CN112614903B - 铅绘电极二维材料纸基GaS光电探测器及其制备方法 - Google Patents
铅绘电极二维材料纸基GaS光电探测器及其制备方法 Download PDFInfo
- Publication number
- CN112614903B CN112614903B CN202011466009.3A CN202011466009A CN112614903B CN 112614903 B CN112614903 B CN 112614903B CN 202011466009 A CN202011466009 A CN 202011466009A CN 112614903 B CN112614903 B CN 112614903B
- Authority
- CN
- China
- Prior art keywords
- gas
- interdigital
- electrode
- lead
- dimensional material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000000463 material Substances 0.000 title claims abstract description 61
- 238000002360 preparation method Methods 0.000 title claims abstract description 16
- 239000010410 layer Substances 0.000 claims abstract description 33
- 239000000758 substrate Substances 0.000 claims abstract description 24
- 238000000576 coating method Methods 0.000 claims abstract description 20
- 239000011248 coating agent Substances 0.000 claims abstract description 16
- 239000010931 gold Substances 0.000 claims abstract description 13
- 239000007788 liquid Substances 0.000 claims abstract description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 9
- 229910002804 graphite Inorganic materials 0.000 claims abstract description 9
- 239000010439 graphite Substances 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims abstract description 7
- 239000011247 coating layer Substances 0.000 claims abstract description 6
- 238000001035 drying Methods 0.000 claims abstract description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910052737 gold Inorganic materials 0.000 claims abstract description 5
- 239000000725 suspension Substances 0.000 claims description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 6
- 238000001704 evaporation Methods 0.000 claims description 6
- 230000008020 evaporation Effects 0.000 claims description 4
- 238000005520 cutting process Methods 0.000 claims description 3
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000003756 stirring Methods 0.000 claims description 3
- 238000009210 therapy by ultrasound Methods 0.000 claims description 3
- 239000006228 supernatant Substances 0.000 claims description 2
- 238000002604 ultrasonography Methods 0.000 claims description 2
- 238000012360 testing method Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 4
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000013590 bulk material Substances 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 230000005855 radiation Effects 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 238000001069 Raman spectroscopy Methods 0.000 description 2
- 238000001237 Raman spectrum Methods 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000001548 drop coating Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000007770 graphite material Substances 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 238000009812 interlayer coupling reaction Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 238000000103 photoluminescence spectrum Methods 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y20/00—Nanooptics, e.g. quantum optics or photonic crystals
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y40/00—Manufacture or treatment of nanostructures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
- H01L31/032—Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/18—Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Nanotechnology (AREA)
- Electromagnetism (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Optics & Photonics (AREA)
- Biophysics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Inorganic Chemistry (AREA)
- Light Receiving Elements (AREA)
Abstract
本发明公开了一种铅绘电极二维材料纸基GaS光电探测器及其制备方法,铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;所述的叉指电极5铅笔绘在基体上,所述的叉指电极5接电部设有蒸镀金层;所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色;所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干;得到了在二维材料探测器领域可观的结果:在532nm激光照射条件下拥有较高的响应度R=109.2A/W和较大的探测率D*=1.94×109Jones。
Description
技术领域
本发明属于光电探测技术领域,具体涉及铅绘电极二维材料纸基GaS光电探测器及其制备方法。
背景技术
近年来,光电技术蓬勃发展,探测器技术已经渗透到人民群众生产和生活的各个角落,红外成像,光道通讯和军事化监控等应用发展比较成熟。但是,其中发展较早的Si基光电探测器处于一种瓶颈状态,虽然其从可见到红外部分的探测性能已经比较优秀,但是随着器件工艺越来越精细,尺寸把控精准之际,“摩尔定律”的极限把Si基的光电探测排除到经典物理理论之外。不仅如此, Si基光电探测器的较差的光吸收系数和较窄的光谱响应也限制其应用。所以,吸收效率高,频谱响应宽以及柔性较好的新型探测材料的空白需要被填补。随着二维层状材料的科研探索,一些新型二维材料为光电探测领域提供了新机遇和新挑战。高响应,宽波段,可拉伸的光电探测器的未来逐渐明晰TMDs的制备工艺,表征手段和光电性质调控已经逐步被深刻挖掘和探索。组成决定结构,结构决定性质,选择一种拥有高导电性,灵敏光电调控的材料成为了当下的热点问题。而传统制备工艺,如物理气相沉积,化学气相沉积等方法不容易获得大尺寸而比较均匀的材料。
发明内容
本发明目的是为了解决上述问题,而提供了铅绘电极二维材料纸基GaS光电探测器及其制备方法;
铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;
所述的叉指电极5铅笔绘在基体上,
所述的叉指电极5接电部设有蒸镀金层;
所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色;
所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干;
所述的涂GaS层为5-10层;
所述的基体上涂GaS层,然后在涂GaS层上铅笔绘制叉指电极5。
铅绘电极二维材料纸基GaS光电探测器的制备方法:它包括:
1)配制GaS悬浊液:
a.GaS体材料加70%的乙醇;磁力搅拌,溶解;
b.超声;
c.静置分层,弃上清,取下层悬浊液;
2)基体1为纸基,在纸基上打印叉指电极轮廓;
3)用第一掩模板3遮挡住叉指电极区域四周,露出叉指部2和叉指间隙;将GaS悬浊液,滴涂至露出部分完全覆盖;
4)利用热盘加热至80℃烘烤,至黄色;
5)重复上述步骤3)、4)操作5-10次,得 GaS涂层4;
6)取下第一掩模板3,用铅笔绘制叉指电极5;
7)将第二掩模板6,盖住叉指部2,在叉指电极5接电部,蒸镀Au,得蒸镀Au层7;
8)裁减掉多余的基体1,得铅绘电极二维材料纸基GaS光电探测器;
步骤1)所述的超声,其功率1200W,超声时间60min;
所述的叉指电极3cm×1.2cm。
本发明提供了铅绘电极二维材料纸基GaS光电探测器及其制备方法,铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;所述的叉指电极5铅笔绘在基体上,所述的叉指电极5接电部设有蒸镀金层;所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色;所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干;得到了在二维材料探测器领域可观的结果:在532nm激光照射条件下拥有较高的响应度R=109.2A/W和较大的探测率D*=1.94×109Jones。
附图说明
图1-6是本发明铅绘电极二维材料纸基GaS光电探测器的制备流程示意图;
图7是铅绘电极二维材料纸基GaS光电探测器立体图;
图8是本发明铅绘电极二维材料纸基GaS光电探测器的纵切剖面示意图;
图9是本发明铅绘电极二维材料纸基GaS光电探测器的横切剖面示意图;
图10是本发明铅绘电极二维材料纸基GaS光电探测器的光隙曲线示意图;
图11是本发明铅绘电极二维材料纸基GaS光电探测器的拉曼光谱测试图;
图12是本发明铅绘电极二维材料纸基GaS光电探测器的IV曲线图;
图13是本发明铅绘电极二维材料纸基GaS光电探测器的光响应测试图;
图中:基体1,叉指部2,第一掩模板3,GaS涂层4,叉指电极5,第二掩模板6,蒸镀Au层7。
具体实施方式
实施例1铅绘电极二维材料纸基GaS光电探测器
请参见附图7-9,铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;所述的叉指电极5铅笔绘在基体上,所述的叉指电极5接电部设有蒸镀金层。
实施例2用于制备GaS二维材料的悬浊液
GaS悬浊液,制备步骤如下:
1)取GaS体材料,尺寸约0.2cm2,厚度约500nm左右;
2)配置体积分数为70%的乙醇水溶液50ml,将GaS体材料浸于配置好的溶液中;
3)将溶液倾倒至锥形瓶中,放置磁力搅拌子,低速搅拌2h;
4) 直至溶液中没有明显的颗粒状或块体材料后,将搅拌子取出,并将溶液一次性转移到200ml烧杯中;
5)无需静止,直接放入超声仪中, 1200W功率,超声60min;
6)取出溶液后,静置12h后,可得到上清下浊的明显分层,保留下层,即得GaS悬浊液。
实施例3纸基GaS光电探测器的制备方法
参见图2-7所示,纸基GaS探测器的制备方法如下:
1)参见附图1,基体1材料为普通打印纸张,本实施例中采用纸张为晨光APYVQ959复印纸(70g/A4);用喷墨或者激光打印机打印出叉指电极轮廓或者画出叉指电极轮廓;每份叉指电极轮廓尺寸约3cm×1.2cm;然后,对绘制有叉指电极轮廓的纸基进行剪裁,裁剪为5cm×3cm大小的基体1;
2)参见附图2和附图3,使用第一掩模板3遮挡住叉指电极区域四周,只露出叉指部2和叉指间隙;将实施例2中得到的GaS悬浊液,滴涂到未被第一掩模板3遮盖的部分,滴涂至GaS悬浊液完全覆盖即可,约3--5滴;
3)利用热盘加热至80℃,直至烘干留有均匀的黄色印记;
4)重复上述2,3操作5-10次,可在基体1上留下被烘干的深黄色的多层GaS悬浊液材料,即GaS涂层4;
5)参见附图4,取下第一掩模板3,除叉指间隙外,参见附图5将叉指电极区域的剩余部分用铅笔(4B)涂满;或其它石墨材料进行均匀涂抹,直至形成均匀的叉指电极5;
6)参见附图6,再用第二掩模板6,盖住叉指部2,只留出接电部,蒸镀0.08g的Au,得蒸镀Au层7;
7)参见附图7,裁减掉多余的基体1,只保留探测器部分。
纸基GaS光电探测器的性能表征
参见图10至图13所示,GaS的理化性质和光电导型光电探测器的基本原理,在自然条件下,GaS是一种层状半导体材料,每层由Ga-S-S-Ga构成重复单元,z方向有稳定的六边形结构,属于六方晶系。GaS层内原子通过共价键连接,层间通过范德华力实现层间耦合;GaS的半导体带隙对于其层数有较强的依赖性,根据第一性原理计算,从体材料到单层材料的过渡的过程中,带隙从2.59eV逐渐变化到1.6eV,这使得GaS层状材料可以用于制造近紫外-短波可见光的探测器件;间接带隙的GaS不具备很好的发光特性,其在发光领域的应用举步维艰。然而GaS对光有比较好的吸收和良好的光电导特性。光电导特性是指:在一定波长的光的照射下,材料电导率会比暗态提升很多的性质;这源于材料在激光作用下产生了很多光生载流子参与导电,大大提升了材料的导电性,GaS即为其中较好的光电导型材料。制备完成的纸基GaS探测器可用万用表对两端蒸镀的Au进行测试;
为鉴定所选材料在经过液相超声剥离后未变质,将滴涂的材料进行了拉曼光谱的测试:GaS在自然条件下可检测到三种振动模式:E2g 1,A1g 1,以及A1g 2,分别对应波数259cm-1,188cm-1,361cm-1。
选取叉指间隙中同一点,利用532nm激光进行拉曼光谱测试,发现增强的GaS拉曼信号,确定有大量样品存在于沟道中。也对其用532nm激光进行了光致发光光谱采集,结果如图所示,其发光峰位在655nm左右,可通过带隙推测出测得材料为多层结构。
为了实验的严谨性,考虑到石墨可能存在涂抹不均匀或超出轮廓的误差,需要进一步排除石墨电极的影响。在此,将叉指间隙全部用铅笔进行均匀涂抹,不加GaS悬浊液,在532nm激光低功率照射下,测量其IV曲线。可见,石墨电极导通,但光电流很小,属纳安(nA)级别。而且,其测试条件比较苛刻,在低压下光电流很小,需要在高电压下进行测试,方可测到明显的开启导通状态。
对比上述补充实验,用GaS悬浊液4滴涂作为导电沟道的探测器性能较好。同一测试条件下,光电流有了4-5个数量级的提升,达到了几十微安(μA)的级别,且暗电流仍保持在纳安(nA)。这可以归因于GaS材料的光电导效应,光生载流子,即电子和空穴,拥有相反电性,外加偏压电场在导带和价带分离,形成较大光电流,实现光增益。其次,随着激发光功率的增加,其光电流也随之增强,这也是光电导效应的重要现象之一。
为了探究纸基GaS光电探测器是否具有宽波段的响应,本发明对于可见波段多种激光的进行了探测器的光响应测试。经过反复测试,选取10V作为偏压,可保持一个较低的暗电流和较大的开关比。为比较纸基GaS材料在光电探测器领域的水平,在此引入相关参数的计算和比较。
响应度(Responsivity).衡量单位受光面积受到单位能量激发所产生的光电流。
可表述为如下公式:
此处,I为特定波长激发下产生光生电流的大小,即光电流和暗态电流的差值,P为功率密度,S为辐射面积。分母两项乘积可由功率计直接探测得到。取532nm激发最优,最终计算结果为R=109.2A/W。
(1) 探测率(Detectivity).探测率是衡量探测能力的参数,其大小可作为比较依据,在低维材料中的计算方法如下:
其中R为(1)中计算的响应度;S为辐射面积,本文其平方根取近似,1μm即激光直径;e为电子电量,Idark为暗电流。得到计算结果为D*=1.94×109Jones。
本发明采取铅笔勾勒的方法绘制出石墨电极,并采用体材料液相超声后分散液滴涂的方法,首次制备了宏观尺度的GaS光电探测器。如表1所示,得到了在二维材料探测器领域可观的结果:在532nm激光照射条件下拥有较高的响应度R=109.2A/W和较大的探测率D*=1.94×109Jones。
TMDs作为一种新兴的二维探测器原材料,未来需要满足各种实际需求。一方面需要找到迁移率和吸收效率高的半导体材料,达到可大规模制备的需求;另一方面需要不断优化现有成果:可通过表面增强或者材料掺杂的手段,使得当前各项探测器衡量参数提升到新层次。
Claims (10)
1.铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极(5),其特征在于:所述的叉指电极(5)为石墨涂层,涂在基体上;在叉指间隙上涂GaS层。
2.根据权利要求1所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的叉指电极(5)是用铅笔在基体上绘制的。
3.根据权利要求2所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的叉指电极(5)接电部设有蒸镀金层。
4.根据权利要求3所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色。
5.根据权利要求1、2、3或4所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干。
6.根据权利要求5所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的涂GaS层为5-10层。
7.根据权利要求6所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的基体上涂GaS层,然后在涂GaS层上铅笔绘制叉指电极(5)。
8.铅绘电极二维材料纸基GaS光电探测器的制备方法:它包括:
1)配制GaS悬浊液:
a.GaS体材料加70%的乙醇;磁力搅拌,溶解;
b.超声;
c.静置分层,弃上清,取下层悬浊液;
2)基体(1)为纸基,在纸基上打印叉指电极轮廓;
3)用第一掩模板(3)遮挡住叉指电极区域四周,露出叉指部(2)和叉指间隙;将GaS悬浊液,滴涂至露出部分完全覆盖;
4)利用热盘加热至80℃烘烤,至黄色;
5)重复上述步骤3)、4)操作5-10次,得 GaS涂层(4);
6)取下第一掩模板(3),用铅笔绘制叉指电极(5);
7)将第二掩模板(6),盖住叉指部(2),在叉指电极(5)接电部,蒸镀Au,得蒸镀Au层(7);
8)裁减掉多余的基体(1),得铅绘电极二维材料纸基GaS光电探测器。
9.根据权利要求8所述的铅绘电极二维材料纸基GaS光电探测器的制备方法,其特征在于:步骤1)所述的超声,其功率1200W,超声时间60min。
10.根据权利要求9所述的铅绘电极二维材料纸基GaS光电探测器的制备方法,其特征在于:所述的叉指电极3cm×1.2cm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011466009.3A CN112614903B (zh) | 2020-12-14 | 2020-12-14 | 铅绘电极二维材料纸基GaS光电探测器及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202011466009.3A CN112614903B (zh) | 2020-12-14 | 2020-12-14 | 铅绘电极二维材料纸基GaS光电探测器及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN112614903A CN112614903A (zh) | 2021-04-06 |
CN112614903B true CN112614903B (zh) | 2022-04-29 |
Family
ID=75233675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202011466009.3A Active CN112614903B (zh) | 2020-12-14 | 2020-12-14 | 铅绘电极二维材料纸基GaS光电探测器及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN112614903B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114686845B (zh) * | 2022-03-16 | 2022-12-16 | 华南理工大学 | 一种GaS薄膜及其制备方法和应用 |
CN116190496A (zh) * | 2023-04-06 | 2023-05-30 | 中国石油大学(华东) | 一种用于血氧检测的六臂星状硫化铅光电探测器的制备 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005210018A (ja) * | 2004-01-26 | 2005-08-04 | Yoshinori Oyama | 光導電素子 |
JP2010080481A (ja) * | 2008-09-24 | 2010-04-08 | Ngk Insulators Ltd | 受光素子および受光素子の作製方法 |
CN102664218A (zh) * | 2012-05-29 | 2012-09-12 | 哈尔滨工业大学 | 一种基于二维功能材料制备柔性光探测器的方法 |
CN207165594U (zh) * | 2017-08-30 | 2018-03-30 | 苏州科技大学 | 太赫兹波宽频探测器 |
CN108155294A (zh) * | 2017-12-25 | 2018-06-12 | 上海集成电路研发中心有限公司 | 光电探测器及其制作方法、光电探测器织物 |
WO2018195383A1 (en) * | 2017-04-20 | 2018-10-25 | Sabic Global Technologies B.V. | Two-dimensional material with electroactivity and photosensitivity |
CN111244119A (zh) * | 2019-12-13 | 2020-06-05 | 京东方科技集团股份有限公司 | 一种探测基板、其制作方法及平板探测器 |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2985604B1 (fr) * | 2012-01-06 | 2014-03-14 | Commissariat Energie Atomique | Dispositif de photodetection. |
EP2624270A2 (en) * | 2012-01-31 | 2013-08-07 | Samsung SDI Co., Ltd. | Photoelectric device |
KR102496483B1 (ko) * | 2017-11-23 | 2023-02-06 | 삼성전자주식회사 | 아발란치 광검출기 및 이를 포함하는 이미지 센서 |
-
2020
- 2020-12-14 CN CN202011466009.3A patent/CN112614903B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005210018A (ja) * | 2004-01-26 | 2005-08-04 | Yoshinori Oyama | 光導電素子 |
JP2010080481A (ja) * | 2008-09-24 | 2010-04-08 | Ngk Insulators Ltd | 受光素子および受光素子の作製方法 |
CN102664218A (zh) * | 2012-05-29 | 2012-09-12 | 哈尔滨工业大学 | 一种基于二维功能材料制备柔性光探测器的方法 |
WO2018195383A1 (en) * | 2017-04-20 | 2018-10-25 | Sabic Global Technologies B.V. | Two-dimensional material with electroactivity and photosensitivity |
CN207165594U (zh) * | 2017-08-30 | 2018-03-30 | 苏州科技大学 | 太赫兹波宽频探测器 |
CN108155294A (zh) * | 2017-12-25 | 2018-06-12 | 上海集成电路研发中心有限公司 | 光电探测器及其制作方法、光电探测器织物 |
CN111244119A (zh) * | 2019-12-13 | 2020-06-05 | 京东方科技集团股份有限公司 | 一种探测基板、其制作方法及平板探测器 |
Also Published As
Publication number | Publication date |
---|---|
CN112614903A (zh) | 2021-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Qiao et al. | Piezophototronic effect enhanced photoresponse of the flexible Cu (In, Ga) Se2 (CIGS) heterojunction photodetectors | |
CN112614903B (zh) | 铅绘电极二维材料纸基GaS光电探测器及其制备方法 | |
Pataniya et al. | MoS2/WSe2 nanohybrids for flexible paper-based photodetectors | |
CN110047957B (zh) | 一种中红外光探测器及其制备方法 | |
Luo et al. | A surface plasmon enhanced near‐infrared nanophotodetector | |
Li et al. | Filter‐free self‐power CdSe/Sb2 (S1− x, Sex) 3 nearinfrared narrowband detection and imaging | |
CN108198897B (zh) | 一种石墨烯场效应晶体管量子点光电探测器及其制备方法 | |
Li et al. | High detectivity photodetectors based on perovskite nanowires with suppressed surface defects | |
CN106405718A (zh) | 一种基于石墨烯栅带结构的电控太赫兹偏振片及使用方法 | |
CN110459548B (zh) | 一种基于范德瓦尔斯异质结的光电探测器及其制备方法 | |
CN106024968B (zh) | 石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法 | |
Gong et al. | Aluminum-based hot carrier plasmonics | |
Chetri et al. | Au/GLAD-SnO 2 nanowire array-based fast response Schottky UV detector | |
Young et al. | Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell | |
Sarkar et al. | Enhanced UV–visible photodetection characteristics of a flexible Si membrane-ZnO heterojunction utilizing piezo-phototronic effect | |
Wang et al. | A sensitive red light nano-photodetector propelled by plasmonic copper nanoparticles | |
CN103681897A (zh) | 一种红外光电探测器及其制备方法 | |
Ghods et al. | Plasmonic enhancement of photocurrent generation in two-dimensional heterostructure of WSe2/MoS2 | |
Wang et al. | Enhancing the performance of Self-Powered Deep-Ultraviolet photoelectrochemical photodetectors by constructing α-Ga2O3@ a-Al2O3 Core-Shell nanorod arrays for Solar-Blind imaging | |
Dinh et al. | Enhancing the performance of photodetectors based on ZnO nanorods decorated with Ag nanoparticles | |
Gazia et al. | Photodetection and piezoelectric response from hard and flexible sponge-like ZnO-based structures | |
Ding et al. | Nanosecond-response speed sensor based on perovskite single crystal photodetector array | |
Rathore et al. | Surface Adsorption-Assisted Visible and Near-Infrared Photodetection in SrTiO3 Nanostructures | |
Tang et al. | Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection | |
Kumar et al. | Tuning Ultrafast Carrier Dynamics and Broadband Photo-Response of High-Performance Sb2Se3 Thin Film Photodetectors: A Substrate Dependent Study |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |