CN108198897B - 一种石墨烯场效应晶体管量子点光电探测器及其制备方法 - Google Patents

一种石墨烯场效应晶体管量子点光电探测器及其制备方法 Download PDF

Info

Publication number
CN108198897B
CN108198897B CN201711316001.7A CN201711316001A CN108198897B CN 108198897 B CN108198897 B CN 108198897B CN 201711316001 A CN201711316001 A CN 201711316001A CN 108198897 B CN108198897 B CN 108198897B
Authority
CN
China
Prior art keywords
layer
graphene
quantum dot
insulating layer
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201711316001.7A
Other languages
English (en)
Other versions
CN108198897A (zh
Inventor
郑加金
王雅茹
余柯涵
韦玮
胡二涛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University Of Posts And Telecommunications Institute At Nantong Co ltd
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University Of Posts And Telecommunications Institute At Nantong Co ltd
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University Of Posts And Telecommunications Institute At Nantong Co ltd, Nanjing University of Posts and Telecommunications filed Critical Nanjing University Of Posts And Telecommunications Institute At Nantong Co ltd
Priority to CN201711316001.7A priority Critical patent/CN108198897B/zh
Publication of CN108198897A publication Critical patent/CN108198897A/zh
Application granted granted Critical
Publication of CN108198897B publication Critical patent/CN108198897B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Thin Film Transistor (AREA)

Abstract

本发明涉及光电探测领域,具体涉及一种石墨烯场效应晶体管量子点光电探测器及其制备方法;该光电探测器为多层薄膜结构,包括Si衬底层、第一绝缘层、第二绝缘层、石墨烯沟道层、量子点光敏介质层以及源极与漏极;衬底上依次热氧化生长第一绝缘层氧化硅,磁控溅射法生长第二绝缘层氮化铝作为双绝缘层,增强型化学气相沉积法生长石墨烯层于双绝缘层上,石墨烯层两端设有源极和漏极,源极和漏极之间涂覆一层量子点光敏介质层。本发明通过设计合理的器件结构,在光照情况下量子点和石墨烯之间可发生有效的电荷转移,从而将特定频率的光转换成光电流,最终实现对入射光的有效探测。

Description

一种石墨烯场效应晶体管量子点光电探测器及其制备方法
技术领域
本发明涉及光电探测领域,具体涉及一种石墨烯场效应晶体管量子点光电探测器及其制备方法。
背景技术
光电探测器是一种将光信号转换为电信号的仪器设备,其基本原理是利用光的辐射引起被照射材料电导率发生改变,从而引起电信号的改变。光电探测器在军事和国民经济许多领域具有广泛用途,在可见光或近红外波段主要用于射线测量和探测、工业自动控制、光度计量等;在红外波段主要用于导弹制导、红外热成像、红外遥感等方面。随着激光与红外技术的发展,以及材料性能的改进和制造工艺的不断完善,光电探测器朝着集成化的方向发展,这大大缩小了体积,改善了性能,降低了成本。虽然基于硅光电探测器发展比较成熟,然而由于不断缩小的集成电路及硅的成本高易碎等诸多缺点,急于探索新的活性材料。自2004年石墨烯被发现后被制备出石墨烯器件之后,石墨烯在各种电子器件中应用广泛,有望成为下一代集成电路的基础材料。
典型的场效应晶体管是由金属-氧化物-半导体(MOS)构成,又称MOS场效应管,它是一种电压控制元件,仅靠半导体中的多数载流子导电。石墨烯是由单层碳原子按蜂窝状结构紧密排列的一种二维平面晶体材料,由于其只有一个原子层厚度,具有极高的载流子迁移率、亚微米量级的弹道输运、优异的机械性能和导热性以及良好的光学特性和化学稳定性等一系列优越的特性。因此,石墨烯在光电探测领域极具潜力,具有光谱频带宽、响应速度快等优点,理论上可将其作为半导体功能层用于场效应晶体管。但是,石墨烯在具体光电探测器件应用中存在两个方面主要问题。一方面,石墨烯是一种零带隙半导体,其光吸收能力较弱,缺乏产生多倍载荷子的增益机制;另一方面,石墨烯易受到衬底及界面效应的影响,由衬底及界面效应引起的各种散射对石墨烯的迁移率影响很大,进而影响空穴在沟道内的输运。这两方面因素造成石墨烯光电探测器的灵敏度和响应度降低。
量子点是一类优良的纳米级半导体材料,可弥补上述石墨烯材料存在的一些不足。通过对量子点材料施加一定的电场或光照,它们便会发出特定频率的光,而发出光的频率会随这种半导体的尺寸的改变而变化,因而可以通过选择不同尺寸的纳米半导体对不同波长的入射光进行有效探测。但量子点作为半导体材料其自身迁移率极差,这一不足一直制约其在光电探测器上的应用。
发明内容
针对现有技术中存在的不足,本发明提供一种石墨烯场效应晶体管量子点光电探测器及其制备方法,通过合理设计器件结构以及有效的制备工艺,能够有效提高光电探测器的灵敏度和响应速度。
为了实现上述发明目的,本发明采用了以下技术方案:
一种石墨烯场效应晶体管量子点光电探测器,该光电探测器为多层薄膜结构,包括Si衬底层、第一绝缘层、第二绝缘层、石墨烯沟道层、量子点光敏介质层以及源极与漏极;所述Si衬底层、第一绝缘层、第二绝缘层、石墨烯沟道层和量子点光敏介质层从下至上依次层叠的;所述源极与漏极分别位于量子点光敏介质层左右两侧。
优选地,所述Si衬底层为重掺杂P型Si或N型Si基片,兼作场效应晶体管的背栅电极;所述的第一绝缘层为SiO2薄膜;所述第二绝缘层为AlN薄膜;所述量子点光敏介质层材料为钙钛矿;所述的金属源极与漏极材料为同一种金属。
优选地,所述第一绝缘层厚度为200-300nm;所述第二绝缘层厚度为50-70nm;所述的石墨烯沟道层为单层或少层石墨烯薄膜,层数为1-6层,厚度为0.33-1.98nm;所述量子点光敏介质层厚度为30-60nm,量子点粒径为10-30nm;所述的源极与漏极厚度均为180-220nm,源极与漏极之间的沟道宽度为10-60μm。
优选地,所述钙钛矿为PbS、CsPbBr或CsPbI;所述金属为Al、Cu、Au或Pt。
一种石墨烯场效应晶体管量子点光电探测器的制备方法,包括以下步骤:
(1)提供重掺杂P型Si或N型Si基片作Si衬底层,清洗并干燥处理后在Si衬底层表面依次利用热氧化方式生长一层SiO2薄膜,得到第一绝缘层;磁控溅射法沉积一层AlN薄膜并在氮气气氛中退火处理,得到第二绝缘层;再利用增强型化学气相沉积法生长石墨烯薄膜,然后在完全覆盖了石墨烯的衬底上盖一片小的石英片,刻蚀处理,仅留下覆盖石英片区域的石墨烯,得到石墨烯沟道层;形成样品;
(2)利用一根光纤作为掩埋石墨烯沟道层,得到石墨烯沟道的宽度在10-60um,然后在其上压上金属掩膜版,之后在掩埋的石墨烯沟道两端利用金属掩模板沉积金属电极材料,形成场效应晶体管的源极和漏极;
(3)在步骤(2)形成的基础上旋涂量子点光敏介质,形成量子点光敏介质层,得到石墨烯场效应晶体管量子点光电探测器。
优选的,所述步骤(1)中刻蚀处理的方法为空气等离子体刻蚀法。
本发明与现有技术相比,具有如下有益效果:
1.本发明通过额外生长一层AlN薄膜作为第二绝缘层,改善SiO2薄膜表面的薄膜不致密,针孔缺陷对石墨烯的影响,有效提高石墨烯的迁移率,从而能够提高探测器的灵敏度和响应度。
2.石墨烯具有极高的载流子迁移率、亚微米量级的弹道输运、优异的机械性能和导热性以及良好的光学特性和化学稳定性等一系列优越的特性,将石墨烯和量子点结合,设计合理的器件结构使得量子点和石墨烯在光照情况下之间发生有效的电荷转移,融合石墨烯极高的载流子迁移率及量子点材料优良光电性能,各取所长,从而实现对入射光高灵敏度和响应度的光电转换。
附图说明
附图不意在按比例绘制。在附图中,在各个图中示出的每个相同或近似相同的组成部分可以用相同的标号表示。为了清晰起见,在每个图中,并非每个组成部分均被标记。现在,将通过例子并参考附图来描述本发明的各个方面的实施例,其中:
图1为本发明实施例一的石墨烯场效应晶体管量子点光电探测器的结构示意图;
图2为本发明实施例一的石墨烯场效应晶体管的量子点光电探测器的测试连接图;
图3为本发明实施例一的石墨烯场效应晶体管的量子点光电探测器的转移特性曲线;
图4为本发明实施例一的石墨烯场效应晶体管的量子点光电探测器的输出特性曲线;
图5为本发明实施例一的石墨烯场效应晶体管的量子点光电探测器的光电流响应曲线;
图中标号为:Si衬底层1、第一绝缘层2、第二绝缘层3、石墨烯沟道层4、漏极5、量子点光敏介质层6、源极7、可调直流电压源8、微电流计9。
具体实施方式
下面通过具体实施方式对本发明作进一步详细说明。但本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限定本发明的范围。实施例中未注明具体技术或条件者,按照本领域内的文献所描述的技术或条件按照说明书进行。所用试剂或仪器未注明生产厂商者,均为可以通过市购获得的常规产品。
实施例1
如图1所示,一种石墨烯场效应晶体管量子点光电探测器,该光电探测器为多层薄膜结构,包括Si衬底层1、第一绝缘层2、第二绝缘层3、石墨烯沟道层4、量子点光敏介质层6以及源极7与漏极5;所述Si衬底层1、第一绝缘层2、第二绝缘层3、石墨烯沟道层4、量子点光敏介质层6从下至上依次层叠的;所述源极5与漏极8分别位于量子点光敏介质层6的左右两侧。如图2所示,当光电探测器性能测试时,源极7、漏极5和作为栅极的Si衬底层1通过可调直流电压源8、微电流计9以及若干未标注的连接电源线电联。
所述Si衬底层1材料为重掺杂P型Si衬底,衬底尺寸为15×15mm2,厚度为300μm。
所述第一绝缘层2的材料为SiO2,SiO2层的尺寸为15×15mm2,厚度为300nm。SiO2作为第一绝缘层2形成在Si衬底层1的表面之上有利于二者界面之间晶格更好的匹配。
所述第二绝缘层3为AlN薄膜,AlN薄膜绝缘性能好,介电常数高,AlN薄膜的尺寸为15×15mm2,厚度为60nm。AlN薄膜作为第二绝缘层3,弥补了第一绝缘层2的SiO2薄膜存在不致密针孔等缺陷对石墨烯层及探测器电学性能的影响,避免了石墨烯与SiO2的直接接触而引起器件性能的降低。同时,由于SiO2层的存在也避免了单独AlN层与Si衬底层1中Si衬底的界面效应,且磁控溅射沉积AlN薄膜方法简单,薄膜平整度高,对石墨烯层的影响较小。因此,双绝缘层设计有利于光电探测器性能的提高。
所述石墨烯沟道层4形成在第二绝缘层3之上,由于石墨烯层4完全覆盖了衬底,这极有可能因为边缘效应导致石墨烯沟道层4中的石墨烯和Si衬底层1中的重掺杂Si导通,因此在完全覆盖了石墨烯的衬底上盖一片小的石英片,通过一种刻蚀的方式将未覆盖石英片周围的石墨烯刻蚀掉,仅留下覆盖石英片区域的石墨烯。然后,利用一根光纤作为掩埋石墨烯沟道层4。在本实施例中,石墨烯沟道层4的尺寸为15×15mm2,厚度在1nm。
所述漏极5和源极7形成在石墨烯沟道层4的两端,漏极5和源极7的材料、尺寸、厚度均相同。本实施例中,源极7和漏极5的电极材料均为Au,尺寸均为1.5mm×5.0mm,厚度均为200nm,源极7和漏极5之间的沟道宽度为30μm。
所述量子点薄膜材料为PbS量子点,利用旋涂法制备PbS量子点光敏介质层,薄膜尺寸同石墨烯沟道层4,厚度为50nm。
一种石墨烯场效应晶体管量子点光电探测器的制备方法,包括以下步骤:
(1)提供重掺杂P型Si或N型Si基片作Si衬底层1,清洗并干燥处理后在Si衬底层1表面依次利用热氧化方式生长一层厚度为300nm的SiO2薄膜,得到第一绝缘层2;磁控溅射法沉积一层厚度为60nmAlN薄膜并在氮气气氛中退火处理,在氮气气氛中退火5min,得到第二绝缘层3;再利用增强型化学气相沉积法生长3层石墨烯薄膜,然后在完全覆盖了石墨烯的衬底上盖一片小的石英片,刻蚀处理,通过空气等离子体刻蚀法将未覆盖石英片周围的石墨烯刻蚀掉,仅留下覆盖石英片区域的石墨烯;所述的空气等离子体刻蚀法采用的等离子体功率为100W,气氛压强为0.5Torr,刻蚀时间为5分钟;刻蚀后仅留下覆盖石英片区域的石墨烯,得到石墨烯沟道层4;形成样品;
(2)利用一根光纤作为掩埋石墨烯沟道层4,然后在其上压上金属掩膜版,之后在掩埋的石墨烯沟道两端利用金属掩模板沉积金属电极材料,形成源极7和漏极5;所述沉积方法为直流磁控溅射法,沉积过程中使用金属掩模板控制源极和漏极的图案,所述金属电极材料均为Au,金属掩模板控制得到的电极尺寸为1.5mm×5.0mm,厚度为200nm;
(3)在步骤(2)形成的基础上旋涂PbS、CsPbBr或CsPbI量子点光敏介质,利用旋涂法将PbS量子点溶液滴于石墨烯沟道层4之上,转速控制前10秒低速为800转/分钟,后30秒高速为2800转/分钟,薄膜尺寸同石墨烯沟道层4,厚度为50nm,得到量子点光敏介质层6;静置晾干后得到石墨烯场效应晶体管量子点光电探测器。
对制备好的器件进行光电探测性能测试,如图2所示,当没有外界被探测光照射时,Si衬底层1作为背栅电极与源极7、漏极5与源极7之间分别用若干电源线连接可调直流电压源8和微电流计9,并使源极7接地。
在背栅电极与源极7之间通过可调直流电压源8给两电极施加电压(记为Vgs),范围从-20V至+40V之间扫描,同时微电流计9记录相应电流(记为Ids),所得Ids~Vgs关系为石墨烯场效应晶体管量子点光电探测器转移特性曲线,如图3所示,图3中横坐标Vds为漏极5扫描电压,纵坐标Ids为漏极5电流。在本实施例中,在漏极5与源极7之间通过可调直流电压源8给两电极施加电压(记为Vds),范围从-1V至+1V之间扫描,同时微电流计9记录相应电流(记为Ids),所得Ids~Vds关系为石墨烯场效应晶体管量子点光电探测器输出特性曲线,如图4所示:图4中,横坐标Vgs为源极7扫描电压,纵坐标Ids为漏极5电流,二者呈直线关系说明石墨烯沟道层4与金属漏极5与源极7之间形成了欧姆接触。
当有外界被探测光照射时,在本实施例中,以中心波长为400nm、功率为1mw的普通商用LED发出的光作为被探测光,控制漏极电压Vds=1V的情况下,微电流计9记录了光照前20秒与后80秒期间漏极5电流变化情况,结果如图5所示:图5中,横坐标t为时间,纵坐标Ids为漏极5电流。从开始记录t=0时至t=20秒开始光照前,漏极5电流Ids从0.258mA一直下降至0.2545mA,当t=20秒开始光照之后漏极5电流Ids迅速上升,至t=35秒时,Ids持续稳定在0.262mA,表明量子点和石墨烯在光照情况下之间发生了电荷转移,器件已有效的将被照射光信号转化为电信号,从而实现对照射光的探测。在t=70秒时撤除被探测光,之后的时间里漏极5电流Ids逐渐衰减,回复到到起始状态,表明量子点和石墨烯之间电荷转移终止。
以上所述,仅是本发明较佳的实施例而已,并非对本发明的技术范围作任何限制,故凡是依据本发明的技术实质对以上实施例所做的任何细微修改、等同变化和修饰,均属于本发明技术方案的范围内。

Claims (1)

1.一种石墨烯场效应晶体管量子点光电探测器,其特征在于,该光电探测器为多层薄膜结构,包括Si衬底层、第一绝缘层、第二绝缘层、石墨烯沟道层、量子点光敏介质层以及源极与漏极;所述Si衬底层、第一绝缘层、第二绝缘层、石墨烯沟道层和量子点光敏介质层从下至上依次层叠的;所述源极与漏极分别位于量子点光敏介质层左右两侧,其中,所述Si衬底层为重掺杂P型Si或N型Si基片;所述的第一绝缘层为SiO2薄膜;所述第二绝缘层为AlN薄膜;所述量子点光敏介质层材料为钙钛矿;所述源极与漏极的电极材料为同一种金属,所述第一绝缘层厚度为200-300 nm;所述第二绝缘层厚度为50-70 nm;所述的石墨烯沟道层为单层或多层石墨烯薄膜,层数为1-6层,厚度为0.33-1.98 nm;所述量子点光敏介质层厚度为30-60 nm,量子点粒径为10-30 nm;所述的源极与漏极厚度均为180-220 nm,源极与漏极之间的沟道宽度为10-60 μm,所述金属为Al、Cu、Au或Pt。
CN201711316001.7A 2017-12-12 2017-12-12 一种石墨烯场效应晶体管量子点光电探测器及其制备方法 Active CN108198897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201711316001.7A CN108198897B (zh) 2017-12-12 2017-12-12 一种石墨烯场效应晶体管量子点光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201711316001.7A CN108198897B (zh) 2017-12-12 2017-12-12 一种石墨烯场效应晶体管量子点光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN108198897A CN108198897A (zh) 2018-06-22
CN108198897B true CN108198897B (zh) 2020-08-04

Family

ID=62574156

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201711316001.7A Active CN108198897B (zh) 2017-12-12 2017-12-12 一种石墨烯场效应晶体管量子点光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN108198897B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950330A (zh) * 2019-03-19 2019-06-28 扬州大学 一种CsPbBr3量子点-硅基复合结构太阳能电池
CN112038489A (zh) * 2019-06-03 2020-12-04 湖北大学 一种新型可见光敏晶体管及其制备方法
CN110350045B (zh) * 2019-07-24 2024-05-07 中国科学院重庆绿色智能技术研究院 PbS量子点Si-APD红外探测器及其制备方法
CN112133777A (zh) * 2020-09-24 2020-12-25 南京邮电大学 一种核-壳结构量子点宽光谱光电探测器及其制备方法
CN113838943A (zh) * 2021-08-13 2021-12-24 华南师范大学 一种基于各向异性二维材料的偏振光探测器及其制备方法
CN114300619A (zh) * 2021-12-09 2022-04-08 深圳先进技术研究院 一种光调控的石墨烯异质结晶体管及其制备方法
CN114864708A (zh) * 2022-05-06 2022-08-05 北京交通大学 多栅极石墨烯场效应晶体管型光电传感器及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100505355C (zh) * 2006-03-21 2009-06-24 同济大学 一种新型热释电红外探测器及其使用的复合薄膜探测元
KR101532311B1 (ko) * 2012-04-27 2015-06-29 삼성전자주식회사 그래핀을 이용한 광검출기와 그 제조방법
US20140151770A1 (en) * 2012-11-30 2014-06-05 International Business Machines Corporation Thin film deposition and logic device
CN103633183A (zh) * 2013-11-18 2014-03-12 西安电子科技大学 一种石墨烯中远红外探测器及其制备方法
CN103943713A (zh) * 2014-04-02 2014-07-23 天津大学 一种量子点/石墨烯光敏场效应管及其制备方法
CN106952981A (zh) * 2017-03-22 2017-07-14 电子科技大学 一种基于石墨烯的宽波段探测器结构及其制作方法

Also Published As

Publication number Publication date
CN108198897A (zh) 2018-06-22

Similar Documents

Publication Publication Date Title
CN108198897B (zh) 一种石墨烯场效应晶体管量子点光电探测器及其制备方法
US11404643B1 (en) Ultraviolet, infrared and terahertz photo/radiation sensors using graphene layers to enhance sensitivity
US10937914B1 (en) Thermal detectors using graphene and oxides of graphene and methods of making the same
US10121926B2 (en) Graphene-based detector for W-band and terahertz radiations
CN110047957B (zh) 一种中红外光探测器及其制备方法
JP6642769B1 (ja) グラフェンを用いた電子デバイスの製造方法
Selvi et al. Towards substrate engineering of graphene–silicon Schottky diode photodetectors
CN104766902A (zh) 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
Selvi et al. Graphene–silicon-on-insulator (GSOI) Schottky diode photodetectors
CN108281493B (zh) 二硒化钨和金属垂直型肖特基结自驱动光电探测器及制备
JP5441643B2 (ja) 光センサー、光センサーアレイ、光センサーの駆動方法、及び光センサーアレイの駆動方法
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
US11069868B2 (en) Semiconductor structure, semiconductor device, photodetector and spectrometer
EP2638574A1 (en) Plasmon induced hot carrier device, method for using the same, and method for manufacturing the same
CN115832108A (zh) 一种栅极可调高灵敏偏振探测器的制备方法
CN108963065B (zh) 一种激光烧蚀制备单层多层石墨烯热电探测器的方法
US8625085B2 (en) Defect evaluation method for semiconductor
CN116130529B (zh) 一种具有宽频光电响应的探测器件及其制备方法
CN110350041B (zh) 基于上下非对称栅状电极的光电导型光电探测器
CN116666498A (zh) 一种简易制备的等离激元修饰的MoS2宽光谱光敏场效应管及其制备方法
Stavarache et al. Nanostructured germanium deposited on heated substrates with enhanced photoelectric properties
Zhang et al. Edge Effect on the Photodetection Ability of the Graphene Nanocrystallites Embedded Carbon Film Coated on p‐Silicon
Zheng et al. High-performance graphene–PbS quantum dots hybrid photodetector with broadband response and long-time stability
Teker et al. Improving detectivity of self-powered GaN ultraviolet photodetector by nickel nanoparticles
JP7341373B1 (ja) 電磁波検出器、電磁波検出器アレイ及び画像センサ

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: No. 9 Wenyuan Road, Yadong New District, Nanjing, Jiangsu Province, 210012

Applicant after: Nanjing Post & Telecommunication Univ.

Applicant after: Nanjing University of Posts and Telecommunications Nantong Institute Limited

Address before: 210023 No. 9-1 Guangyue Road, Qixia Street, Qixia District, Nanjing, Jiangsu Province

Applicant before: Nanjing Post & Telecommunication Univ.

Applicant before: Nanjing University of Posts and Telecommunications Nantong Institute Limited

CB02 Change of applicant information
CB02 Change of applicant information

Address after: 226000 No. 33 Xinkang Road, Gangzhao District, Nantong City, Jiangsu Province

Applicant after: NANJING University OF POSTS AND TELECOMMUNICATIONS

Applicant after: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS INSTITUTE AT NANTONG Co.,Ltd.

Address before: 210012 9 Wen Yuan Road, Ya Dong new town, Nanjing, Jiangsu.

Applicant before: NANJING University OF POSTS AND TELECOMMUNICATIONS

Applicant before: NANJING UNIVERSITY OF POSTS AND TELECOMMUNICATIONS INSTITUTE AT NANTONG Co.,Ltd.

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant