CN116364801A - 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用 - Google Patents

一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用 Download PDF

Info

Publication number
CN116364801A
CN116364801A CN202310116999.5A CN202310116999A CN116364801A CN 116364801 A CN116364801 A CN 116364801A CN 202310116999 A CN202310116999 A CN 202310116999A CN 116364801 A CN116364801 A CN 116364801A
Authority
CN
China
Prior art keywords
inse
heterojunction
gamma
mixed
window
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310116999.5A
Other languages
English (en)
Inventor
杨宝翔
高伟
霍能杰
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202310116999.5A priority Critical patent/CN116364801A/zh
Publication of CN116364801A publication Critical patent/CN116364801A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于宽谱偏振光探测领域,公开了一种基于γ‑InSe/Ge混维异质结的光电二极管及其制备方法和应用,所述混维异质结的光电二极管的结构为漏电极/InSe/Ge垂直异质结/源电极;该光电二极管是先在Ge衬底上沉积SiO2介质层,利用光刻和刻蚀在SiO2介质层上获得Ge窗口,随后光刻显影出电极图案并沉积金属得到源电极和漏电极,再将InSe纳米片转移至Ge窗口上形成InSe/Ge混维异质结,在惰性气体中100~150℃退火处理制得。该光电二极管在400~1600nm波长内具有优异的自驱动光响应和宽波段偏振光探测的性能,可用于超快宽谱探测,偏振光探测和近红外成像等领域。

Description

一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法 和应用
技术领域
本发明属于混维范德瓦尔斯异质结宽波段偏振灵敏光探测技术领域,更具体地,涉及一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用。
背景技术
二维材料由于其独特的物理特性,很快在光电子器件领域很快成为焦点之一。有一种材料只有几个原子厚度,几乎与石墨烯一样薄,拥有比硅更优异的电学性能,被证明是用于太阳能转换的优异选择。层状IIIA-VIA族半导体InSe具有极大的超高载流子迁移率,强大的电传输特性,和宽吸收光谱。它已相应地被纳入各种功能器件,如纳米电子器件、光电器件和存储器件。由于其层间较弱的范德瓦尔斯相互作用,InSe可以沿c方向以不同的序列堆叠。形成三种晶体结构,六方β-InSe,ε-InSe呈现AB堆积,而菱面体γ-InSe呈现ABC堆积。γ-InSe的带隙取决于层数,在体γ-InSe中直接带隙为1.26eV,而间接带隙为2.11eV,直到单层极限。此外,镜面对称存在于单层InSe中,而反转对称存在于少数层中,产生非线性光学现象,如二次谐波产生。
基于γ-InSe的光电器件有很多,有基于单一材料制备的,虽然光响应较快,但需要额外的电压,例如,根据之前的研究表明,γ-InSe是一种具有各向异性的二维材料,具有打破反转对称性和方向依赖性。γ-InSe可以吸收从可见光到近红外光的宽带光谱,其载流子迁移率高达221cm2V-1s-1。基于γ-InSe的器件在1V偏压下可以表现出高达127A/W的光响应度和104%的外部量子效率,光电流分色比为2.06,由此可知,二维材料的载流子寿命短和光吸收的限制。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明目的在于提供一种γ-InSe/Ge混维异质结光电二极管。该光电二极管是将γ-InSe纳米片和三维Ge结合,组成InSe/Ge混维异质结的P-N光电二极管。在p-Ge和n-InSe界面处形成内建电场,构成II型能带排列,从而可以抑制暗电流并加速光生载流子的分离。基于γ-InSe/Ge异质结的光电探测器呈现出偏振敏感、宽谱响应和高性能自供电光电探测的优势,具有良好的可见-近红外光探测能力、良好的空气稳定性,并在1550nm波长下具有高光灵敏度(9.8A/W)、快速响应时间(25μs-30μs)和高比探测率(5.38×1011Jones)。
本发明的另一目的在于提供上述γ-InSe/Ge异质结光电二极管的制备方法。该方法是将机械剥离的γ-InSe纳米片依次通过PVA干法转移到Ge基底上形成范德瓦尔斯异质结,并利用光刻蒸镀技术制备成光电晶体管。克服了二维材料的载流子寿命短和光吸收的限制,二维材料和传统半导体材料组成混维异质结。在这些异质结中,光吸收主要发生在半导体材料中,而二维材料通常作为光载流子分离和传输的活性层,而且这些异质结的结构简单易于制备。
本发明的目的通过下述技术方案来实现:
一种基于γ-InSe/Ge混维异质结的光电二极管,所述混维异质结的光电二极管的结构为漏电极/InSe/Ge垂直异质结/源电极,所述异质结的光电二极管是在清洗过的Ge衬底上沉积介质层SiO2薄膜,再在介质层SiO2上光刻Ge窗口,并置于缓冲氧化刻蚀液液中浸泡使Ge窗口刻蚀深度至Ge表面;经紫外曝光分别在Ge窗口和介质层SiO2上光刻源电极和漏电极图案并蒸镀金属,在保护气氛下100~150℃退火处理制得源电极和漏电极;将剥离的InSe纳米片转移到Ge窗口上,InSe纳米片一部分与介质层SiO2接触,另一部分与Ge窗口接触形成InSe/Ge垂直异质结;Ge窗口与源电极、InSe纳米片和介质层SiO2接触;漏电极与InSe纳米片和介质层SiO2接触,然后在惰性气体中100~150℃退火处理制得。
优选地,所述的Ge衬底为P型掺杂Ge衬底,InSe为N型掺杂的γ-InSe。
优选地,所述介质层SiO2的厚度为100~300nm;所述InSe纳米片的厚度为10~300nm。
优选地,所述源电极和漏电极的金属为Au或表面有Au的金属组合,Au的厚度为50~100nm。
更为优选地,所述表面有Au的金属组合为Cr和Au。
优选地,所述退火处理的时间均为20~50min;所述保护气氛为氮气或氩气,所述惰性气体为氩气。
所述的基于γ-InSe/Ge混维异质结的光电二极管的制备方法,包括以下具体步骤:
S1.将Ge衬底用BOE溶液浸泡,然后依次使用丙酮、异丙醇、乙醇和去离子水超声清洗,再用氮气吹干,制得无表面氧化层的Ge衬底;
S2.利用PECVD在Ge衬底上沉积介质层SiO2薄膜使之完全覆盖;
S3.利用紫外激光直写光刻在沉积介质层SiO2的Ge衬底上光刻出窗口图案,再置于BOE中浸泡,刻蚀掉表面介质层,制得Ge窗口;
S4.通过紫外激光直写光刻分别在Ge窗口和介质层SiO2上曝光显影出源电极和漏电极图案,再利用电子束蒸发和热蒸发蒸镀金属,经过丙酮溶脱光刻胶,在氮气或氩气气氛中100~150℃退火,得到源电极和漏电极;
S5.利用PVA干法转移将机械剥离的InSe纳米片转移至Ge窗口上,所述InSe纳米片一部分与漏电极和介质层SiO2接触,另一部分和Ge窗口接触,获得γ-InSe/Ge混维异质结;
S6.将上述整体在氩气气氛中100~150℃退火,制得基于γ-InSe/Ge混维异质结的光电二极管。
优选地,步骤S3中所述Ge窗口的面积为410~450μm2
所述的基于γ-InSe/Ge异质结的光电二极管在宽光谱、偏振灵敏的光电探测器或近红外成像领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的基于γ-InSe/Ge混维异质结光电二极管,采用二维InSe纳米片和三维Ge材料结合的γ-InSe/Ge混维异质结,构建的p-n结光电晶体管,可以形成II型能带排列,使得该光电二极管在可见光-近红外光照射下,γ-InSe/Ge异质结耗尽区产生大量电子-空穴对,可以在零偏压和负偏压下得到快速分离,从而实现了高性能光电探测。
2.本发明的InSe/Ge混维异质结光电二极管对400~1600nm波段有良好的光吸收,拓展了Ge的宽谱探测范围,还增强了可见光-红外光范围的探测能力。
3.本发明的InSe纳米片具有面内各向异性,高载流子迁移率和高的光响应度,有助于实现宽波段的偏振敏感光探测功能。
4.本发明的基于γ-InSe/Ge混维异质结的光电二极管具有优异的1550nm光电性能,其光响应度变化范围在5.09~9.8A/W,上升时间为25μs,下降时间为30μs,比探测率D*变化范围在2.81~5.3×1011Jones;光功率密度范围在0.63~26.91mW/cm2。以上优势使得本发明可广泛应用于红外探测、红外成像、光谱学、电信等领域。
附图说明
图1为本发明的基于γ-InSe/Ge混维异质结的光电二极管的制备流程图;
图2为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管的三维结构示意图;
图3为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管的光学显微镜图;
图4为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管在1550nm激光照射下的电流-电压曲线和-1V~1V的电流电压曲线中电流的对数坐标图;
图5为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管在1550nm激光照射下的电流-时间曲线;
图6为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管的性能表征曲线;
图7为实施例1基于γ-InSe/Ge混维异质结的光电二极管在405nm激光下,零偏压照射下不同角度的时间电流曲线和在10kHz的1550nm激光下,零偏压照射下不同角度的时间电流响应曲线;
图8为实施例2制得的基于γ-InSe/Ge混维异质结的光电二极管的光学显微镜图片;
图9为实施例2制得的基于γ-InSe/Ge混维异质结在原子力显微镜下测得γ-InSe的厚度曲线和在1550nm不同光功率照射下外量子效率和光开关比随光功率变化曲线;
图10为实施例3基于γ-InSe/Ge混维异质结的光电二极管中铟锡、锗和InSe/Ge异质结的拉曼峰位图谱;
图11为实施例3基于γ-InSe/Ge混维异质结的光电二极管在808nm激光下,零偏压照射下不同角度的时间电流曲线和在1550nm激光下,零偏压照射下不同角度的时间电流曲线。
具体实施方式
下面结合具体实施例进一步说明本发明的内容,但不应理解为对本发明的限制。若未特别指明,实施例中所用的技术手段为本领域技术人员所熟知的常规手段。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。
实施例1
图1为本发明的基于γ-InSe/Ge混维异质结的光电二极管制备流程图,如图1所示,包括以下具体步骤:
1.利用紫外激光直写光刻工艺在SiO2/Ge衬底上光刻一个50×110μm2的窗口,再置于BOE溶液中浸泡使暴露的SiO2层窗口完整被刻蚀,去离子水多次清洗,氮气枪吹干,制得Ge窗口;
2.将光刻胶旋涂到Ge衬底上,通过无掩模板紫外激光直写系统分别在Ge窗口和介质层SiO2上分别制备源电极和漏电极图案;
3.利用电子束镀膜仪蒸镀金属10nmCr/50nmAu,丙酮溶解光刻胶和上面的金属膜,然后在氩气中中150℃退火20min,制备源电极和漏电极;
4.通过光学显微镜选择厚度约为100nm的机械剥离的γ-InSe纳米片,通过三维微区转移平台和PVA干法转移工艺先转移γ-InSe纳米片到Ge窗口上,置于氩气中在100℃退火20min,制得基于γ-InSe/Ge混维异质结的光电二极管。
对基于γ-InSe/Ge异质结的光电二极管进行光电性能方面的测试,再测试高频和单点成像。图2为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管的三维结构示意图。从图2可知,该光电二极管由γ-InSe/Ge混维异质结、源电极和漏电极构成。其中需特别说明的是,γ-InSe纳米片覆盖到Ge窗口上与Ge接触,在垂直方向上构成γ-InSe/Ge垂直异质结。
图3为实施例1制得的基于γ-InSe/Ge混维异质结的光电二极管的光学显微镜图。从图3可知,混维异质结的光电二极管的结构为漏电极/InSe/Ge垂直异质结/源电极。图4为实施例1的基于γ-InSe/Ge异质结的光电二极管在1550nm光照下的电流-电压曲线(a)和基于γ-InSe/Ge异质结的光电二极管的电流-电压曲线的对数图(b),从图4中可知,电压从-0.01V~0.04V,光功率密度沿箭头方向从0.63mW/cm2增大到26.91mW/cm2;说明该基于γ-InSe/Ge异质结的光电二极管在零偏压下,具有良好的光伏效应。在1550nm光照射下,随着光功率密度增大,电流随之增大,说明该光电二极管有明显的光伏效应和光电导效应。图5为实施例1的基于γ-InSe/Ge异质结的光电二极管在1550nm激光照射下的电流-时间关系曲线图,光功率密度为34.76mW/cm2,偏压为0V。从图5中可知,该γ-InSe/Ge混维异质结的光电二极管的有较低的暗态电流和较快的响应速度。图6为实施例1制得的基于γ-InSe/Ge异质结的光电二极管在1550nm激光下的光电特性分析。其中,(a)在0V偏压下,1550nm的不同光功率照射下的光电流大小随光功率密度变化的曲线图;(b)在0V偏压下,1550nm的不同光功率照射下的光响应度和比探测率随光功率密度变化的曲线图;(c)在0V偏压下,1550nm的不同光功率照射下的输出功率和电压随光功率密度变化的曲线图;(d)在1550nm不同光功率照射下填充因子和光电转换效率随光功率密度变化曲线图。从图6中可知,该γ-InSe/Ge异质结的光电二极管在1550nm下展现出优异的自驱动光电性能,其中最大光响应度、最大外量子效率、比探测率分别达到9.8A·W-1、408%、5.45×1011Jones。综上所述,该基于γ-InSe/Ge异质结的光电二极管在1550nm下具有优异的光探测性能。图7为实施例1在405nm激光下,零偏压照射下不同角度的时间电流曲线(a)和在10kHz的1550nm激光下,零偏压照射下不同角度的时间电流响应曲线(b)。从图7可知,γ-InSe/Ge异质结在405nm激光下都有偏振效应,异质结上升和下降时间分别为25μs和30μs。说明该基于γ-InSe/Ge异质结的光电二极管具有良好的405nm偏振灵敏光探测能力,还有较好的光响应速度和宽光谱探测范围。
实施例2
与实施例1不同的在于:所述的γ-InSe/Ge混维异质结的面积为440μm2
图8为实施例2制得的γ-InSe/Ge混维异质结光电二极管的光学显微镜图片。从图8可知,异质结结区面积和图3不同,会导致性能不同,面积大的光响应和光伏会较强。图9为实施例2制得的γ-InSe/Ge混维异质结在原子力显微镜下测得γ-InSe的厚度曲线图(a)和在1550nm不同光功率照射下外量子效率和光开关比随光功率变化曲线图(b)。从图9中可知,γ-InSe纳米片的厚度为121nm,γ-InSe/Ge异质结在1550nm激光下都有偏振效应,说明该光电二极管具有良好的1550nm偏振灵敏光探测能力,还有较好的光响应速度和宽光谱探测范围。
实施例3
与实施例1不同的在于:所述的γ-InSe纳米片的厚度约为133nm。
图10为实施例3的基于γ-InSe/Ge混维异质结光电二极管中InSe纳米片、Ge和γ-InSe/Ge异质结的拉曼峰位图谱。从图10可知,单一材料和异质结的拉曼峰与文献报道的一致。图11为实施例3的基于γ-InSe/Ge混维异质结光电二极管在808nm激光下,零偏压照射下不同角度的时间电流曲线图(a)和在1550nm激光下,零偏压照射下不同角度的时间电流曲线(b)。从图11中可知,基于γ-InSe/Ge混维异质结和单一材料都具有明显的峰位,且在808nm和1550nm下都具有明显的偏振灵敏光探测性能。在零偏压下,γ-InSe/Ge混维异质结的高性能的光响应和宽波段的偏振灵敏光探测能力。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、替代、组合,修饰和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

1.一种基于γ-InSe/Ge混维异质结的光电二极管,其特征在于,所述混维异质结的光电二极管的结构为漏电极/InSe/Ge垂直异质结/源电极,所述异质结的光电二极管是在清洗过的Ge衬底上沉积介质层SiO2薄膜使之完全覆盖,再在介质层SiO2上光刻Ge窗口,并置于缓冲氧化刻蚀液液中浸泡使Ge窗口刻蚀深度至Ge表面;经紫外曝光分别在Ge窗口和介质层SiO2上光刻源电极和漏电极图案并蒸镀金属,在保护气氛下100~150℃退火处理制得源电极和漏电极;将剥离的InSe纳米片转移到Ge窗口上,InSe纳米片一部分与介质层SiO2接触,另一部分与Ge窗口接触形成InSe/Ge垂直异质结;Ge窗口与源电极、InSe纳米片和介质层SiO2接触;漏电极与InSe纳米片和介质层SiO2接触,然后在惰性气体中100~150℃退火处理制得。
2.根据权利要求1所述的基于γ-InSe/Ge混维异质结的光电二极管,其特征在于,所述的Ge衬底为P型掺杂Ge衬底,InSe为N型掺杂的γ-InSe。
3.根据权利要求1所述的基于γ-InSe/Ge混维异质结的光电二极管,其特征在于,所述介质层SiO2的厚度为100~300nm;所述InSe纳米片的厚度为10~300nm。
4.根据权利要求1所述的基于γ-InSe/Ge混维异质结的光电二极管,其特征在于,所述源电极和漏电极的金属为Au或表面有Au的金属组合,Au的厚度为50~100nm。
5.根据权利要求4所述的基于γ-InSe/Ge混维异质结的光电二极管,其特征在于,所述表面有Au的金属组合为Cr和Au。
6.根据权利要求1所述的基于γ-InSe/Ge混维异质结的光电二极管,其特征在于,所述退火处理的时间均为20~50min;所述保护气氛为氮气或氩气,所述惰性气体为氩气。
7.根据权利要求1-6任一项所述的基于γ-InSe/Ge混维异质结的光电二极管的制备方法,其特征在于,包括以下具体步骤:
S1.将Ge衬底用BOE溶液浸泡,然后依次使用丙酮、异丙醇、乙醇和去离子水超声清洗,再用氮气吹干,制得无表面氧化层的Ge衬底;
S2.利用PECVD在Ge衬底上沉积介质层SiO2薄膜使之完全覆盖;
S3.利用紫外激光直写光刻在沉积介质层SiO2的Ge衬底上光刻出窗口图案,再置于BOE中浸泡,刻蚀掉表面介质层,制得Ge窗口;
S4.通过紫外激光直写光刻分别在Ge窗口和介质层SiO2上曝光显影出源电极和漏电极图案,再利用电子束蒸发和热蒸发蒸镀金属,经过丙酮溶脱光刻胶,在氮气或氩气气氛中100~150℃退火,得到源电极和漏电极;
S5.利用PVA干法转移将机械剥离的InSe纳米片转移至Ge窗口上,所述InSe纳米片一部分与漏电极和介质层SiO2接触,另一部分和Ge窗口接触,获得γ-InSe/Ge混维异质结;
S6.将上述整体在氩气气氛中100~150℃退火,制得基于γ-InSe/Ge混维异质结的光电二极管。
8.根据权利要求7所述的基于γ-InSe/Ge混维异质结的光电二极管的制备方法,其特征在于,步骤S3中所述Ge窗口的面积为410~450μm2
9.权利要求1-6任一项所述的基于γ-InSe/Ge异质结的光电二极管在宽光谱,偏振灵敏的光电探测器或近红外成像领域中的应用。
CN202310116999.5A 2023-02-15 2023-02-15 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用 Pending CN116364801A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310116999.5A CN116364801A (zh) 2023-02-15 2023-02-15 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310116999.5A CN116364801A (zh) 2023-02-15 2023-02-15 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN116364801A true CN116364801A (zh) 2023-06-30

Family

ID=86905911

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310116999.5A Pending CN116364801A (zh) 2023-02-15 2023-02-15 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN116364801A (zh)

Similar Documents

Publication Publication Date Title
Cao et al. Multicolor broadband and fast photodetector based on InGaAs–Insulator–graphene hybrid heterostructure
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN110047957B (zh) 一种中红外光探测器及其制备方法
CN107833940B (zh) 一种基于二维二硫化钼-二硫化铼异质结的光电子器件、制备方法及应用
Yang et al. Light trapping in conformal graphene/silicon nanoholes for high-performance photodetectors
Ali et al. High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor
Xu et al. Light Trapping and Down‐Shifting Effect of Periodically Nanopatterned Si‐Quantum‐Dot‐Based Structures for Enhanced Photovoltaic Properties
Ye et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity
Tong et al. Plasmonic-enhanced Si Schottky barrier solar cells
Chen et al. Enhanced photoresponsivity in carbon quantum dots-coupled graphene/silicon Schottky-junction photodetector
An et al. Flexible titanium nitride/germanium-tin photodetectors based on sub-bandgap absorption
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Xu et al. Surface engineering in SnO2/Si for high-performance broadband photodetectors
Weng et al. Preparation and performance enhancement study of organic ZnO/Au/PEDOT: PSS heterojunction UV photodetector
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response
Mathews et al. Near IR photodiodes with tunable absorption edge based on Ge1-y Sny alloys integrated on silicon
Li et al. InAs nanowire arrays for room-temperature ultra-broadband infrared photodetection
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
Chakrabarty et al. Enhanced performance of hybrid self-biased heterojunction photodetector on soft-lithographically patterned organic platform
Rabha et al. Pyro-phototronics mediated ultraviolet visible radiation sensing in Al/nanostructured porous silicon multilayered Schottky photovoltaic device
Chaoudhary et al. Broadband self-powered photodetection with p-NiO/n-Si heterojunctions enhanced with plasmonic Ag nanoparticles deposited with pulsed laser ablation
CN116364801A (zh) 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
Ghadakchi et al. Reduced graphene oxide/silicon nanowire heterojunction for high sensitivity and broadband photodetector
Zhang et al. Vertical Schottky ultraviolet photodetector based on graphene and top–down fabricated GaN nanorod arrays

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination