CN110047957B - 一种中红外光探测器及其制备方法 - Google Patents

一种中红外光探测器及其制备方法 Download PDF

Info

Publication number
CN110047957B
CN110047957B CN201910255738.5A CN201910255738A CN110047957B CN 110047957 B CN110047957 B CN 110047957B CN 201910255738 A CN201910255738 A CN 201910255738A CN 110047957 B CN110047957 B CN 110047957B
Authority
CN
China
Prior art keywords
layer
silicon substrate
monocrystalline silicon
substrate
mid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910255738.5A
Other languages
English (en)
Other versions
CN110047957A (zh
Inventor
郑加金
张勇
李霄兰
徐香
刘晨昕
聂娟
余柯涵
韦玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN201910255738.5A priority Critical patent/CN110047957B/zh
Publication of CN110047957A publication Critical patent/CN110047957A/zh
Application granted granted Critical
Publication of CN110047957B publication Critical patent/CN110047957B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)

Abstract

本发明揭示了一种中红外光探测器及其制备方法,该光探测器包括单晶硅衬底、绝缘层、连续的石墨烯层、量子点层以及覆盖量子点上的纳米光栅接触电极;所述单晶硅衬底、绝缘层、连续的石墨烯层、量子点层以及覆盖量子点上的纳米光栅接触电极均布设在一PVC衬底基片上。该器件由周期性的纳米光栅阵列构成,其对入射光束的耦合作用可以有效地改善石墨烯光电探测器件弱光吸收的缺点,且制备得到的光电探测器对中红外波段的光谱有明显的吸收,有较高的光响应率。

Description

一种中红外光探测器及其制备方法
技术领域
本发明涉及一种中红外光探测器及其制备方法,可用于光电探测技术领域。
背景技术
石墨烯作为一种二维材料,由于其扁平的单层碳原子具有超高强度和自由载流子迁移率,引起了人们的广泛关注。石墨烯纳米结构已用于电子和光子学的硅基平台兼容。许多研究人员已经研究了基于石墨烯纳米结构的光电器件,包括光电探测器、光调制器、光限制器等,其主要目标是获得更高的光电流,从而获得更好的效率。尽管石墨烯具有这些特殊的性质,但其低光吸收和短载流子寿命限制了石墨烯光电探测器的响应,所以克服石墨烯的不足并提高光电探测器件的性能成为了目前的主要研究方向。
量子点(QD)具有优异的光学和电学性能,这使得人们对下一代光电子器件,如发光二极管、光电探测器、场效应晶体管和光伏技术进行了广泛的研究。量子点和石墨烯的结合充分利用了量子点的可调谐、强光吸收和石墨烯的高导电性,使得混合型石墨烯/量子点光电探测器实现了超高响应。物联网和国防技术的发展迫切需要一种能够在宽带波长范围内工作的高性能光电探测器,特别是覆盖中红外(MIR)区域的光电探测器。
石墨烯和量子点(QD)是用于制造高性能光电探测器的新材料中的关键角色。但是,目前的量子点与石墨烯组成的异质结的光电探测器只能探测紫外以及可见光范围内的光,很少的异质结光探测器可以对近红外甚至中红外波段的光进行探测,所以,将石墨烯与量子点形成的异质结光电探测器的研究进一步推向中红外波段(MIR)的探测势在必行。
目前,大部分光电探测器对光响应的测试都会对源漏电极施加偏压以产生外建电场来帮助提取光生载流子,从而导致了暗电流较高,噪声干扰较大的情况,而石墨烯具有很高的载流子迁移率,即使在较小的电场下,也能够产生明显的光电流,对石墨烯晶体管的光响应测试,这是基于石墨烯的光探测器相比于传统半导体光探测器的优势之一。若能够使金属极间距离尽量小,则可以利用石墨烯这一特性实现无偏压提取光生载流子,避免外加偏置的噪声干扰,从而进一步优化光电探测器的响应性能。
发明内容
本发明的目的就是为了解决现有技术中存在的上述问题,提出一种中红外光探测器及其制备方法。
本发明的目的将通过以下技术方案得以实现:一种中红外光探测器,包括单晶硅衬底、绝缘层、连续的石墨烯层、量子点层以及覆盖量子点上的纳米光栅接触电极;所述单晶硅衬底、绝缘层、连续的石墨烯层、量子点层以及覆盖量子点上的纳米光栅接触电极均布设在一PVC衬底基片上。
优选地,所述纳米光栅接触电极包括纳米光栅接触漏极和纳米光栅接触源极,所述纳米光栅接触漏极、纳米光栅接触源极与源漏微电流计、电路开关、保护电阻、微电流计通过导线连接。
优选地,所述纳米光栅接触电极的周期为100~300nm,金属宽度为50~150nm,厚度为50nm;纳米光栅接触电极的尺寸面积为50×30~150×30μm2,纳米光栅接触漏极、纳米光栅接触源极为Ti/Au、Cu、Ag,纳米光栅接触漏极、纳米光栅接触源极的厚度为40~70nm。
优选地,所述单晶硅衬底为重掺杂P型或者重掺杂N型;单晶硅衬底尺寸为150×150μm2,单晶硅厚度为300μm。
优选地,所述绝缘层为二氧化硅绝缘层,所述二氧化硅绝缘层尺寸为150×100μm2,二氧化硅绝缘层的厚度为280~350nm。
优选地,所述连续的石墨烯层为单层或少层石墨烯层,连续的石墨烯层的厚度为0.335nm~1.005nm。
优选地,所述量子点层的厚度为30~60nm,量子点粒径为5~15nm。
优选地,所述量子点为CH3NH3PbI3、PbS、CH3NH3PbI2Br,所述量子点层为量子点光敏介质层,量子点光敏介质层为厚度为30nm,粒径为10nm的硫化铅量子点PbS QD。
本发明还揭示了一种中红外光探测器的制备方法,该方法包括以下步骤:
S1:提供PVC玻璃基片和重掺杂P型或重掺杂N型的Si基片,其中PVC玻璃基片用作制备的器件与电子器件的放置基板;
S2:对S1步骤的Si基片进行清洗并用氮气吹干,放置一块与Si基片同等厚度的基片,然后在两基片间覆盖一层玻璃片,然后利用热氧化法生长一层二氧化硅薄膜作绝缘层,所得的SiO2层面积小于Si基片的面积;
S3:将Ni作为粘附层与Cu膜一起直接蒸发到覆盖有氧化绝缘层的单晶硅片上,切开薄片用乙酸浸泡去除氧化铜,将样品放入低压化学气相沉积系统的反应室中生长石墨烯层;
S4:使用标准光刻技术刻蚀石墨烯外圈保证其绝缘性,之后用持续刷新的刻蚀溶液将Cu/Ni层去除;
S5:覆盖50×30~150×30μm2面积的纳米光栅阵列用作源漏接触电极,然后把量子点均匀的旋涂于石墨烯沟道上,形成光敏介质层,得到中红外光探测器;
S6:把制备完成的器件转移至提前准备好的PVC玻璃基片上,然后用导线将源漏栅极引出,与电子器件相连。
本发明采用以上技术方案与现有技术相比,具有以下技术效果:该器件由周期性的纳米光栅阵列构成,其对入射光束的耦合作用可以有效地改善石墨烯光电探测器件弱光吸收的缺点,且制备得到的光电探测器对中红外波段的光谱有明显的吸收,有较高的光响应率。
该光探测器基于重掺杂单晶硅衬底、二氧化硅绝缘层、连续的大面积的石墨烯层、量子点(QD)层以及覆盖其上的纳米光栅接触电极的混合结构。为了更好的让器件对照射光束的强吸收,本发明联合利用了周期性纳米光栅阵列的对入射光束的耦合作用和QD对光子的高效吸收作用。为了实现中红外光谱的探测,本器件采用了QD和SLG(single layergraphene)形成的异质结,通过QD对中红外波段(MIR)的光子的高效吸收和SLG的高载流子迁移率来得到对MIR波段有高响应率的光电探测器。
附图说明
图1为本发明的一种中红外光探测器的三维示意图。
图2为本发明的一种中红外光探测器的俯视图。
图3为本发明的一种中红外光探测器的截面图。
图4为本发明的中红外光照射探测器光电流图。
图1中的附图标号为:1、单晶硅衬底,2、二氧化硅绝缘层,3、纳米光栅接触漏极,4、连续的石墨烯层,5、量子点层,6、纳米光栅接触源极,7、栅压表,8、源漏微电流计,9、电路开关,10、保护电阻,11、源漏电压表。
具体实施方式
本发明的目的、优点和特点,将通过下面优选实施例的非限制性说明进行图示和解释。这些实施例仅是应用本发明技术方案的典型范例,凡采取等同替换或者等效变换而形成的技术方案,均落在本发明要求保护的范围之内。
本发明揭示了一种中红外光探测器及其制备方法,一种中红外光探测器,如附图1所示,包括单晶硅衬底1、绝缘层2、连续的石墨烯层4、量子点层5以及覆盖量子点上的纳米光栅接触电极;所述单晶硅衬底1、绝缘层2、连续的石墨烯层4、量子点层5以及覆盖量子点上的纳米光栅接触电极均布设在一PVC衬底基片上。
所述纳米光栅接触电极包括纳米光栅接触漏极3和纳米光栅接触源极6,所述纳米光栅接触漏极、纳米光栅接触源极与源漏微电流计8、电路开关9、保护电阻10、微电流计11通过导线连接。
单晶硅衬底1作为中红外光探测器的底栅电极,引导线将其与纳米光栅接触源极6、栅压表7相连接;引导线将纳米光栅接触漏极3、纳米光栅接触源极6、源漏微电流计8、电路开关9、保护电阻10、源漏微电流计11串联在一起,组成回路电路。
所述纳米光栅接触电极的周期为100~300nm,金属宽度为50~150nm,厚度为50nm;纳米光栅接触电极的尺寸面积为50×30~150×30μm2,纳米光栅接触漏极、纳米光栅接触源极为Ti/Au、Cu、Ag,纳米光栅接触漏极、纳米光栅接触源极的厚度为40~70nm。所述的源漏电极为纳米光栅触点,此设计的优点在于可以耦合光束从而有效的提高石墨烯的光吸收并且使得光生载流子产生于纳米光栅附近,可以在其复合于石墨烯之前有效的提取,延长复合时间。
所述单晶硅衬底为重掺杂P型或者重掺杂N型;单晶硅衬底尺寸为150×150μm2,单晶硅厚度为300μm。所述绝缘层为二氧化硅绝缘层,所述二氧化硅绝缘层尺寸为150×100μm2,二氧化硅绝缘层的厚度为280~350nm。
所述连续的石墨烯层为单层或少层石墨烯层,连续的石墨烯层的厚度为0.335~1.005nm,所述连续的石墨烯层在蒸镀的铜膜上进行无转移直接生长,去除底层的铜膜,将这些石墨烯薄膜直接图案化为器件,得到迁移率高、电学力学特性良好且生长规模较大的石墨烯层。
所述量子点对中红外波段范围具有较好的光谱吸收,所述量子点为CH3NH3PbI3、PbS、CH3NH3PbI2Br。在本技术方案中,所述量子点优选为硫化铅量子点(PbS QD),其粒径为10nm。所述量子点层为量子点光敏介质层,量子点光敏介质层的厚度为30nm。根据下面的分析可得,所述量子点对中红外波段范围具有较好的光谱吸收。
本发明还揭示了一种中红外光探测器的制备方法,该方法包括以下步骤:
S1:提供PVC玻璃基片和重掺杂P型或重掺杂N型的Si基片,其中PVC玻璃基片用作制备的器件与电子器件的放置基板;
S2:对S1步骤的Si基片进行清洗并用氮气吹干,放置一块与Si基片同等厚度的基片,然后在两基片间覆盖一层玻璃片,然后利用热氧化法生长一层二氧化硅薄膜作绝缘层,所得的SiO2层面积小于Si基片的面积;
S3:将Ni作为粘附层与Cu膜一起直接蒸发到覆盖有氧化绝缘层的单晶硅片上,切开薄片用乙酸浸泡去除氧化铜,将样品放入低压化学气相沉积系统的反应室中生长石墨烯层;
S4:使用标准光刻技术刻蚀石墨烯外圈保证其绝缘性,之后用持续刷新的刻蚀溶液将Cu/Ni层去除;
S5:覆盖50×30~150×30μm2面积的纳米光栅阵列用作源漏接触电极,然后把量子点均匀的旋涂于石墨烯沟道上,形成光敏介质层,得到中红外光探测器;
S6:把制备完成的器件转移至提前准备好的PVC玻璃基片上,然后用导线将源漏栅极引出,与电子器件相连。
制备完成的器件及其电路图如图1所示,通过将光源照射在纳米光栅接触电极的沟道中,使用电路中的源漏微电流计可测得器件经光照前后的电流变化,从而得到器件的光响应性能。图2及图3分别为中红外光探测器的俯视图与截面图。
在本实施例当中,通过施加探测光源来检测上述所制得的中红外光探测器的光响应性能,所用光源为波长在1550nm附近且功率为1mW的激光器,在源漏电压表的电压稳定在1mV时,利用源漏微电流计记录每隔10S器件在光源照射下源漏电流的变化情况,结果如图4所示:图4中,横坐标time为时间,纵坐标photocurrent为纳米光栅接触源漏极的电流(后面简称源漏电流)。
在time为0到10S时,此时无光照,源漏电流由于源漏电压表施加的电压,其值稳定在5.53mA,之后用激光器对器件进行照射,源漏电流在9.87S到12.25S间,从5.53mA上升至5.82mA,并在持续照射的10S内保持稳定;在20S时撤出光照,源漏电流迅速下降,之后到达30S时趋于平缓,与起始无光照时的电流一致,为5.53mA,然后再使用激光器对其照射,如此反复多个周期,发现在光源照射下,器件的源漏电流变化稳定,光响应性能良好,能够实现对中红外波段的光谱进行探测。
该器件可以通过在制备的大面积的石墨烯层上覆盖的一层纳米光栅接触电极来增加石墨烯的光吸收并使得大部分光生载流子在靠近纳米光栅的地方产生,以便在石墨烯重新组合之前对其进行有效的提取,并且滴加量子点,依靠量子点对中红外谱的高吸收来使其与石墨烯形成的异质结实现对中红外波段的光子进行光探测。
该中红外光电探测器包括:单晶硅衬底,在所选衬底上通过热氧化法生长二氧化硅绝缘层;利用蒸镀的铜膜进行无转移连续生长的石墨烯层;覆盖纳米光栅阵列的源漏接触电极;均匀的旋涂于石墨烯沟道的量子点。
本发明利用在大面积石墨烯上制备周期性纳米光栅接触电极对入射光束的耦合作用,通过依靠量子点对中红外光波段的强吸收和石墨烯的高载流子迁移率,得到了在中红外波段具有高响应率的光电探测器。
本发明尚有多种实施方式,凡采用等同变换或者等效变换而形成的所有技术方案,均落在本发明的保护范围之内。

Claims (6)

1.一种中红外光探测器,其特征在于:包括单晶硅衬底、绝缘层、接触漏极、连续的石墨烯层、量子点层以及覆盖量子点上的纳米光栅接触源极;所述单晶硅衬底、绝缘层、接触漏极、连续的石墨烯层、量子点层以及覆盖量子点上的纳米光栅接触源极均布设在一PVC基片上;
所述纳米光栅接触源极的周期为100~300nm,宽度为50~150nm,厚度为50nm;纳米光栅接触源极的面积为50×30~150×30μm2,纳米光栅接触源极的材料为Ti、Au、Cu、Ag的一种;所述单晶硅衬底为重掺杂P型硅或者重掺杂N型硅;单晶硅衬底的面积为150×150μm2,单晶硅衬底厚度为300μm;所述绝缘层为二氧化硅绝缘层,所述二氧化硅绝缘层的面积为150×100μm2,二氧化硅绝缘层的厚度为280~350nm,所述二氧化硅绝缘层面积为单晶硅衬底面积的三分之二;
所述二氧化硅绝缘层通过热氧法制备,放置单晶硅衬底和同等厚度基片,将玻璃覆盖在单晶硅衬底和基片之间且玻璃固定在基片上,保证玻璃覆盖住单晶硅衬底的三分之一,使得所形成二氧化硅绝缘层面积小于单晶硅衬底的面积;将Ni作为粘附层与Cu膜一起直接蒸发到覆盖有二氧化硅绝缘层的单晶硅衬底上形成Cu/Ni层作为中红外光探测器的接触漏极,切开单晶硅衬底用乙酸浸泡去除表面氧化铜,将单晶硅衬底放入低压化学气相沉积系统的反应室中生长石墨烯层。
2.根据权利要求1所述的中红外光探测器,其特征在于:所述接触漏极、纳米光栅接触源极与源漏微电流计、电路开关、保护电阻、微电流计通过导线连接。
3.根据权利要求1所述的中红外光探测器,其特征在于:所述连续的石墨烯层为单层或多层石墨烯层,连续的石墨烯层的厚度为0.335nm~1.005nm。
4.根据权利要求1所述的中红外光探测器,其特征在于:所述量子点层的厚度为30~60nm,量子点粒径为5~15nm。
5.根据权利要求4所述的中红外光探测器,其特征在于:所述量子点为CH3NH3PbI3、PbS、CH3NH3PbI2Br量子点的一种。
6.一种中红外光探测器的制备方法,其特征在于:该方法包括以下步骤:
S1:提供PVC基片和重掺杂P型或重掺杂N型单晶硅衬底,其中PVC基片用作制备中红外光探测器的放置基板;
S2:对S1步骤的单晶硅衬底进行清洗并用氮气吹干,放置一块与单晶硅衬底同等厚度的PVC基片位于单晶硅衬底的下方,在单晶硅衬底与PVC基片之间插入一层玻璃片,利用热氧化法在单晶硅衬底表面生长一层二氧化硅绝缘层,所得的二氧化硅绝缘层的面积小于单晶硅衬底的面积;
S3:将Ni作为粘附层与Cu膜一起直接蒸发到覆盖有二氧化硅绝缘层的单晶硅衬底上形成Cu/Ni层,切开单晶硅衬底用乙酸浸泡去除表面氧化铜,将单晶硅衬底放入低压化学气相沉积系统的反应室中生长石墨烯层;
S4:使用标准光刻技术刻蚀石墨烯层外圈保证其绝缘性,之后用持续更新的刻蚀溶液将石墨烯层外圈的Cu/Ni层去除;
S5:覆盖50×30~150×30μm2面积的纳米光栅阵列用作纳米光栅接触源极,然后把量子点均匀的旋涂于石墨烯层上,形成光敏介质层,得到中红外光探测器;
S6:把制备完成的中红外光探测器转移至PVC基片上,然后用导线将接触漏极和纳米光栅接触源极引出,与电子器件相连。
CN201910255738.5A 2019-04-01 2019-04-01 一种中红外光探测器及其制备方法 Active CN110047957B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910255738.5A CN110047957B (zh) 2019-04-01 2019-04-01 一种中红外光探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910255738.5A CN110047957B (zh) 2019-04-01 2019-04-01 一种中红外光探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110047957A CN110047957A (zh) 2019-07-23
CN110047957B true CN110047957B (zh) 2021-03-30

Family

ID=67275704

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910255738.5A Active CN110047957B (zh) 2019-04-01 2019-04-01 一种中红外光探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110047957B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110459631A (zh) * 2019-08-06 2019-11-15 岭南师范学院 一种近红外光电探测器件制造方法
CN110729348B (zh) * 2019-10-29 2021-01-08 中国科学院半导体研究所 一种红外传感器及其制备方法
CN111156912B (zh) * 2019-12-28 2020-11-13 浙江大学 一种基于柔性光电纳米薄膜的自驱动应变传感器
CN111610345B (zh) * 2020-06-04 2022-04-19 中国科学技术大学 一种远红外探测器及近场显微镜
CN111952396B (zh) * 2020-08-12 2024-06-07 南通大学 一种室温InAsSb纳米线中红外光电探测器及制备方法
CN112071927B (zh) * 2020-08-27 2022-08-19 深圳市奥伦德元器件有限公司 一种红外探测器及其制备方法
CN112086531B (zh) * 2020-09-07 2021-06-29 深圳市绿聚墨电子科技有限公司 应用于高灵敏度光电探测器的分子材料部件及其制作方法
CN112133777A (zh) * 2020-09-24 2020-12-25 南京邮电大学 一种核-壳结构量子点宽光谱光电探测器及其制备方法
CN114335235B (zh) * 2021-12-30 2022-11-22 中国科学院半导体研究所 一种智能光探测器及其使用方法和制备方法
CN115020516B (zh) * 2022-06-10 2023-07-07 云南师范大学 一种基于柔性石墨烯的光电探测装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI565087B (zh) * 2011-07-01 2017-01-01 劉鴻達 具有光電轉換元件的裝置、陣列裝置及液晶顯示器
CN103117316B (zh) * 2013-01-30 2015-08-05 中国科学院苏州纳米技术与纳米仿生研究所 基于超材料结构的石墨烯晶体管、光探测器及其应用
JPWO2014174866A1 (ja) * 2013-04-26 2017-02-23 浜松ホトニクス株式会社 光検出器
CN106601857B (zh) * 2016-11-22 2018-05-29 浙江大学 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
CN108281554B (zh) * 2018-01-26 2020-03-17 电子科技大学 一种量子点结构光电探测器及其制备方法

Also Published As

Publication number Publication date
CN110047957A (zh) 2019-07-23

Similar Documents

Publication Publication Date Title
CN110047957B (zh) 一种中红外光探测器及其制备方法
Ouyang et al. Enhancing the photoelectric performance of photodetectors based on metal oxide semiconductors by charge‐carrier engineering
Varshney et al. Current advances in solar-blind photodetection technology: Using Ga 2 O 3 and AlGaN
Kong et al. Graphene-β-Ga2O3 heterojunction for highly sensitive deep UV photodetector application
KR101430650B1 (ko) 광검출 소자
Manna et al. High efficiency Si/CdS radial nanowire heterojunction photodetectors using etched Si nanowire templates
KR101227600B1 (ko) 그래핀-나노와이어 하이브리드 구조체에 기반한 광센서 및 이의 제조방법
Silva et al. High-performance self-powered photodetectors achieved through the pyro-phototronic effect in Si/SnOx/ZnO heterojunctions
Ranjith et al. Facile construction of vertically aligned ZnO nanorod/PEDOT: PSS hybrid heterojunction-based ultraviolet light sensors: Efficient performance and mechanism
Yadav et al. Sol-gel-based highly sensitive Pd/n-ZnO thin film/n-Si Schottky ultraviolet photodiodes
KR101558801B1 (ko) 그래핀-실리콘 양자점 하이브리드 구조를 이용한 포토 다이오드 및 그 제조방법
Xu et al. Graphene GaN-based Schottky ultraviolet detectors
Huang et al. A self-powered ultraviolet photodiode using an amorphous InGaZnO/p-silicon nanowire heterojunction
Yan et al. A spiro-MeOTAD/Ga2O3/Si pin junction featuring enhanced self-powered solar-blind sensing via balancing absorption of photons and separation of photogenerated carriers
Hekmatikia et al. Graphene–silicon-based high-sensitivity and broadband phototransistor
Ferhati et al. Post-annealing effects on RF sputtered all-amorphous ZnO/SiC heterostructure for solar-blind highly-detective and ultralow dark-noise UV photodetector
JP2019036706A (ja) 二次元電子デバイスおよび関連する製造方法
Anitha et al. Large area ultraviolet photodetector on surface modified Si: GaN layers
Hwang et al. Enhancement of UV response and suppression of visible response of p-Si/n-ZnO heterojunction photodiodes via NiO and MgO insertion layers
Fidan et al. Junction area dependent performance of graphene/silicon based self-powered Schottky photodiodes
Jehad et al. CVD graphene/SiC UV photodetector with enhanced spectral responsivity and response speed
WO2019005909A1 (en) LOW VOLTAGE SENSITIVE VOLTAGE SUN ULTRAVIOLET BIPOLAR JUNCTION PHOTOTRANSISTOR HAVING GRAPHENE SCHOTTKY CONTACT / EPITAXIAL SIC
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
Hou et al. Self-powered ZnO nanowire UV photodetector integrated with GaInP/GaAs/Ge solar cell
Mukhokosi et al. Influence of device architectures and mobility on response/recovery time of metal halide perovskites: A review

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant