CN115020516B - 一种基于柔性石墨烯的光电探测装置 - Google Patents

一种基于柔性石墨烯的光电探测装置 Download PDF

Info

Publication number
CN115020516B
CN115020516B CN202210657278.0A CN202210657278A CN115020516B CN 115020516 B CN115020516 B CN 115020516B CN 202210657278 A CN202210657278 A CN 202210657278A CN 115020516 B CN115020516 B CN 115020516B
Authority
CN
China
Prior art keywords
metal layer
graphene film
quantum dot
carbon quantum
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210657278.0A
Other languages
English (en)
Other versions
CN115020516A (zh
Inventor
杨雯
郭江涛
杨培志
葛文
邓书康
王前进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yunnan Normal University
Original Assignee
Yunnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yunnan Normal University filed Critical Yunnan Normal University
Priority to CN202210657278.0A priority Critical patent/CN115020516B/zh
Publication of CN115020516A publication Critical patent/CN115020516A/zh
Application granted granted Critical
Publication of CN115020516B publication Critical patent/CN115020516B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02322Optical elements or arrangements associated with the device comprising luminescent members, e.g. fluorescent sheets upon the device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • H01L31/1085Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type the devices being of the Metal-Semiconductor-Metal [MSM] Schottky barrier type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及光电探测领域,具体提供了一种基于柔性石墨烯的光电探测装置,该装置由上到下依次包括:电极部和碳量子点颗粒、石墨烯薄膜、金属层、基底部。金属层为弯曲状,石墨烯薄膜与金属层贴合,电极部包括两个电极,两个电极分别固定设置于石墨烯薄膜的两端,碳量子点颗粒分布于两个电极之间,且与两个电极均不接触。本申请使用碳量子点颗粒为吸收物质,利用其对可见光的强吸收特性,本发明光电探测装置能够探测可见光波段的光信号。碳量子点颗粒取材多样,且制备简单,本发明光电探测装置的成本较低。弯曲状的石墨烯薄膜的峰、谷处的电场强度更强,能够快速分离更多的光生电子空穴对,最终使得电阻变化更大,本申请光电探测器的灵敏度更高。

Description

一种基于柔性石墨烯的光电探测装置
技术领域
本发明涉及光电探测领域,具体涉及一种基于柔性石墨烯的光电探测装置。
背景技术
光电探测装置是一种将光照转化为电流、电压等电信号的装置,通过探测到的电信号的变化,得到光照的变化,是光电转化技术中不可缺少的一部分。光电探测装置普遍应用于军事、化工、生物监测等领域,几乎无处不在,成为技术发展的重要部分。
现有的光电探测装置的种类较多,根据器件对辐射响应的方式不同或者说器件工作的机理不同,分为光子探测器和光热探测器。由于是利用光产生的热量引起电阻的改变探测光信号,光热探测器的响应速度较慢,探测的灵敏度较差,而光子探测器的灵敏度和响应速度较高。
一般来说,光子探测器的探测过程分为吸收、分离、传输三个过程。吸收物质吸收待测光信号的光子,产生光生电子空穴对,光生电子空穴对分离后的电子经过传输过程进入外电路,引起外电路电信号的变化。从而通过外电路电信号的变化达到探测光信号的目的。但是,现有的光子探测器存在以下问题:光电探测装置仅仅针对某一特定波长范围的光辐照灵敏,探测不同波段的光辐照时需要使用不同的光电探测装置;光子探测器的价格普遍较高;由于光生电子空穴对的分离效率较低,且未对传输过程进行改进,导致光子探测器的灵敏度难以进一步提升。
综上所述,现有的光电探测装置的吸收波段单一、成本较高、灵敏度难以进一步提升。
发明内容
为解决以上问题,本发明提供了一种基于柔性石墨烯的光电探测装置,本发明的技术构思是:吸收物质采用碳量子点颗粒,碳量子点颗粒对可见光具有较强的吸收,因此本发明光电探测装置对可见光波段的待测光信号均有加强的响应,即能够探测宽波段的待测光信号。碳量子点颗粒取材方便,且制备方法简单,能够有效降低本申请光电探测装置的成本,同时由于本发明光电探测装置能够探测宽波段的待测光信号,进一步降低了使用成本,即本申请光电探测装置的成本较低。石墨烯薄膜以及支撑石墨薄膜的金属层设置为弯曲状,一方面表面积增大,能够设置更多的碳量子点颗粒,对待测光信号的利用率更高,光电探测装置的光电响应更强,灵敏度更高;另一方面,弯曲状的石墨烯薄膜内的电场不均匀分布,由于弯曲状的峰、谷处曲率更大,使得石墨烯薄膜的峰、谷处的电场强度更强,这样对碳量子点颗粒内生成的光生电子空穴对的分离效果更好,能够快速分离更多的光生电子空穴对,使得本申请光电探测器的灵敏度更高。金属层除了支撑石墨烯薄膜,还参与电子的传输过程,并联的石墨烯薄膜和金属层共同传输电子,并联的电阻小于其中最小的电阻值,这样在待测光信号的作用下,本申请光电探测器的电阻变化的下限更小,因此提升探测的量程,同时,使得电阻的改变更大,金属层中的载流子浓度更大,其内电子分布的改变更加迅速,因此,本申请光电探测装置的灵敏度较高。所以,本申请光电探测装置的吸收波段较宽、成本较低、灵敏度较高。
本发明提供了一种基于柔性石墨烯的光电探测装置,该光电探测装置由下到上依次包括:基底部、金属层、石墨烯薄膜、电极部和碳量子点颗粒。基底部的材料为硅或氮化硅,用于支撑其他部件。基底部的一侧固定设置有金属层,金属层沿基底所在平面的投影面积与基底部相同,金属层的材料为铜,金属层是不平整的,金属层是弯曲状的,金属层弯曲的起伏和峰谷的间距为几十纳米到百微米,这样的弯曲程度既方便制备又能够使得金属层有明显的弯曲趋势,从而使得其上的石墨烯薄膜弯曲。金属层远离基底部一侧固定设置有石墨烯薄膜,石墨烯薄膜与金属层之间紧密接触,石墨烯薄膜同样是弯曲的,且弯曲状与金属层可以完全一致也不完全一致,具体地,石墨烯薄膜与金属层的弯曲状完全一致,石墨烯薄膜与金属层紧密接触,完全贴合,这样方便制备,且二者之间的接触电阻最小,有利于提升探测结果的准确度;石墨烯薄膜与金属层的弯曲状不完全一致,优选地,在金属层谷的位置处,石墨烯薄膜和金属层之间形成微纳米量级的空气间隙,更具体地,空气间隙为10-100nm,由于空气间隙不导电,电子沿空气间隙的四周分布,这使得电子的分布的变化更大,同时间隙处形成谐振腔,将透射过碳量子点颗粒的待测光和碳量子点颗粒产生的荧光局域在空气间隙内,多次振荡,使得空气间隙周围的电子分布的改变更大,从而电阻的变化更大,本发明光电探测装置的灵敏度较高。具体地,金属层和石墨烯薄膜通过化学气相沉积法得到,金属层为石墨烯薄膜生长过程的基底,这样金属层和石墨烯薄膜之间的接触更加紧密,接触电阻较小,探测结果较准确。石墨烯薄膜远离金属层一侧固定设置有电极部和碳量子点颗粒,电极部包括两个电极,分别固定设置于石墨烯薄膜的两端,利用蒸镀、光刻等技术制备;碳量子点颗粒固定设置于石墨烯薄膜远离金属层一侧的两个电极之间,利用滴涂或旋涂的方式制备。更具体地,电极的材料可以为Ni、Fe、Pb、Pt、Hg、Au、Pt-Au等;碳量子点颗粒的粒径为2-100nm,碳量子点颗粒2的间距为0-50nm。
更进一步地,石墨烯薄膜曲率较大的峰谷处的碳量子点颗粒中掺杂贵金属颗粒,材料为金或银,形状为球体,粒径与碳量子点颗粒的量级相同。这样,待测光照射下,贵金属颗粒的表面产生局域表面等离激元效应,光场能量局域在贵金属颗粒表面,强电场作用下,碳量子点颗粒中的光生电子空穴对的分离速度更快,装置的光电响应更快,灵敏度更高。
更进一步地,金属层靠近石墨烯薄膜一侧,设置有金属微纳结构,金属微纳结构的材料为金或银,金属微纳结构的形状为矩形,排布方式为与金属层贴合的周期排布,金属微纳结构尺寸为20-300nm,金属微纳结构的尺寸小于弯曲状金属层的起伏,这样才能够使得金属微纳结构与波浪形的金属层贴合。待测光或碳量子点颗粒的荧光的作用下,金属微纳结构的表面产生表面等离极化激元,周围产生强电场,使得石墨烯薄膜和金属层内的电子分布的改变更大,从而电阻的变化更大,本发明装置的灵敏度更高。同时,贵金属颗粒的局域表面等离激元和金属微纳结构表面等离极化激元之间相互耦合,使得本发明装置的灵敏度进一步提高。
本发明的有益效果:本发明光电探测装置中,使用碳量子点颗粒为吸收物质,利用其强吸收特性和荧光特性,提升对待测光信号的利用率,同时使得本发明光电探测装置能够探测可见光波段的光信号。同时,由于碳量子点颗粒取材多样,且制备简单,本发明光电探测装置的成本较低。采用弯曲状的石墨烯薄膜,增大表面积,使得其上能够设置更多的碳量子点,增强对待测光信号的利用率,光电探测装置的光电响应更强,灵敏度更高;同时,弯曲状的石墨烯薄膜内的电场不均匀分布,石墨烯薄膜的峰、谷处的电场强度更强,这样对光生电子空穴对的分离效果更好,能够快速分离更多的光生电子空穴对,使得本申请光电探测器的灵敏度更高。并联的石墨烯薄膜和金属层共同传输电子,并联的电阻小于其中最小的电阻值,这样在待测光信号的作用下,本申请光电探测器的电阻变化的下限更小,这使得待测光信号作用时,本申请光电探测装置电阻的改变更大,金属层中的载流子浓度更大,其内电子分布的改变更加迅速,因此,本申请光电探测装置的灵敏度较高。所以,本申请光电探测装置的吸收波段较宽、成本较低、灵敏度较高。
以下将结合附图对本发明做进一步详细说明。
附图说明
图1是一种基于柔性石墨烯的光电探测装置的示意图;
图2是又一种基于柔性石墨烯的光电探测装置的石墨烯薄膜的峰谷处的局部示意图。
图中:1、电极部;2、碳量子点颗粒;3、石墨烯薄膜;4、金属层;5、基底部;6、贵金属颗粒。
具体实施方式
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结合附图及实施例对本发明的具体实施方式、结构特征及其功效,详细说明如下。
实施例1:
本发明提供了一种基于柔性石墨烯的光电探测装置,如图1所示,包括电极部1、碳量子点颗粒2、石墨烯薄膜3、金属层4、基底部5。基底部5用于支撑其他部件,基底部5的材料为硅或氮化硅,硅或氮化硅的表面平整且硬度较大,适合用作基底材料。基底部5的一侧固定设置有金属层4,金属层4覆盖基底部5,优选地,金属层4完全覆盖基底部5,这样能够提升装置的空间利用率。金属层4为金属薄膜,具体地,金属薄膜的材料可以为任意金属,优选地,金属层4的材料为金属铜,金属层4的厚度小于1mm,这样金属层4与石墨烯薄膜3之间的接触更加紧密,更具体地,金属层4是不平整的,即金属层4是弯曲状的,金属层4的平面上有多个起伏的峰和谷,且在金属层4的长和宽两个方向上均为弯曲状,即长和宽两个方向上均设置有多个峰谷,多个峰谷的形状和间距可以相同也可以不同,金属层4弯曲状的起伏及峰谷间距为微纳米量级,具体地,为几十纳米到百微米,这样能够使得与其紧密接触的石墨烯薄膜3具有相同的形状,同时几十纳米到百微米的尺寸与碳量子点颗粒2的尺寸相比,能够使得碳量子点颗粒2的排布具有明显的弯曲趋势,另外,弯曲的起伏和间距在上述尺寸范围,使得其上石墨烯薄膜3的表面积增加较多。弯曲状的金属层4通过在弯曲状的磨具上蒸镀金属材料得到,也可以通过粗糙的砂纸打磨得到。
金属层4远离基底部5的一侧固定设置有石墨烯薄膜3,石墨烯薄膜3与金属层4之间紧密接触,且严格贴合,即石墨烯薄膜3也是不平整的,石墨烯薄膜3为单层石墨烯,石墨烯薄膜3完全覆盖金属层4,即石墨烯薄膜3使弯曲的,与金属层4类似具有微纳米量级的起伏;这样能够有效增加石墨烯薄膜3的表面积,同时使得石墨烯薄膜3上的电场不均匀分布,具体地,弯曲石墨烯薄膜3的峰、谷处的电场较强。石墨烯薄膜3的弯曲状与金属层4的弯曲状可以完全一致也不完全一致,具体地,石墨烯薄膜3与金属层4的弯曲状完全一致,石墨烯薄膜3与金属层4紧密接触,完全贴合,这样方便制备,且二者之间的接触电阻最小,有利于提升探测结果的准确度;石墨烯薄膜3与金属层4的弯曲状不完全一致,优选地,在金属层4谷的位置处,石墨烯薄膜3和金属层4之间形成微纳米量级的空气间隙,更具体地,空气间隙为10-100nm,由于空气间隙不导电,电子沿空气间隙的四周分布,这使得电子的分布的变化更大,同时间隙处形成谐振腔,将透射过碳量子点颗粒2的待测光和碳量子点颗粒产生的荧光局域在空气间隙内,多次振荡,使得空气间隙周围的电子分布的改变更大,从而电阻的变化更大,本发明光电探测装置的灵敏度较高。石墨烯薄膜3采用化学气相沉积法制备,制备时,石墨烯的生长基底即为铜箔,本申请中的金属层4即为化学气相沉积过程中的生长基底,由于化学气相沉积法属于原子级别的制备方法,这样金属层4和石墨烯薄膜3之间紧密接触,且完全贴合,容易对金属层4和石墨烯薄膜3的弯曲程度形状进行调整;同时,金属层4和石墨烯薄膜3之间紧密接触,能够减少金属层4和石墨烯薄膜3之间的接触电阻,接触电阻的存在会使得载流子的传输速度较慢,从而影响光电探测装置的响应速度,因此,本申请光电探测装置的响应较快。上述空气间隙通过提前调整金属层4的形状实现,也可以预先在金属层4远离石墨烯薄膜3一侧施加应力实现。
石墨烯薄膜3远离金属层4一侧固定设置有电极部1和碳量子点颗粒2。具体地,电极部1包括两个电极,分别固定设置于石墨烯薄膜3的两端,用于和外电路形成回路,使得石墨烯薄膜3内存在电场,进而探测装置的电阻的变化,电极可以利用蒸镀、光刻等技术制备。同时电极与石墨烯薄膜3之间紧密接触,以减少接触电阻。电极的材料为导电性能较好的金属材料或金属复合材料,电极的材料可以为Ni、Fe、Pb、Pt、Hg、Au、Pt-Au等,两个电极的材料可以相同也可以不同。电极的形状可以为任意形状,具体地,电极的形状为长方体形状,这样方便制备,两个电极的形状可以相同也可以不同;对应地,两个电极的尺寸可以相同也可以不同,具体地,两个电极与石墨烯薄膜3接触的部分的总面积小于石墨烯薄膜3面积的20%,这样能够保证石墨烯薄膜3上有足够的面积用于设置碳量子点颗粒2,同时也能够保证电极与石墨烯薄膜3之间充分接触。碳量子点颗粒2固定设置于上述两个电极之间,且互相不接触,具体地,使用滴涂或旋涂的方式制备。由于石墨烯薄膜3为柔性石墨烯,表面积较大,这样在有限的空间内能够设置更多的碳量子点颗粒2,在待测光作用下产生更多的电子空穴对参与到光电探测的过程中,因此本申请光电探测装置的响应较大,灵敏度较高;另外,碳量子点颗粒1对可见光均具有较好的吸收特性,这样对待测光的利用率较高,能够产生更多的电子空穴对,进一步提升本发明装置的响应及灵敏度。
碳量子点颗粒2的粒径为2-100nm,碳量子点颗粒2的尺寸可以相同也可以不同,优选地,碳量子点颗粒2的尺寸不同,更优选地,任意相邻十个碳量子点颗粒2的粒径至少为七个不同的数值。由于碳量子点颗粒2的尺寸与碳量子点颗粒2的吸收波长和发出荧光的波长相关,且碳量子点颗粒2的尺寸的不均匀性较强;这样能够使得碳量子点颗粒2既能够有效吸收待测光,还能够产生荧光,同时产生的荧光能够被附近的碳量子点颗粒2吸收,从而进一步提升待测光的利用率,使得碳量子点颗粒2内产生更多的电子空穴对,参与到光电探测过程中,因此本申请光电探测装置的响应较大,灵敏度较高。同时,碳量子点颗粒2的制备方式多样,取材丰富,本申请光电探测装置的成本较低,所以,本申请光电探测器的性价比较高。
碳量子点颗粒2的间距为0-50nm,优选地,碳量子点颗粒2的间距为0-20nm,这样相同空间内能够设置更多的碳量子点颗粒2,同时距离较近使得碳量子点颗粒2产生荧光的强度的损耗较小,从而产生更多的电子空穴对参与到光电探测过程中,这样对待测光的利用率更高,本发明装置的光电探测装置的响应较强,探测灵敏度较高。碳量子点颗粒2可以为一层也可以为多层,不同位置处碳量子点颗粒2的层数可以相同也可以不同,优选地,在石墨烯薄膜3的峰谷处的碳量子点颗粒2为多层,具体地,为2-3层,其余位置处的碳量子点颗粒2为一层。由于石墨烯薄膜3为柔性石墨烯,在两电极施加电压后,石墨烯薄膜3的峰谷处电场较强,在峰谷处的近场区域电场强度较强,强的电场能够使得碳量子点颗粒2产生的光生电子空穴对快速分离,使得进入石墨烯薄膜3的电子更多,从而快速改变石墨烯薄膜3内的电子分布,使得本发明装置的电阻的改变较大,因此,本申请装置的灵敏度较高;这样一来,在石墨烯薄膜3峰谷处设置多层的碳量子点颗粒2能够使得更多的光生电子空穴对被快速分离,从而对装置的电阻的改变更大,进一步提升灵敏度;2-3层碳量子点颗粒2的厚度约为石墨烯薄膜3峰谷处近场电场的穿透深度,这样能够使得附近的碳量子点颗粒2产生的光生电子空穴对快速分离。峰谷处之外的石墨烯薄膜3上的电场方向沿柔性表面,这样使得其上的碳量子点颗粒2产生的光生电子空穴对更快的分离,提升装置的响应速度,进而提升灵敏度,因此本发明装置的响应较快、较强,即灵敏度较高。
应用时,两个电极分别连接外电路的正极和负极,形成电回路,用于探测电阻的变化,同时也用于分离碳量子点颗粒2产生的光生电子空穴对。待测光照射在本申请光电探测装置的碳量子点颗粒2上,碳量子点颗粒2中产生光生电子空穴对,由于碳量子点颗粒2对可见光吸收性能较好,且部分碳量子点颗粒2产生的荧光再次被周围的碳量子点颗粒2吸收,使得碳量子点颗粒2中产生较多的光生电子空穴对,从而本发明装置的响应较强,灵敏度较高。电子空穴对中的空穴被碳量子点颗粒2内的缺陷空位捕获,电子迁移到与碳量子点颗粒2紧密接触的石墨烯薄膜3内,使得石墨烯薄膜3内的电子分布发生变化,从而改变电阻,完成将光信号转化为电信号的任务,实现光电探测。石墨烯薄膜3内的电场分布不均匀,在峰谷处电场强度较强,其余位置电场方向沿石墨烯薄膜3的表面,这使得石墨烯薄膜3的电场能够加速电子空穴对的分离,使得电子更快地进入石墨烯薄膜3,从而改变电阻更快,因此本装置的响应较快,灵敏度较高。金属层4不仅仅支撑石墨烯薄膜3,金属层4是导体,且与石墨烯薄膜3紧密接触,因此,石墨烯薄膜3和金属层4共同传输电子,电子在金属层4和石墨烯薄膜3中分布的改变,使得通过电极探测到的电阻变化;金属层4与石墨烯薄膜3之间为原子量级的紧密接触,欧姆电阻极小,金属层4与石墨烯薄膜3电阻的变化均来自待测光的响应,因此本发明装置的准确率较高。若仅利用石墨烯薄膜3传输电子,由于石墨烯薄膜3为柔性石墨烯,其内电场分布不均匀性较强,探测到的电信号的稳定性较差,石墨烯薄膜3和金属层4共同用于传输电子时,由于金属层4中存在更多的自由电子,其分布的改变更加迅速,因此探测到的电信号的稳定性更强,且传输过程的加快也使得本装置的响应较快,灵敏度较高。
本发明装置中的碳量子点颗粒2取材方便,制备成本低,因此,本发明装置的性价比较高。另外,本发明中通过两电极形成的回路探测的电信号是回路中的电流、两电极间的电压等,均与金属层4与石墨烯薄膜3的电阻,即金属层4与石墨烯薄膜3中的电子分布密切相关,实质均相同。
实施例2:
在实施例1的基础上,如图2所示,石墨烯薄膜3的峰谷处的碳量子点颗粒2中掺杂贵金属颗粒,贵金属颗粒的材料为金或银,贵金属颗粒的粒径与碳量子点颗粒2的量级相同。在待测光照射下,贵金属颗粒表面产生局域表面等离激元效应,光场能量局域在贵金属颗粒的表面,在贵金属颗粒的表面附近产生强电场,强电场使得附近碳量子点颗粒3中的电子空穴对分离速度更快,使得装置的光电响应更快,灵敏度更高。
实施例3:
在实施例2的基础上,在金属层4远离基底部5一侧,设置有金属微纳结构,即在使用金属层4生长石墨烯薄膜3之前,先在其上通过刻蚀或蒸镀技术制备金属微纳结构。金属微纳结构的材料为金或银,金属微纳结构的形状为矩形,金属微纳结构尺寸为20-300nm,金属微纳结构的尺寸小于弯曲状金属层的起伏,这样才能够使得金属微纳结构与波浪形的金属层贴合。金属微纳结构周期排布,这样方便制备,相邻周期的间隔为200nm,这样能够防止相邻金属微纳结构之间产生耦合,从而造成能量的损失。金属微纳结构的形状为矩形阵列,这样的结构方便制备。由碳量子点颗粒2的间距泄露的待测光或碳量子点颗粒2产生的荧光透过石墨烯薄膜3照射在金属微纳结构上,在金属微纳结构上产生表面等离极化激元,光场能量集中在金属微纳结构上,周围产生强电场,电子在石墨烯薄膜3和金属层4内的分布和石墨烯薄膜3和金属层4之间的传输均改变,即产生的强电场使得石墨烯薄膜3和金属层4内的电子分布的改变更大,从而电阻的变化更大,因此本发明装置的灵敏度更高。
同时,石墨烯薄膜3为一层石墨烯,厚度约为1nm,这样金属层4峰谷处的金属微纳结构的表面等离极化激元,与石墨烯薄膜3峰谷处的贵金属颗粒的局域表面等离激元之间共振耦合,使得光场能量分布于二者之间,将更多的光场能量局域在石墨烯薄膜3中,形成振荡作用,使得石墨烯薄膜3和金属层4中的电场分布的不均匀性更强,这样一来,一方面,使得碳量子点颗粒2内的电子空穴对分离更快,提升响应速度,另一方面,由于耦合导致的不均匀电场的分布与石墨烯薄膜3峰谷处的贵金属颗粒的局域表面等离激元和金属微纳结构的表面等离极化激元密切相关,即贵金属颗粒的局域表面等离激元和金属微纳结构的表面等离极化激元的微小变化会引起石墨烯薄膜3和金属层4中的电场分布的剧烈变化,这使得石墨烯薄膜3和金属层4内的电子分布的改变更大,从而电阻的改变更大,因此,本发明装置的灵敏度较高。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (9)

1.一种基于柔性石墨烯的光电探测装置,其特征在于,所述装置包括电极部、碳量子点颗粒、石墨烯薄膜、金属层、基底部,所述金属层固定设置于所述基底部的一侧,所述金属层不平整,为弯曲状,包括多个波峰和波谷,所述石墨烯薄膜固定设置于所述金属层远离所述基底部一侧,所述石墨烯薄膜与所述金属层贴合,所述石墨烯薄膜与所述金属层贴合得不完全一致,所述电极部和所述碳量子点颗粒固定设置于所述石墨烯薄膜远离所述金属层一侧,所述电极部包括两个电极,所述两个电极分别固定设置于所述石墨烯薄膜的两端,所述碳量子点颗粒分布于所述两个电极之间,且与所述两个电极均不接触;其中,在所述金属层的波谷位置处,所述石墨烯薄膜和所述金属层之间形成微纳米量级的空气间隙。
2.如权利要求1所述的基于柔性石墨烯的光电探测装置,其特征在于:所述石墨烯薄膜为单层石墨烯。
3.如权利要求2所述的基于柔性石墨烯的光电探测装置,其特征在于:所述金属层和所述石墨烯薄膜弯曲的高度起伏为微纳米量级的起伏。
4.如权利要求3所述的基于柔性石墨烯的光电探测装置,其特征在于:所述金属层的材料为铜,所述金属层的厚度小于1mm。
5.如权利要求4所述的基于柔性石墨烯的光电探测装置,其特征在于:所述两个电极与所述石墨烯薄膜接触的部分的总面积小于所述石墨烯薄膜面积的20%。
6.如权利要求5所述的基于柔性石墨烯的光电探测装置,其特征在于:所述碳量子点颗粒在所述石墨烯薄膜上的分布不均匀。
7.如权利要求6所述的基于柔性石墨烯的光电探测装置,其特征在于:所述碳量子点颗粒的粒径为2-100nm。
8.如权利要求7所述的基于柔性石墨烯的光电探测装置,其特征在于:所述碳量子点颗粒的间距为0-50nm。
9.如权利要求8所述的基于柔性石墨烯的光电探测装置,其特征在于:所述电极部的材料为Ni、Fe、Pb、Pt、Hg、Au、Pt-Au中的一种。
CN202210657278.0A 2022-06-10 2022-06-10 一种基于柔性石墨烯的光电探测装置 Active CN115020516B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210657278.0A CN115020516B (zh) 2022-06-10 2022-06-10 一种基于柔性石墨烯的光电探测装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210657278.0A CN115020516B (zh) 2022-06-10 2022-06-10 一种基于柔性石墨烯的光电探测装置

Publications (2)

Publication Number Publication Date
CN115020516A CN115020516A (zh) 2022-09-06
CN115020516B true CN115020516B (zh) 2023-07-07

Family

ID=83074010

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210657278.0A Active CN115020516B (zh) 2022-06-10 2022-06-10 一种基于柔性石墨烯的光电探测装置

Country Status (1)

Country Link
CN (1) CN115020516B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3231768A1 (en) * 2016-04-13 2017-10-18 Nokia Technologies Oy An apparatus and method comprising a two dimensional channel material and an electrode comprising a conductive material with a coating of a two-dimensional material
CN107863416B (zh) * 2017-10-11 2019-07-16 昆明理工大学 一种柔性石墨烯硅太阳能电池的制备方法
KR102017717B1 (ko) * 2018-07-05 2019-10-21 한국과학기술연구원 웨어러블 투명 양자점 광센서 및 그 제조방법
CN110047957B (zh) * 2019-04-01 2021-03-30 南京邮电大学 一种中红外光探测器及其制备方法
CN110148642B (zh) * 2019-06-21 2024-06-11 广西师范大学 凹面阵列的石墨烯-金属异质结光电探测器
CN111223943A (zh) * 2020-01-17 2020-06-02 中国科学院上海技术物理研究所 一种基于碳量子点和石墨烯的光电探测器及制备方法
CN112701173B (zh) * 2020-12-24 2022-03-01 上海交通大学 一种石墨烯高灵敏度光电探测器及其制备方法
CN113540154B (zh) * 2021-06-25 2024-05-24 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺

Also Published As

Publication number Publication date
CN115020516A (zh) 2022-09-06

Similar Documents

Publication Publication Date Title
Yang et al. Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect
US7589880B2 (en) Apparatus and methods for manipulating light using nanoscale cometal structures
KR20140095553A (ko) 전자기 에너지 수집 장치, 시스템 및 방법
Liu et al. High performance MoO 3− x/Si heterojunction photodetectors with nanoporous pyramid Si arrays for visible light communication application
US9111838B2 (en) Method and apparatus for high resolution photon detection based on extraordinary optoconductance (EOC) effects
Ko et al. Fabrication and optimization of vertically aligned ZnO nanorod array-based UV photodetectors via selective hydrothermal synthesis
US20130134440A1 (en) High-resolution Parallel-detection Sensor Array Using Piezo-Phototronics Effect
JP2013534718A5 (zh)
JP6918631B2 (ja) 光検出素子
CN109494293A (zh) 太赫兹探测器及其制造方法
Rastialhosseini et al. Three-dimensional ZnO nanorods growth on ZnO nanorods seed layer for high responsivity UV photodetector
CN103972322B (zh) 光敏电阻
CN115020516B (zh) 一种基于柔性石墨烯的光电探测装置
Jayalakshmi et al. High-performance UV surface photodetector based on plasmonic Ni nanoparticles-decorated hexagonal-faceted ZnO nanorod arrays architecture
Jiang et al. Highly responsive ZnO nanorods array ultraviolet photodetectors modificated with reduced graphene oxide layer
CN110690313A (zh) 一种Si衬底MoS2近红外光探测器及制备方法
CN112510142A (zh) 一种基于硼烯的光热电转换薄膜器件及其制备方法
Tang et al. Photoelectric property modulation by nanoconfinement in the longitude direction of short semiconducting nanorods
CN109781251B (zh) 纳米金属平面尖光学探测器
Liu et al. Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances
Pacheco et al. Zero-biased and visible-blind UV photodetectors based on nitrogen-doped ultrananocrystalline diamond nanowires
CN110767769A (zh) 一种探测单元、超宽带光探测器及探测方法
Thahe et al. Photo-electrochemically synthesized light emtting nanoporous silicon based UV photodetector: influence of current density
CN112614903B (zh) 铅绘电极二维材料纸基GaS光电探测器及其制备方法
Liu et al. Solar-blind field-assisted NEA AlGaN heterojunction nanocone array photocathode

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant