CN112133777A - 一种核-壳结构量子点宽光谱光电探测器及其制备方法 - Google Patents

一种核-壳结构量子点宽光谱光电探测器及其制备方法 Download PDF

Info

Publication number
CN112133777A
CN112133777A CN202011014363.2A CN202011014363A CN112133777A CN 112133777 A CN112133777 A CN 112133777A CN 202011014363 A CN202011014363 A CN 202011014363A CN 112133777 A CN112133777 A CN 112133777A
Authority
CN
China
Prior art keywords
core
shell structure
layer
quantum dot
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011014363.2A
Other languages
English (en)
Inventor
郑加金
蒋军
张勇
陈焕权
余柯涵
韦玮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Posts and Telecommunications
Original Assignee
Nanjing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Posts and Telecommunications filed Critical Nanjing University of Posts and Telecommunications
Priority to CN202011014363.2A priority Critical patent/CN112133777A/zh
Publication of CN112133777A publication Critical patent/CN112133777A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035218Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种核‑壳结构量子点宽光谱光电探测器及其制备方法;所述光电探测器包括从下到上依次层叠的单晶硅衬底层、氧化硅绝缘层和石墨烯沟道层;所述石墨烯沟道层上设置有交叉周期排列的源极电极和漏极电极;所述源极电极和漏极电极的叉指之间形成石墨烯沟道;所述石墨烯沟道内旋涂有核‑壳结构量子点光敏介质层。本发明可对紫外至中红外波段的光有明显的吸收作用,其宽光谱吸收特性极大的扩展了器件的光谱响应范围,使器件具有较高的光响应度。同时,在一定频率光照射下,核‑壳结构量子点产生电子‑空穴对,在内建电场的作用下空穴转移到石墨烯中,电子被核‑壳结构量子点俘获,极大地提升了载流子的分离效率,提高了载流子的寿命。

Description

一种核-壳结构量子点宽光谱光电探测器及其制备方法
技术领域
本发明属于光电探测领域,具体涉及一种核-壳结构量子点宽光谱光电探测器及其制备方法。
背景技术
光电探测器是一种能够将光信号转变成电信号的光电器件,是光电系统的重要组成部分,一般可以简单的分为光伏型器件和光电导型器件。光电探测器在智能家居、光通信、环境与安全监测、光电集成电路等领域有着实际应用价值。其中超高灵敏度的光电探测器在现代光通信、生物医学研究、环境监测等领域有着突出的贡献。
石墨烯是由单层碳原子按照蜂窝状结构排列的二维材料,具有优异的电子学、光学、热学和力学等性质,基于这些优异的性质,引起了科研人员的广泛关注,使得石墨烯用于高频和高速电子器件,场效应晶体管和反相器成为可能。基于石墨烯的光电探测器利用的是石墨烯材料的宽光谱吸收特性、室温下超高的载流子迁移率和超快的光响应速度,使其成为制作快速光电探测器的理想材料。但由于本征石墨烯的光吸收率很小(单层石墨烯对可见光、近红外光的吸收率仅为2.3%)并且电子空穴对复合率高、寿命低等缺陷导致其光电增益很小,从而极大的限制了器件的光响应度;石墨烯的零带隙导致其无法存在开或关的状态,这也限制了石墨烯的应用。因此克服石墨烯的缺陷并提高光电探测器的性能是目前主要的研究方向。
发明内容
针对现有技术的不足,本发明的目的在于提供一种核-壳结构量子点宽光谱光电探测器及其制备方法,以解决现有技术中存在的增益和响应度较差的问题。
为达到上述目的,本发明采用的技术方案为:
一种核-壳结构量子点宽光谱光电探测器,从下到上依次为层叠的单晶硅衬底层、氧化硅绝缘层和石墨烯沟道层;所述石墨烯沟道层上设置有交叉周期性纳米结构排列的源极电极和漏极电极;所述源极电极和漏极电极的叉指之间形成石墨烯沟道;所述石墨烯沟道内旋涂有核-壳结构量子点光敏介质层。
进一步的,所述单晶硅衬底层为重掺杂N型硅衬底或重掺杂P型硅衬底;所述氧化硅绝缘层的材料为二氧化硅;所述单晶硅衬底层和氧化硅绝缘层的尺寸相同。
进一步的,所述石墨烯沟道层为单层或少层石墨烯层;所述石墨烯沟道层的厚度为0.33~3.3nm。
进一步的,所述石墨烯沟道层的面积小于氧化硅绝缘层的面积。
进一步的,所述源极电极和漏极电极的尺寸和厚度均相同;所述源极电极的电极材料为铂;所述漏极电极的电极材料为金,采用不同的金属电极可以打破源漏极间对称的电势梯度分布,提高光探测效率。
进一步的,所述核-壳结构量子点层为CdSe-ZnS、CdSe-CdS、CdS-ZnS或CdS-ZnSe核-壳结构量子点;所述核-壳结构量子点粒径为10~15nm;所述核-壳结构量子点层的厚度为30~60nm,光谱吸收范围是250~1600nm。
一种核-壳结构量子点宽光谱光电探测器的制备方法,包括以下步骤:
将单晶硅衬底层超声清洗,吹干备用;
通过热氧化法在单晶硅衬底层上制备氧化硅绝缘层;
通过增强型化学气相沉积法在铜箔上面生长石墨烯,生长完毕后腐蚀掉铜箔,将石墨烯薄膜转移到氧化硅绝缘层上;
在覆盖了石墨烯的氧化硅绝缘层上盖上一片面积比氧化硅绝缘层小的石英片,刻蚀掉石英片以外的石墨烯,保留盖有石英片区域的石墨烯,形成石墨烯沟道层;
将具有周期性交叉排列结构的金属掩膜板置于石墨烯沟道层上,通过磁控溅射设备分别在石墨烯沟道层上制备源极电极和漏极电极,所述源极电极和漏极电极的叉指之间形成石墨烯沟道;
通过旋涂法将核-壳结构量子点旋涂在石墨烯沟道上,形成核-壳结构量子点光敏介质层,得到核-壳结构量子点宽光谱光电探测器。
本发明与现有技术相比,具有如下有益效果:
1、本发明在石墨烯沟道中旋涂一层核-壳结构量子点,将石墨烯和核-壳结构量子点复合,将石墨烯极高的载流子迁移率和核-壳结构量子点材料优异的光电性能相结合,可以有效限制载流子的复合,提高了载流子的寿命,增加了器件的增益和光响应度,同时也提高了器件的灵敏度,拓宽了器件光谱探测范围。
2、本发明制备工艺简单,便于控制和节约成本,器件的电极是使用简单的磁控溅射技术来制备的,可行性高、简单可控,适合于工业生产并且所获得的器件性能优异。
附图说明
图1为本发明实施例一的基于石墨烯的核-壳结构量子点光电探测器的三维示意图;
图2为本发明实施例一的基于石墨烯的核-壳结构量子点光电探测器的俯视图;
图3为本发明实施例一的基于石墨烯的核-壳结构量子点光电探测器的光电流响应曲线。
图中标号为:1-单晶硅衬底层;2-氧化硅绝缘层;3-石墨烯沟道层;4-源极电极;5-核-壳结构量子点光敏介质层;6-漏极电极。
具体实施方式
为了使本技术领域的人员可以更好地理解本发明方案,下面结合本发明实例中的附图,对本发明实例中的技术方案进行清楚、完整的描述。这些实施例仅是应用本发明技术方案的典型范例,凡采取等同替换或者等效变换而形成的技术方案,均落在本发明要求保护的范围之内。
实施例1
如图1、图2所示,本发明揭示了一种核-壳结构量子点宽光谱光电探测器及其制备方法,该光电探测器包括单晶硅衬底层1、氧化硅绝缘层2、石墨烯沟道层3、源极电极4、核-壳结构量子点光敏介质层5和漏极电极6;所述单晶硅衬底层1、氧化硅绝缘层2、石墨烯沟道层3从下到上是层叠的,源极电极4和漏极电极6是以交叉周期性纳米结构排列在石墨烯沟道层3上;核-壳结构量子点光敏介质层5通过旋涂法旋涂在源极电极4和漏极电极6的叉指之间。
所述硅衬底层1为重掺杂N型硅衬底或重掺杂P型硅衬底,衬底尺寸为10×10mm2,厚度为200~300μm,优选为300μm。
所述氧化硅绝缘层2的材料为二氧化硅,氧化硅绝缘层2的尺寸也为10×10mm2,厚度为250~400nm,优选为300nm。二氧化硅绝缘层可以减少单晶硅表面态的影响,使得器件在较小的偏压下就可以正常工作。
所述石墨烯沟道层3是单层或少层石墨烯层,层数为1~10层,厚度为0.33~3.3nm,石墨烯沟道层3的吸收光谱为从紫外到太赫兹波段范围,在铜衬底上载流子迁移率为2×105cm2/Vs,在二氧化硅衬底上载流子迁移率达10000cm2/Vs,电导率能为106S/m,面电阻为30-50Ω/Sq;石墨烯是通过增强型化学沉积法在铜箔上面生长制得,生长完毕后腐蚀掉铜箔,将石墨烯薄膜转移至氧化硅绝缘层上,形成石墨烯沟道层3,基于这一点石墨烯是完全覆盖在二氧化硅绝缘层上的,这很有可能使边缘石墨烯与栅电极接触而导通,进而影响器件的性能。为了解决这一问题,在覆盖了石墨烯的衬底上盖上一片面积比衬底小的石英片,使用光刻技术进行刻蚀处理,刻蚀掉边缘石墨烯,仅保留盖有石英片区域的石墨烯。
所述源极电极4和漏极电极6的尺寸和厚度均相同。源极电极和漏极电极的厚度均为50~150nm,优选为100nm,相邻源极和漏极叉指之间距离为100~500 nm,优选为200nm,周期性纳米结构源极和漏极的长宽尺寸为150×50μm2。所述源极电极4和漏极电极6为不同的金属薄膜电极,金属可以是金、银、铂、铜或铝,不同的金属电极可以打破源漏极间对称的电势梯度分布,提高光探测效率;优选的源极电极4的电极材料为铂,漏极电极6的电极材料为金。
所述核-壳结构量子点层5可以是CdSe-ZnS、CdSe-CdS、CdS-ZnS或CdS-ZnSe核-壳结构量子点,量子点粒径为10~15nm,薄膜厚度为30~60nm,核-壳结构量子点具有强烈的宽光谱吸收特性,光谱吸收范围250nm-1600nm,此外还具有透明性好、稳定性高、带隙可调等特点,是一种良好的光敏材料;在本实施例中用旋涂法将CdSe-ZnS核-壳结构量子点均匀的旋涂在石墨烯沟道上,形成核-壳结构量子点光敏介质层。
一种核-壳结构量子点宽光谱光电探测器及其制备方法,其制备方法包括以下步骤:
S1:提供重掺杂P型硅或重掺杂N型硅衬底1,用丙酮、酒精和去离子水分别超声清洗10min,然后用氮气吹干备用;
S2:在S1步骤中处理的硅基片上用热氧化法生长一层SiO2薄膜作为绝缘层2;
S3:用增强型化学气相沉积法在铜箔上面生长石墨烯,生长完毕后腐蚀掉铜箔,将石墨烯薄膜转移到基片上,作为石墨烯层3;
S4:在覆盖了石墨烯的衬底上盖上一片面积比衬底小的石英片,使用光刻技术进行刻蚀处理,刻蚀掉外圈的石墨烯,仅保留盖有石英片区域的石墨烯,这一步杜绝了边缘石墨烯与栅极接触,保证了石墨烯层的绝缘性;
S5:将具有周期性交叉排列结构的金属掩膜板置于石墨烯上,利用磁控溅射设备分别将两种金属材料沉积在石墨烯层上,形成场效应晶体管的源极电极4和漏极电极6,所述源极电极和漏极电极的材料是两种不同的金属,源极材料用铂,漏极材料用金,两电极的厚度相同均为100nm,相邻源极和漏极叉指之间的距离为200nm,周期性纳米结构源极和漏极的长宽尺寸为150×50μm2
S6:最后在步骤S5的基础上利用旋涂法将CdSe-ZnS核-壳结构量子点均匀的旋涂在石墨烯沟道上,形成核-壳结构量子点光敏介质层5,静置晾干后得到核-壳结构量子点宽光谱光电探测器。
对制备好的器件进行光电探测性能测试,用中心波长400nm、功率为1mW的激光器作为光源,控制源漏极之间电压Vds=1mV时,利用微电流计记录探测器在有光照和没光照时的漏极电流,如图3所示,图中横坐标time为时间,纵坐标photocurrent为漏极电流Ids。从开始记录time为0到8.5s时,这一段时间内没有光照,此时漏极电流Ids从4.58mA一直下降到4.44mA,并稳定在4.44mA处,随后用激光器对器件进行照射,漏极电流在8.5s到8.94s间迅速从4.44mA上升到4.58mA,并在持续照射的8s内保持稳定,这一现象表明了器件在有光照的情况下能有效的将光信号转化为电信号,实现了对入射光的有效探测;在time为17s时关闭激光器,之后漏极电流逐渐减小,最后恢复到没有光照时的电流值,这表明CdSe-ZnS核-壳结构量子点与石墨烯沟道之间的电荷转移停止。如此反复多次,器件的漏极电流变化情况与上述情况相同,这表明所制得的器件光响应性能良好。
核-壳结构量子点具有宽光谱吸收、透明性好、带隙可调、稳定性高等特性,使得其与块体半导体材料有着不同的光学性能,由于壳材料的包覆可以有效改变核量子点的特性,例如提高热稳定性和光学稳定性,使得量子点整体的稳定性和分散性增加。如硫化镉包覆硒化铬(CdSe-CdS),硫化锌包覆硒化铬(CdSe-ZnS)等,在这一类核-壳结构量子点中,壳材料的带隙比核材料的带隙宽,由于核的导带和价带边缘都位于壳的能隙内,使得电子和空穴都被限制在核的区域内,阻止了光生载流子的逃逸,可以有效提高载流子寿命。并且核-壳结构量子点能够保护核量子点免受周围环境的影响,改善了物理和化学性质,进而提高了半导体器件的性能。
将石墨烯与核-壳结构量子点材料相复合,是利用了石墨烯高的载流子迁移率和核-壳结构量子点带隙可调、宽光谱吸收、对电子具有长俘获寿命等特性,可以有效抑制载流子的复合,提高载流子的寿命,同时拓宽了器件的响应光谱,提高了光电探测器的性能。
本发明可对紫外至中红外波段的光有明显的吸收,其宽光谱吸收特性极大的扩展了器件的光谱响应范围,使器件具有较高的光响应率。同时,在一定频率光照射下,核-壳结构量子点产生电子-空穴对,在内建电场的作用下空穴转移到石墨烯中,电子被核-壳结构量子点俘获,极大地提升了载流子的分离效率,提高了载流子的寿命,增加了器件的光电流增益,使得器件的响应度和灵敏度得到显著的提高。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作各种的更动与润饰。因此,本发明的保护范围当视权利要求书所界定者为准。

Claims (7)

1.一种核-壳结构量子点宽光谱光电探测器,其特征在于,包括从下到上依次层叠的单晶硅衬底层、氧化硅绝缘层和石墨烯沟道层;所述石墨烯沟道层上设置有交叉周期性纳米结构排列的源极电极和漏极电极;所述源极电极和漏极电极的叉指之间形成石墨烯沟道;所述石墨烯沟道内旋涂有核-壳结构量子点光敏介质层。
2.根据权利要求1所述的一种核-壳结构量子点宽光谱光电探测器,其特征在于,所述单晶硅衬底层为重掺杂N型硅衬底或重掺杂P型硅衬底;所述氧化硅绝缘层的材料为二氧化硅;所述单晶硅衬底层和氧化硅绝缘层的尺寸相同。
3.根据权利要求1所述的一种核-壳结构量子点宽光谱光电探测器,其特征在于,所述石墨烯沟道层为单层或少层石墨烯;所述石墨烯沟道层的厚度为0.33~3.3nm。
4.根据权利要求1所述的一种核-壳结构量子点宽光谱光电探测器,其特征在于,所述石墨烯沟道层的面积小于氧化硅绝缘层的面积。
5.根据权利要求1所述的一种核-壳结构量子点宽光谱光电探测器,其特征在于,所述源极电极和漏极电极的尺寸和厚度均相同;所述源极电极的电极材料为铂;所述漏极电极的电极材料为金。
6.根据权利要求1所述的一种核-壳结构量子点宽光谱光电探测器,其特征在于,所述核-壳结构量子点层为CdSe-ZnS、CdSe-CdS、CdS-ZnS或CdS-ZnSe核-壳结构量子点;所述核-壳结构量子点粒径为10~15nm;所述核-壳结构量子点层的厚度为30~60nm,光谱吸收范围是250~1600nm。
7.一种核-壳结构量子点宽光谱光电探测器的制备方法,其特征在于,包括以下步骤:
将单晶硅衬底层超声清洗,吹干备用;
通过热氧化法在单晶硅衬底层上制备氧化硅绝缘层;
通过增强型化学气相沉积法在铜箔表面生长石墨烯,生长完毕后腐蚀掉铜箔,将石墨烯薄膜转移到氧化硅绝缘层上;
在覆盖了石墨烯的氧化硅绝缘层上盖上一片面积比氧化硅绝缘层小的石英片,刻蚀掉石英片以外的石墨烯,保留盖有石英片区域的石墨烯,形成石墨烯沟道层;
将具有周期性交叉排列结构的金属掩膜板置于石墨烯沟道层上,通过磁控溅射设备分别在石墨烯沟道层上制备源极电极和漏极电极,在所述源极电极和漏极电极的叉指之间形成石墨烯沟道;
通过旋涂法将核-壳结构量子点旋涂在石墨烯沟道上,形成核-壳结构量子点光敏介质层,得到核-壳结构量子点宽光谱光电探测器。
CN202011014363.2A 2020-09-24 2020-09-24 一种核-壳结构量子点宽光谱光电探测器及其制备方法 Pending CN112133777A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011014363.2A CN112133777A (zh) 2020-09-24 2020-09-24 一种核-壳结构量子点宽光谱光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011014363.2A CN112133777A (zh) 2020-09-24 2020-09-24 一种核-壳结构量子点宽光谱光电探测器及其制备方法

Publications (1)

Publication Number Publication Date
CN112133777A true CN112133777A (zh) 2020-12-25

Family

ID=73839214

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011014363.2A Pending CN112133777A (zh) 2020-09-24 2020-09-24 一种核-壳结构量子点宽光谱光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112133777A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713205A (zh) * 2021-03-29 2021-04-27 南昌凯迅光电有限公司 一种高抗辐照三结砷化镓太阳电池及其制备方法
CN113270510A (zh) * 2021-04-29 2021-08-17 深圳大学 一种光电传感器芯片及其制备方法与光电传感器
CN113471310A (zh) * 2021-06-25 2021-10-01 华南师范大学 一种基于混维体系的高增益光探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943713A (zh) * 2014-04-02 2014-07-23 天津大学 一种量子点/石墨烯光敏场效应管及其制备方法
CN105280710A (zh) * 2014-06-17 2016-01-27 三星电子株式会社 包括石墨烯和量子点的电子装置
CN108198897A (zh) * 2017-12-12 2018-06-22 南京邮电大学 一种石墨烯场效应晶体管量子点光电探测器及其制备方法
CN110047957A (zh) * 2019-04-01 2019-07-23 南京邮电大学 一种中红外光探测器及其制备方法
CN110864805A (zh) * 2019-10-24 2020-03-06 北京大学 超宽带光谱探测装置和方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943713A (zh) * 2014-04-02 2014-07-23 天津大学 一种量子点/石墨烯光敏场效应管及其制备方法
CN105280710A (zh) * 2014-06-17 2016-01-27 三星电子株式会社 包括石墨烯和量子点的电子装置
CN108198897A (zh) * 2017-12-12 2018-06-22 南京邮电大学 一种石墨烯场效应晶体管量子点光电探测器及其制备方法
CN110047957A (zh) * 2019-04-01 2019-07-23 南京邮电大学 一种中红外光探测器及其制备方法
CN110864805A (zh) * 2019-10-24 2020-03-06 北京大学 超宽带光谱探测装置和方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JENRETTE, E 等: "Quantum-dot-conjugated graphene oxide as an optical tool for biosensor", 《OPTICS EXPRESS》 *
YI-LIN SUN等: "Hybrid graphene/cadmium-free ZnSe/ZnS quantum dots phototransistors for UV detection", 《SCIENTIFIC REPORTS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112713205A (zh) * 2021-03-29 2021-04-27 南昌凯迅光电有限公司 一种高抗辐照三结砷化镓太阳电池及其制备方法
CN113270510A (zh) * 2021-04-29 2021-08-17 深圳大学 一种光电传感器芯片及其制备方法与光电传感器
CN113471310A (zh) * 2021-06-25 2021-10-01 华南师范大学 一种基于混维体系的高增益光探测器及其制备方法

Similar Documents

Publication Publication Date Title
CN108281554B (zh) 一种量子点结构光电探测器及其制备方法
CN112133777A (zh) 一种核-壳结构量子点宽光谱光电探测器及其制备方法
CN103346199B (zh) 基于单层石墨烯/氧化锌纳米棒阵列肖特基结的紫外光电探测器及其制备方法
US9583655B2 (en) Method of making photovoltaic device having high quantum efficiency
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN105720197A (zh) 一种自驱动宽光谱响应硅基杂化异质结光电传感器及其制备方法
Yin et al. Rear point contact structures for performance enhancement of semi-transparent ultrathin Cu (In, Ga) Se2 solar cells
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response
Zhou et al. A full transparent high-performance flexible phototransistor with an ultra-short channel length
Bagheri et al. Efficient heterojunction thin film CdSe solar cells deposited using thermal evaporation
CN111081886B (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
KR20110107934A (ko) 탄소나노튜브/ZnO 투명태양전지 및 그 제조방법
KR20100109306A (ko) 태양전지 및 이의 제조방법
KR101629690B1 (ko) 터널링 금속­금속산화물­금속 핫전자 에너지 소자
EP4250372A1 (en) Material structure for a solar cell, a solar cell comprising the same and a method for manufacturing the material structure
CN113555461B (zh) 一种基于SiC和二硒化钨异质结的光电二极管及其制备方法
KR102224576B1 (ko) 무기 박막 태양전지
CN116825878B (zh) 一种面外p-n结面内自发电极化二维体光伏材料及其制备方法和应用
KR101370554B1 (ko) 박막 태양전지
Li et al. Research on heterogeneous composite thin film ultraviolet detector based on self-depletion effect
Zhu et al. Research on TiO2/NiO heterogeneous composite thin film ultraviolet detector based on self-depletion effect
CN115332374A (zh) 一种二类二维异质结层间激发态光吸收跃迁增强的器件
JP4886116B2 (ja) 電界効果型の太陽電池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20201225

RJ01 Rejection of invention patent application after publication