,特别涉及一种硅基宽光谱光电探测器的制备方法。
背景技术
红外探测对环境的适应性优于可见光,可在夜间及恶劣环境下工作,且红外探测隐蔽性好,比雷达和激光探测更安全,对伪装目标识别率更高。与雷达系统相比,红外系统具有体积小、重量轻、功耗低等优点,因此在军事上红外探测可应用于红外夜视、红外制导、红外侦查等方面。红外探测技术不仅在军事方面有很多应用,通过对军事领域中的先进研究成果进行转换和工艺改进之后,红外探测器在民用领域中也有了广泛的应用,红外探测也可应用于健康监控、光通讯及三维目标识别等方面。
但是,红外探测系统由于使用区域不同、气候温度改变、目标伪装,红外诱饵释放等原因,会导致单一波段的探测系统获取信息的减弱,特别是当运动中的目标自身发生改变时,其红外辐射峰值波长将发生移动,将导致红外探器探测准确度大幅度下降甚至很可能根本无法探测到目标。为解决上述问题,可将红外光探测系统探测波长拓展至可见光范围内,实现宽波段光谱探测,目前的解决方案是采用两款芯片,即同时使用硅光电探测芯片(400-1100nm)和InGaAs光电探测芯片(900-1700nm),但这一举措不仅增加成本、降低芯片集成度,而且在某些特殊应用如高光谱数据立方体中,分立探测器测量的光谱较难圆滑衔接。因此,将单一光探测器探测范围由可见光拓展至红外波段,实现宽波段探测具有十分重要的意义。
硅基CMOS集成电路工艺是先进半导体技术的主体,但硅材料受其禁带宽度限制,使得硅基光电探测器无法探测1100nm以上波长的光波,因此如何将红外探测集成到硅材料上是实现宽光谱传感与硅基集成电路结合的前提。为实现硅基红外集成,最初红外探测芯片是在硅基表面外延Ge或InGaAs等Ⅲ-Ⅴ族材料以拓宽该体系对光谱的吸收范围,但外延生长不仅增加了工艺的复杂性,还不可避免地会对硅衬底引入污染或掺杂。近年,黑硅被证实是一种有效的红外传感材料,黑硅制备过程中激光造成的微纳米非晶态缺陷会引入了较多的电子复合损耗,因此黑硅红外探测器探测率较低(10-2-10-1A/W)。胶体量子点是一类优异的红外及可见光吸收材料,它主要有以下几个优点:(1)具有优异的红外及可见光捕获能力并可以通过量子限制效应调节吸收截止波长;如PbS量子点的吸收波长理论值可从200nm拓宽至2400nm;(2)可通过溶液法进行合成,并用旋涂等低成本手段进行器件制作,易于和其它材料集成;(3)可通过调节其物理性能使其在常温下工作,不需要进行制冷,可以极大简化器件结构,降低成本。因此将胶体量子点与Si基衬底结合,有望制备出与现有集成电路相匹配的常温红外探测器。2015年,多伦多大学Sargent课题组利用碘甲烷钝化n型硅与p型胶体量子点界面,制备出纵向的光电探测器,获得了400-1300nm的响应,在1230nm光波长下,在0V偏压时,探测率为5×1010Jones。(Masala S,Adinolfi V,Sun J P,et al.TheSilicon:Colloidal Quantum Dot Heterojunction[J].Advanced Materials,2015,27(45):7445-7450.)
发明内容
本发明所要解决的技术问题是提供一种硅基宽光谱光电探测器的制备方法,以克服现有技术中光探测器从可见光到红外光探测效率低等缺陷。
本发明提供一种硅基宽光谱光电探测器的制备方法,包括:
(1)将n型掺杂硅衬底清洗,所述n型掺杂包括VA族元素掺杂;
(2)在所述n型掺杂硅衬底底侧进行掺杂,形成N+区域;
(3)在所述N+区域底侧沉积金属接触材料,然后经过退火使所述金属接触材料与对应区域的所述顶层硅反应形成金属硅化物;
(4)在所述n型掺杂硅衬底顶侧进行场效应钝化或者化学钝化,形成钝化层;
(5)在所述钝化层表面形成n型/p型双层量子点;
(6)在所述量子点表面形成图形化透明电极。
所述步骤(1)中衬底包括单晶硅或GeSi;n型掺杂包括P或者As元素掺杂;n型掺杂硅衬底厚度为0.1mm-1mm,电阻率为1-10Ω.cm。其中电阻率过大会使探测器响应度过低,而电阻率过小则会增大探测器的漏电流。
所述步骤(1)中清洗的方法包括:将n型掺杂硅衬底进行丙酮高温清洗、无水乙醇清洗、标准RCA工艺清洗中的至少一种,并用HF溶液(1:20(HF:H2O=1:20的体积比)进行漂洗,去除自然氧化层。
所述步骤(2)中掺杂采用高温扩散或者离子注入的方式;掺杂的元素为VA族元素(例如P、As)。
所述高温扩散的方式为:需要在硅衬底正面生长阻挡层SiO2或Si3N4,其厚度为100nm-1000nm,扩散温度为700-1200℃,扩散时间为5min-20min。
所述离子注入的方式为:注入能量为20keV-200keV,注入剂量为5×1014cm-2到5×1016cm-2,离子注入后,需在真空环境或惰性气氛保护下,将样品加热到600℃至1100℃,保持5秒至120秒后冷却降温,使注入离子激活并且减小损伤。
所述步骤(3)中金属接触材料包括Ti、Al、Ni、Ru、Ir、Au、Pt、Co、Ag及其合金中的一种。
所述步骤(3)中沉积的方式为电子束蒸发或测控溅射。
所述步骤(3)中退火的工艺参数为:在真空环境或惰性气氛保护下,将样品到300℃至800℃,保持30秒至3分钟后冷却降温,形成欧姆接触。
所述步骤(4)中场效应钝化包括:在硅表面沉积一层氧化层ZnO,TiO2或NiO2
所述沉积方式为化学方法、热注入法合成或溶液法旋涂。
所述化学方法为原子层沉积(ALD)、分子束外延(MBE)或化学气相沉积(CVD)。
所述沉积的厚度为1nm-30nm。
所述步骤(4)中化学钝化采用化学溶液进行处理,在硅与量子点表面引入电偶极子,所述化学溶液包括HF溶液、Br2溶液、I2溶液或有机溶液。
所述步骤(5)中量子点的材料为PbS、PbSe、HgTe、ZnO、HgCrTe中的一种或者几种。
所述步骤(5)中量子点的生长方式为原子层沉积ALD、分子束外延MBE、化学气相沉积CVD、热注入法或溶液法旋涂。
所述步骤(5)中p型量子点包括对量子点材料掺杂形成或者对溶液法形成胶体量子点进行配体交换而得。优选地,p型量子点为溶液法形成的PbS胶体量子点用EDT(1-2-乙二硫醇)进行配体交换而得。
所述步骤(5)中p型量子点厚度为20nm-100nm。
所述步骤(5)中n型量子点包括对量子点材料掺杂形成或者对溶液法形成胶体量子点进行配体交换而得。优选地,n型量子点为溶液法形成的PbS胶体量子点用TBAI(四丁基碘化铵)进行配体交换而得。
所述步骤(5)中n型厚度分别为100nm-250nm。
所述步骤(6)中图形化透明电极材料为从可见光到红外光均有高透过率的导电材料,所述导电材料包括ITO,IZO或有机导电材料。
所述步骤(6)中图形化透明电极厚度为50nm-200nm。
所述步骤(6)中图形化方法包括硬掩模、光刻剥离工艺或刻蚀工艺。
本发明提供了一种上述方法制备得到的硅基宽光谱光电探测器。
本发明还提供一种上述方法制备得到的硅基宽光谱光电探测器的应用。
本发明中n型/p型双层量子点也可以换成单层量子点,若用单层量子点,则在探测器内部相比于双层电场强度会降低,所以没有双层量子点的效率更高。
本发明硅衬底进行掺杂形成N+区域,是为了与金属形成欧姆接触,作为二极管的一个衬底。并且在硅与量子点之间提出了不同的钝化方法,可以极大提升器件效率。本发明需要顶层透明电极,透明电极目的是光可以透过透明电极入射到器件中。
本发明原理是载流子从量子点渡越到硅中,然后在硅中输运,从底电级抽取形成光电流。
有益效果
本发明主要应用在利用量子点对从可见光到红外光均有很好的吸收的优势,与硅形成异质结。并对于硅与量子点的界面进行钝化,使得光生载流子可以在器件中自由输运。制备得到的探测器从可见光到红外光均有高探测效率,并且可以与Si基CMOS集成电路相兼容,而且不会对衬底造成污染。
附图说明
图1为本发明硅基宽光谱光电探测器的制备过程示意图,其中,10为n型掺杂硅衬底,20为N+区域,30为金属硅化物,40为钝化层,50/51为n型/p型双层量子点,60为图形化透明电极。
图2为本发明实施例1中探测器在(a)0偏和(b)反偏时的外量子效率与波长关系曲线。(图中10nm是指钝化层氧化锌的厚度)
图3为本发明实施例1中探测器在反偏时的探测率与波长关系曲线。
图4为对比例1中纵向探测器的探测效率图,其中(a)为7V情况下的外量子效率,(b)为0V和7V下的探测率与响应度,(c)为探测参数的列表。
具体实施方式
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。
硅衬底来源:苏州晶湛半导体有限公司;所用药品来源:氢氟酸:上海凌峰化学试剂有限公司;四丁基碘化铵(TBAI):上海阿拉丁生化科技股份有限公司;1,2-乙二硫醇(EDT):北京百灵威科技有限公司;ITO导电玻璃:武汉晶格太阳能科技公司;所有药品未进行二次提纯,均在合成过程和器件的制备过程中直接使用。
实施例1
本实施例提供了一种硅基宽光谱光电探测器的制备方法,具体步骤如下:
(1)提供n型掺杂硅衬底,该衬底为P掺杂的半导体(Si),100晶面,选择厚度为0.5mm,电阻率1-10Ω.cm;为合适的硅衬底进行标准RCA工艺清洗,并用1:20(HF:H2O=1:20的体积比)的HF溶液进行漂洗,去除自然氧化层;
(2)在硅衬底底侧进行掺杂P离子,掺杂浓度为5×1015cm-2,掺杂能量为20keV,形成N+区域并在1000℃下退火5s消除晶格损伤(需在真空环境或惰性气氛保护下进行);
(3)在N+区域底侧用电子束蒸发沉积金属接触材料Al,厚度为100nm,然后经过400℃下退火(需在真空环境或惰性气氛保护下进行)30s,在硅表面使金属硅反应形成金属硅化物;
(4)在硅顶侧进行场效应钝化,通过溶液旋凃法沉积一层ZnO层,沉积的厚度为10nm,形成钝化层;
(5)在钝化层表面形成n型/p型双层量子点;其中n型量子点为溶液法形成的PbS胶体量子点用TBAI(四丁基碘化铵)进行配体交换而得,厚度为150nm,p型量子点为溶液法形成的PbS胶体量子点用EDT(1-2-乙二硫醇)进行配体交换而得,厚度为25nm;
(6)在量子点表面通过常温磁控溅射形成ITO材料,其厚度为120nm,并且通过硬掩模工艺进行图形化。
图2表明:探测器在从可见光到1600nm波长下均有好的响应,在1490nm下EQE有一个峰值,在反偏时其红外区域最高EQE为20%。
图3表明:探测器在1490nm的波长下其有ZnO场钝化其探测率为4×1011Jones。
实施例2
(1)提供n型掺杂硅衬底,该衬底包括,P掺杂的Si,100晶面,选择厚度为0.5mm,电阻率1-10Ω.cm;为合适的硅衬底进行标准RCA工艺清洗,并用1:20(HF:H2O=1:20的体积比)的HF溶液进行漂洗,去除自然氧化层;
(2)在硅衬底正面生长通过CVD法生长阻挡层SiO2,其厚度为500nm;
(3)对硅片进行扩散,扩散温度为700℃,扩散时间为5min,扩散炉子需要用惰性气体进行保护;
(4)用1:10(HF:H2O=1:10的体积比)的HF溶液将SiO2漂洗掉,处理时间约10分钟;
(3)在N+区域底侧用电子束蒸发沉积,金属接触材料Al,厚度为100nm,然后在真空环境或惰性气氛保护下经过400℃下退火,时间为30s,在硅表面使金属硅反应形成金属硅化物;
(4)在硅顶侧进行场效应钝化,通过溶液旋凃法沉积一层ZnO层,沉积的厚度为10nm,形成钝化层;
(5)在钝化层表面形成n型/p型双层量子点;其中n型量子点为溶液法形成的PbS胶体量子点用TBAI(四丁基碘化铵)进行配体交换而得,厚度为150nm,p型量子点为溶液法形成的PbS胶体量子点用EDT(1-2-乙二硫醇)进行配体交换而得,厚度为25nm;
(6)在量子点表面通过常温磁控溅射形成ITO材料,其厚度为120nm,并且通过硬掩模工艺进行图形化。
实施例3
(1)提供n型掺杂硅衬底,该衬底包括,P掺杂的Si,100晶面,选择厚度为0.5mm,电阻率1-10Ω.cm;为合适的硅衬底进行标准RCA工艺清洗,并用1:20(HF:H2O=1:20的体积比)的HF溶液进行漂洗,去除自然氧化层;
(2)在硅衬底底侧进行掺杂P离子,掺杂浓度为5×1015cm-2,掺杂能量为20keV,形成N+区域并在1000℃下在真空环境或惰性气氛保护下退火5s消除晶格损伤;
(3)在N+区域底侧用电子束蒸发沉积,金属接触材料Al,厚度为100nm,然后在真空环境或惰性气氛保护下经过400℃下退火,时间为30s,在硅表面使金属硅反应形成金属硅化物;
(4)在硅顶侧进行化学钝化:将衬底置于乙醚:碘甲烷体积比为1:9的溶液中,处理时间为20分钟,并且在处理过程中用265nm紫外光照射;
(5)在表面形成n型/p型双层量子点;其中n型量子点为溶液法形成的PbS胶体量子点用TBAI(四丁基碘化铵)进行配体交换而得,厚度为100nm,p型量子点为溶液法形成的PbS胶体量子点用EDT(1-2-乙二硫醇)进行配体交换而得,厚度为50nm;
(6)在量子点表面通过常温磁控溅射形成ITO材料,其厚度为120nm,并且通过光刻剥离的方法进行图形化。
实施例2和与实施例1的效果类似,均是通过硬淹模的方式进行图形化,其透明电极的面积不可能做的很小,所以单个器件面积很大。实施例3通过光刻的方法可以进行图形化,可以减小器件面积,获得更低的暗电流与更高的探测率。
对比例1
本对比例来源于参考文献(Advanced Materials,2015,27(45):7445-7450),制备了一种Si与胶体量子点结合的纵向探测器,其制备的流程如下:
(1)选择p型的硅衬底,掺杂浓度与厚度未知,将此衬底进行标准RCA工艺进行清洗,用氨水:过氧化氢:水体积比为1:1:5的比例在80℃下漂洗15分钟,并且用浓度为2%的HF进行漂洗;
(2)用2%的HF或者I2或者碘甲烷或者Br2钝化表面,在用碘甲烷进行处理的时候将晶圆浸入溶液中在乙醚中暴露于紫外光(254nm)下20分钟;
(3)表面形成n型量子点,PbS胶体量子点用TBAI(四丁基碘化铵)进行配体交换而得,厚度为150nm;
(4)沉积30nm AZO和200nm的ITO形成电极;
(5)用热蒸发形成Al 150nm,用硬掩模形成,并且在450℃退火15分钟。
本对比例纵向探测器的探测效率如图4所示。
参考文献(Advanced Materials,2015,27(45):7445-7450)与本发明的比较:
1.原理:本发明采用了叠层的量子点结构与硅衬底结合,整个纵向结构包括量子点之间的pn结与量子点与硅之间的异质结,有助于增加耗尽区,提高探测效率。而文献中关键部位是p型硅与n型量子点中的异质结构;
2.本发明强调可以从可见光一直拓展到近红外,甚至到2000nm,给出的实例中探测波长到1500nm,并且在小偏压下可以实现好的探测(0.25V),而参考文献中只探测到1230nm红外光,并且需要加很高的电压才能实现高的探测率(7V);
3.本发明采用n型硅衬底,文献中采用p型衬底;
4.本发明采用n型/p型叠层量子点结构,文献中采用n型量子点;
5.本发明为了减小肖特基势垒,进行离子注入或者热扩散,文献中没有采用;
6.本发明实例中采用场钝化的方法,文献中仅仅采用化学钝化;
7.本发明中采用光刻等图形化透明电极区域,可以将透明电极与胶体量子点接触面积变小,从而减小漏电流,文献中没有采用。

Claims (10)

1.一种硅基宽光谱光电探测器的制备方法,包括:
(1)将n型掺杂硅衬底清洗,所述n型掺杂包括VA族元素掺杂;
(2)在所述n型掺杂硅衬底底侧进行掺杂,形成N+区域;
(3)在所述N+区域底侧沉积金属接触材料,然后经过退火使所述金属接触材料与对应区域的所述顶层硅反应形成金属硅化物;
(4)在所述n型掺杂硅衬底顶侧进行场效应钝化或者化学钝化,形成钝化层;
(5)在所述钝化层表面形成n型/p型双层量子点;
(6)在所述量子点表面形成图形化透明电极。
2.根据权利要求1所述方法,其特征在于,所述步骤(1)中衬底包括单晶硅或GeSi;n型掺杂包括P或者As元素掺杂;n型掺杂硅衬底厚度为0.1mm-1mm,电阻率为1-10Ω.cm。
3.根据权利要求1所述方法,其特征在于,所述步骤(1)中清洗的方法包括:将n型掺杂硅衬底进行丙酮高温清洗、无水乙醇清洗、标准RCA工艺清洗中的至少一种,并用HF溶液进行漂洗。
4.根据权利要求1所述方法,其特征在于,所述步骤(2)中掺杂采用高温扩散或者离子注入的方式;掺杂的元素为VA族元素。
5.根据权利要求1所述方法,其特征在于,所述步骤(3)中金属接触材料包括Ti、Al、Ni、Ru、Ir、Au、Pt、Co、Ag及其合金中的一种;沉积的方式为电子束蒸发或测控溅射;退火的工艺参数为:在真空环境或惰性气氛保护下,将样品到300℃至800℃,保持30秒至3分钟后冷却降温,形成欧姆接触。
6.根据权利要求1所述方法,其特征在于,所述步骤(4)中场效应钝化包括:在硅表面沉积一层氧化层ZnO,TiO2或NiO2;化学钝化包括用HF溶液、Br2溶液、I2溶液或有机溶液进行处理,在硅与量子点表面引入电偶极子。
7.根据权利要求1所述方法,其特征在于,所述步骤(5)中量子点的材料为PbS、PbSe、HgTe、ZnO、HgCrTe中的一种或者几种;量子点的生长方式为原子层沉积ALD、分子束外延MBE、化学气相沉积CVD、热注入法或溶液法旋涂。
8.根据权利要求1所述方法,其特征在于,所述步骤(6)中图形化透明电极材料为从可见光到红外光均有高透过率的导电材料,所述导电材料包括ITO,IZO或有机导电材料;图形化透明电极厚度为50nm-200nm;图形化方法包括硬掩模、光刻剥离工艺或刻蚀工艺。
9.一种如权利要求1所述方法制备得到的硅基宽光谱光电探测器。
10.一种如权利要求1所述方法制备得到的硅基宽光谱光电探测器的应用。
CN202010525007.0A 2020-06-10 2020-06-10 一种硅基宽光谱光电探测器的制备方法 Active CN111739963B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010525007.0A CN111739963B (zh) 2020-06-10 2020-06-10 一种硅基宽光谱光电探测器的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010525007.0A CN111739963B (zh) 2020-06-10 2020-06-10 一种硅基宽光谱光电探测器的制备方法

Publications (2)

Publication Number Publication Date
CN111739963A true CN111739963A (zh) 2020-10-02
CN111739963B CN111739963B (zh) 2022-07-22

Family

ID=72648751

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010525007.0A Active CN111739963B (zh) 2020-06-10 2020-06-10 一种硅基宽光谱光电探测器的制备方法

Country Status (1)

Country Link
CN (1) CN111739963B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180538A (zh) * 2021-11-29 2022-03-15 江苏大学 一种P型PbSe光电薄膜的敏化方法

Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065143A (ja) * 2008-08-08 2009-03-26 Technical Research & Development Institute Ministry Of Defence 光半導体装置
CN103746006A (zh) * 2014-01-23 2014-04-23 通用光伏能源(烟台)有限公司 一种晶体硅太阳能电池的钝化层及其钝化工艺
CN104934500A (zh) * 2015-05-18 2015-09-23 润峰电力有限公司 一种选择性发射极的背钝化晶体硅太阳能电池的制备方法
EP2975652A1 (en) * 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
EP2999010A1 (en) * 2013-05-13 2016-03-23 University-Industry Cooperation Group of Kyung Hee University Graphene quantum dot photodetector and manufacturing method therefor
CN106601857A (zh) * 2016-11-22 2017-04-26 浙江大学 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN107275421A (zh) * 2017-06-07 2017-10-20 华中科技大学 一种量子点光电探测器及其制备方法
US20180013022A1 (en) * 2013-03-28 2018-01-11 University Of Massachusetts Backside Configured Surface Plasmonic Structure for Infrared Photodetector and Imaging Focal Plane Array Enhancement
CN108091721A (zh) * 2017-12-11 2018-05-29 阜阳师范学院 一种用于硅基光电集成电路芯片中的光电探测器及制备方法
CN109065639A (zh) * 2018-06-22 2018-12-21 晶澳(扬州)太阳能科技有限公司 N型晶体硅太阳能电池及制备方法、光伏组件
CN109494261A (zh) * 2018-10-19 2019-03-19 晶澳(扬州)太阳能科技有限公司 硅基太阳能电池及制备方法、光伏组件
JP2019047000A (ja) * 2017-09-04 2019-03-22 シャープ株式会社 量子ドット型赤外線検出器
CN109950332A (zh) * 2019-03-26 2019-06-28 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法
US20190245001A1 (en) * 2017-08-28 2019-08-08 Samsung Electronics Co., Ltd. Infrared detector and infrared sensor including the same
CN110190191A (zh) * 2019-05-21 2019-08-30 青岛理工大学 一种硫化钼/铯铅卤钙钛矿量子点光电探测器及制备方法
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
US10422699B1 (en) * 2018-04-12 2019-09-24 United States Of America As Represented By The Secretary Of The Air Force Plasmonic selective pyroelectric detection for laser warning
WO2019185846A1 (en) * 2018-03-29 2019-10-03 Koninklijke Philips N.V. X-ray radiation detector with a porous silicon interposer
CN110416332A (zh) * 2019-07-24 2019-11-05 中国科学院重庆绿色智能技术研究院 基于黑硅和量子点的Si-APD光电探测器及其制备方法
KR20190136402A (ko) * 2018-05-30 2019-12-10 서울대학교산학협력단 인공 시냅스 소자를 포함하는 인공 신경계 장치
CN110819341A (zh) * 2019-10-31 2020-02-21 上海集成电路研发中心有限公司 硫化铅量子点的制作方法、光电探测器及其制作方法
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法

Patent Citations (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009065143A (ja) * 2008-08-08 2009-03-26 Technical Research & Development Institute Ministry Of Defence 光半導体装置
US20180013022A1 (en) * 2013-03-28 2018-01-11 University Of Massachusetts Backside Configured Surface Plasmonic Structure for Infrared Photodetector and Imaging Focal Plane Array Enhancement
EP2999010A1 (en) * 2013-05-13 2016-03-23 University-Industry Cooperation Group of Kyung Hee University Graphene quantum dot photodetector and manufacturing method therefor
CN103746006A (zh) * 2014-01-23 2014-04-23 通用光伏能源(烟台)有限公司 一种晶体硅太阳能电池的钝化层及其钝化工艺
EP2975652A1 (en) * 2014-07-15 2016-01-20 Fundació Institut de Ciències Fotòniques Optoelectronic apparatus and fabrication method of the same
CN104934500A (zh) * 2015-05-18 2015-09-23 润峰电力有限公司 一种选择性发射极的背钝化晶体硅太阳能电池的制备方法
CN106601857A (zh) * 2016-11-22 2017-04-26 浙江大学 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN107275421A (zh) * 2017-06-07 2017-10-20 华中科技大学 一种量子点光电探测器及其制备方法
US20190245001A1 (en) * 2017-08-28 2019-08-08 Samsung Electronics Co., Ltd. Infrared detector and infrared sensor including the same
JP2019047000A (ja) * 2017-09-04 2019-03-22 シャープ株式会社 量子ドット型赤外線検出器
CN108091721A (zh) * 2017-12-11 2018-05-29 阜阳师范学院 一种用于硅基光电集成电路芯片中的光电探测器及制备方法
WO2019185846A1 (en) * 2018-03-29 2019-10-03 Koninklijke Philips N.V. X-ray radiation detector with a porous silicon interposer
US10422699B1 (en) * 2018-04-12 2019-09-24 United States Of America As Represented By The Secretary Of The Air Force Plasmonic selective pyroelectric detection for laser warning
KR20190136402A (ko) * 2018-05-30 2019-12-10 서울대학교산학협력단 인공 시냅스 소자를 포함하는 인공 신경계 장치
CN109065639A (zh) * 2018-06-22 2018-12-21 晶澳(扬州)太阳能科技有限公司 N型晶体硅太阳能电池及制备方法、光伏组件
CN109494261A (zh) * 2018-10-19 2019-03-19 晶澳(扬州)太阳能科技有限公司 硅基太阳能电池及制备方法、光伏组件
CN109950332A (zh) * 2019-03-26 2019-06-28 昆明理工大学 一种perc柔性石墨烯/硅太阳能电池的制备方法
CN110190191A (zh) * 2019-05-21 2019-08-30 青岛理工大学 一种硫化钼/铯铅卤钙钛矿量子点光电探测器及制备方法
CN110265504A (zh) * 2019-07-01 2019-09-20 哈尔滨工业大学 一种紫外光电探测器及其制备方法
CN110416332A (zh) * 2019-07-24 2019-11-05 中国科学院重庆绿色智能技术研究院 基于黑硅和量子点的Si-APD光电探测器及其制备方法
CN110819341A (zh) * 2019-10-31 2020-02-21 上海集成电路研发中心有限公司 硫化铅量子点的制作方法、光电探测器及其制作方法
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MASALA S,ADINOLFI V,SUN J P,ET AL: "The Silicon:Colloidal Quantum Dot Heterojunction", 《ADVANCED MATERIALS》 *
REN Z,SUN J,LI H,ET AL: "Bilayer PbS Quantum Dots for High-Performance Photodetectors", 《ADVANCED MATERIALS》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114180538A (zh) * 2021-11-29 2022-03-15 江苏大学 一种P型PbSe光电薄膜的敏化方法
CN114180538B (zh) * 2021-11-29 2023-09-26 江苏大学 一种P型PbSe光电薄膜的敏化方法

Also Published As

Publication number Publication date
CN111739963B (zh) 2022-07-22

Similar Documents

Publication Publication Date Title
Singh et al. Performance analysis of RF-sputtered ZnO/Si heterojunction UV photodetectors with high photo-responsivity
Hezel et al. Low‐temperature surface passivation of silicon for solar cells
Ashok et al. Spray-deposited ITO—Silicon SIS heterojunction solar cells
Chen et al. GaN metal-semiconductor-metal ultraviolet photodetectors with transparent indium-tin-oxide Schottky contacts
CN110047957B (zh) 一种中红外光探测器及其制备方法
Varache et al. Evolution of bulk c-Si properties during the processing of GaP/c-Si heterojunction cell
CN101271933A (zh) 量子点-阱红外探测器的结构及其制备方法
US7838330B1 (en) Method of field-controlled diffusion and devices formed thereby
CN112382688B (zh) 基于柔性的氧化镓/氮化镓结构的光电探测器及制备方法
Wang et al. Highly-rectifying graphene/GaN Schottky contact for self-powered UV photodetector
CN112164732B (zh) 一种紫外光电二极管及其制备方法
CN109285914A (zh) 一种AlGaN基紫外异质结光电晶体管探测器及其制备方法
Hou et al. Self-powered ZnO nanowire UV photodetector integrated with GaInP/GaAs/Ge solar cell
CN111739963B (zh) 一种硅基宽光谱光电探测器的制备方法
WO2023221714A1 (zh) 一种δ掺杂层制备方法及电子器件
CN108615782B (zh) 一种紫外探测器及其制造方法
Chen et al. Ultrahigh Responsivity β-Ga 2 O 3/BP Junction Field Effect Phototransistors for UV/IR Dual-Band Detection
CN100454585C (zh) Pin结构氮化镓基紫外探测器及其制作方法
Chou et al. A low cost n-SiCN/p-PS/p-Si heterojunction for high temperature ultraviolet detecting applications
CN114038926A (zh) 一种高增益平面型雪崩单光子探测器及其制备方法
Lin et al. Nanoscale-Thick a-Ga2O3 Films on GaN for High-Performance Self-Powered Ultraviolet Photodetectors
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
Hong et al. Back-contacted thin-film GaAs solar cells
Bakhtiary-Noodeh et al. Demonstration of uniform 6x6 GaN pin UV avalanche photodiode arrays
KR101517077B1 (ko) 고성능 투명 전극 소자 및 그 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant