CN113964230A - 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用 - Google Patents

一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用 Download PDF

Info

Publication number
CN113964230A
CN113964230A CN202111093985.3A CN202111093985A CN113964230A CN 113964230 A CN113964230 A CN 113964230A CN 202111093985 A CN202111093985 A CN 202111093985A CN 113964230 A CN113964230 A CN 113964230A
Authority
CN
China
Prior art keywords
gaas
selenide sulfide
stannous selenide
sulfide nanosheet
photodiode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202111093985.3A
Other languages
English (en)
Inventor
高伟
黄颖
杨孟孟
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202111093985.3A priority Critical patent/CN113964230A/zh
Publication of CN113964230A publication Critical patent/CN113964230A/zh
Priority to US17/889,703 priority patent/US20230098095A1/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • H01L31/02325Optical elements or arrangements associated with the device the optical elements not being integrated nor being directly associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0296Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe
    • H01L31/02966Inorganic materials including, apart from doping material or other impurities, only AIIBVI compounds, e.g. CdS, ZnS, HgCdTe including ternary compounds, e.g. HgCdTe
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • H01L31/0324Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312 comprising only AIVBVI or AIIBIVCVI chalcogenide compounds, e.g. Pb Sn Te
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero-junctions, X being an element of Group VI of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by at least one potential-jump barrier or surface barrier, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier or surface barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于混维光电二极管技术领域,公开了一种基于硫硒化亚锡纳米片/GaAs异质结的光电二极管及其制备方法和应用。所述光电二极管的结构为硫硒化亚锡纳米片/GaAs异质结,分别在硫硒化亚锡纳米片和GaAs上蒸镀Au电极,在保护气体中150~250℃进行退火处理制得。所述异质结是将硫硒化亚锡纳米片转移至GaAs窗口上形成,所述GaAs窗口是在GaAs上沉积介质层薄膜,经光刻和刻蚀液刻蚀介质层得到。本发明的异质结的光电二极管具有明显的整流行为,并在400‑1200nm宽谱波段具有优异的自驱动光响应性能和波长选择偏振探测特性,可用于光伏器件和偏振红外成像设备领域中。

Description

一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方 法和应用
技术领域
本发明属于混维范德瓦尔斯异质结的技术领域,更具体地,涉及一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用。
背景技术
GaAs属于III-V族化合物的第二代N型半导体材料,具有1.42eV的直接带隙和高电子迁移率,适用于构建高性能发光二极管、光伏电池和近红外光电探测器。尽管如此,GaAs高表面态密度大大降低了光电探测器的光开/关比和光响应度大小。自石墨烯被发现以来,具有独特光电特性的二维材料引起了广泛的关注。由于二维材料表面无悬挂键、无需晶格匹配以及普遍的弱范德瓦尔斯相互作用力的结构优势,使其可以随机组装和堆叠,以产生多种类型的范德瓦尔斯异质结。在后摩尔时代,基于二维材料/三维材料混维异质结的研究极大地促进了Si、GaAs等其他三维半导体集成技术的发展,已成为材料科学与凝聚态物理学领域最热点的科研前沿之一。例如,Dhyani等人证明了二硫化钼/Si器件具有8.75A/W的光响应度和10μs的快速响应时间。同时,Wu等人发现二硫化钼/GaAs器件的入射光吸收系数得到提高,从而大大提高了零偏压下的比探测率。
在后过渡金属硫属化物二维材料体系中,硫化亚锡和硒化亚锡是一类带隙在0.7~1.55eV的层状纳米材料,是一种具有成本低、无毒性、产量丰富等巨大优势的P型半导体材料。其中热稳定性优异的α相晶体结构为正交晶系,这种结构特别在光学、电学上具有明显的面内各向异性。据理论推测,硫化亚锡在可见-红外范围的光吸收系数和载流子迁移率分别可以达到5×104cm-1和7.35×104cm2V-1s-1。硒化亚锡同样展现出超高光吸收系数(~105cm-1)和较高的热电最优因子。上述特点说明这两种二元化合物在热电转化、铁电转化、偏振成像、太阳能光伏电池、柔性器件领域具有巨大的应用前景。然而,由于层间作用力强、深能级缺陷较多以及层与层间电场屏蔽效应较强,导致上述材料机械剥离较为困难、光响应时间慢、电流开关特性一般以及光吸收效率有限等问题,严重阻碍了这一类材料的发展。
近年来,合金工程是一种不仅能有效调控半导体的能带结构、光学和电学性质,还可以抑制二元化合物深能级缺陷的重要研究手段。例如,Tan等人发现硫硒化亚锡具有更高的载流子迁移率和更好的热力学稳定性;此外,Padha等人报道了硫硒化亚锡合金(硫:硒元素重量比=2:3)的光吸收系数(>105cm-1)得到了显著改善。Chong等人利用拉曼光谱系统研究了硫硒化亚锡的偏振特性,发现硫硒化亚锡的偏振行为和激发波长密切相关;本发明人的课题组在硫硒化亚锡单晶纳米片的制备、各向异性和光电器件方面取得一定成果。尽管近些年在探索硫硒化亚锡的制备、各向异性和光电子器件方面取得了巨大进展,但离高性能光电探测器还有一段路程要走。目前,P型硫硒化亚锡/N型GaAs混维P-N异质结还未见报道,两者结合后可以形成内建电场,有望实现自驱动宽谱光电功能以及偏振成像功能,促进GaAs集成技术的研究发展。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供一种基于硫硒化亚锡/GaAs异质结光电二极管。
本发明的另一目的在于提供上述基于硫硒化亚锡/GaAs异质结光电二极管的制备方法。
本发明的再一目的在于提供上述基于硫硒化亚锡/GaAs异质结光电二极管的应用。
本发明的目的通过下述技术方案来实现:
一种基于硫硒化亚锡纳米片/GaAs异质结的光电二极管,所述光电二极管的结构为硫硒化亚锡纳米片/GaAs异质结,所述硫硒化亚锡纳米片和GaAs重叠,分别在硫硒化亚锡纳米片和GaAs上蒸镀Au电极,在保护气体中150~250℃进行退火处理制得。
优选地,所述Au电极的厚度为20~500nm;所述保护气体为氮气或氩气;所述退火的时间为15~120min;所述硫硒化亚锡纳米片的横向尺寸为10~100μm,厚度为5~100nm。
进一步地,所述光电二极管包括横向硫硒化亚锡纳米片/GaAs异质结的光电二极管和垂直硫硒化亚锡纳米片/GaAs异质结的光电二极管;所述横向硫硒化亚锡纳米片/GaAs异质结的光电二极管中Au电极分别蒸镀在硫硒化亚锡纳米片和GaAs上;所述垂直硫硒化亚锡纳米片/GaAs异质结的光电二极管中Au电极分别蒸镀在硫硒化亚锡纳米片和GaAs的背面。
所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,包括如下具体步骤:
S1.将N型GaAs衬底依次用丙酮、异丙醇和去离子水分别清洗,用氮气枪吹干,通过原子层沉积法或等离子体增强化学气相沉积法在GaAs上沉积介质层薄膜;
S2.利用紫外光刻法在介质层薄膜上光刻显影出窗口,再置于刻蚀液中将露出的介质层窗口完整刻蚀,制得GaAs窗口;
S3.在硫硒化亚锡纳米片/衬底表面旋涂可溶解性聚合物溶液,然后在100~150℃加热固化,制得聚合物薄膜/硫硒化亚锡纳米片/衬底;
S4.将聚合物薄膜/硫硒化亚锡纳米片/衬底置于处理液中浸泡,将与衬底分离后的聚合物薄膜/硫硒化亚锡纳米片对准步骤S2制得的GaAs窗口,在100~150℃加热使硫硒化亚锡纳米片与GaAs窗口接触形成范德瓦尔斯异质结,制得聚合物薄膜/硫硒化亚锡纳米片/GaAs衬底;
S5.将聚合物薄膜/硫硒化亚锡纳米片/GaAs衬底在70℃的丙酮中加热,随后转移至新丙酮溶液浸泡,清洗后去除聚合物薄膜,分别在硫硒化亚锡纳米片和GaAs窗口上蒸镀Au电极,在保护气体中150~250℃进行退火处理,制得硫硒化亚锡纳米片/GaAs异质结的光电二极管。
优选地,步骤S1中所述介质层薄膜为SiO2、Al2O3或HfO2,其厚度为12~300nm。
优选地,步骤S2中所述刻蚀液为氢氟酸水溶液和氟化铵水溶液;所述氢氟酸水溶液和氟化铵水溶液的体积比为(1~4):(6~24);所述氢氟酸水溶液的体积浓度为40~49%,所述氟化铵水溶液的体积浓度为30~40%。
优选地,步骤S3中所述硫硒化亚锡纳米片的横向尺寸为10~100μm,厚度为5~100nm;所述衬底为SiO2/Si、云母或蓝宝石。
优选地,步骤S3中所述可溶解性聚合物溶液为质量分数为8~10wt%的聚甲基丙烯酸甲酯的茴香醚溶液或聚苯乙烯的甲苯溶液,所述旋涂的速率为3000~7000rpm,旋涂的时间为30~120s,所述加热的时间为15~45min。
步骤S3中所述硫硒化亚锡的物理气相沉积法制备硫硒化亚锡单晶纳米片的条件为:前驱物为硫化亚锡、硒化亚锡高纯度粉末按预定比例混合放置在石英舟上,并将氧气等离子体表面处理过的SiO2/Si片抛光面朝下平放在石英舟上方,压强为10-3~10Torr,升温速率为20℃/min,生长温度750~800℃,氛围为氮气或氩气,气流量为2~10sccm,当生长温度达到750~800℃之后,通过移动石英管使石英舟移到加热区中央保温2~4min,随后移动石英管使石英舟移出加热区,室温冷却后用显微镜观察发现有大量片状样品,硫硒化亚锡纳米片厚度为5~200nm,横向尺寸在10~100μm。
优选地,步骤S4中所述加热的时间为5~20min;步骤S5中所述加热的时间为7~15min,所述浸泡的时间为10min~12h;所述清洗的溶剂依次为异丙醇、无水乙醇和去离子水。
所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管在光伏器件或自驱动偏振敏感光电探测器领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的基于硫硒化亚锡纳米片/GaAs异质结光电二极管,利用物理气相沉积法制备出不同比例硫硒化亚锡纳米片以及硫化亚锡、硒化亚锡二元化合物,再利用湿法转移法与GaAs构建出P-N结构,用于自驱动偏转敏感光探测。不同比例硫硒化亚锡纳米片与GaAs都可以形II型能带排列,电场方向是从N型GaAs指向P型硫硒化亚锡。在可见光-近红外光照射下,硫硒化亚锡纳米片/GaAs异质结耗尽区产生大量电子-空穴对,可以在零偏压和负偏压下得到快速分离,从而实现了高性能光电探测,本发明结合合金工程和范德瓦尔斯构建技术解决了硫硒化亚锡合金、GaAs较大的噪声电流、有限的光吸收效率和GaAs高密度表面态的不利影响等科学问题。
2.本发明通过物理气相沉积法制备的硫硒化亚锡合金可以调控光吸收系数大小和波长响应范围,同时还能有效抑硫化亚锡和硒化亚锡的深能级缺陷,降低了载流子的非辐射复合寿命,缩短了光响应时间。
3.本发明基于硫硒化亚锡纳米片(硫:硒元素质量比=1:1)/GaAs异质结光电二极管具有宽波谱响应(405~1064nm)、自驱动光电性能(405nm激光照射下其最大光响应度达到10.2A·W-1,最大比探测率达到4.8×1012Jones,上升和下降时间为0.5/3.47ms)。此外,硫硒化亚锡纳米片/GaAs异质结在405nm的二色性比为1.25,在635nm的二色性比为1.45,可以获得显著的极化光电流,在特定波长的自驱动偏振敏感光电探测器的应用中显示出良好的潜力。
附图说明
图1为实施例1制备的横向硫硒化亚锡纳米片/GaAs异质结的光学显微镜图。
图2为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管的电流-电压曲线图。
图3为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在不同入射波长下的电流-电压曲线图。
图4为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在不同波长下的电流-时间曲线图。
图5为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在405nm激光下的自驱动响应时间曲线图。
图6为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在不同入射波长和偏压为0V下的归一化光响应度曲线图。
图7为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在405nm入射光和偏压为0V下的光响应度-光电流与光功率密度关系曲线图。
图8为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在405nm入射光和偏压为0V下的外量子效率-比探测率与光功率密度关系曲线图。
图9为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在偏振光照射下的三维结构示意图。
图10为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在405nm入射光下的归一化光照电流-角度极坐标图。
图11为实施例1的横向硫硒化亚锡纳米片/GaAs异质结的光电二极管在635nm入射光下的归一化光照电流-角度极坐标图。
图12为实施例3的垂直硫硒化亚锡纳米片/GaAs异质结光电二极管的电流-电压曲线。
具体实施方式
接下来将结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,但不应理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从公开商业途径获得。下面来对本发明做进一步详细的说明。
实施例1
1.将2英寸掺杂Si的N型GaAs衬底切成1cm×1cm大小,依次用丙酮、异丙醇和去离子水超声清洗5-10min,制得洁净的GaAs衬底,利用PECVD法在GaAs衬底上300℃沉积厚度为300nm的SiO2薄膜;
2.利用无掩模紫外光刻机在衬底上光刻显影出1mm×1mm的窗口,再置于装有刻蚀液的塑料烧杯中(刻蚀液为20ml,体积浓度为49%的氢氟酸水溶液和120ml,体积浓度为40%的氟化铵水溶液的混合溶液)刻蚀1min从而使窗口露出GaAs表面,随后依次浸泡在丙酮、去离子水中获得刻蚀的GaAs窗口。
3.采用物理气相沉积法制备硫硒化亚锡纳米片,具体步骤如下:将硫化亚锡和硒化亚锡粉末按1:1质量比配制后通过离心管充分摇匀,缓慢转移到石英舟上,随后将经过O2等离子表面处理过的1cm×1cm SiO2/Si片抛光面朝下放置在石英舟上方,压强为10-3~10Torr,升温速率为20℃/min,氛围为氮气或氩气,气流量为2~10sccm,优选为5sccm,当温度达到750~800℃之后保温2-4分钟,通过移动石英管使石英舟移到加热区中央,随后移动石英管使石英舟移出加热区,室温冷却后用显微镜观察发现有大量呈深绿色的片状样品,硫硒化亚锡单晶纳米片厚度为5~200nm,横向尺寸为10~100μm,选择厚度为22nm左右的硫硒化亚锡合金纳米片用于后续转移。
4.通过匀胶机旋涂8wt%的PMMA茴香醚溶液到硫硒化亚锡纳米片上形成PMMA-茴香醚薄膜,条件为4000rpm旋涂1min,旋涂两遍后将其在加热板上150℃加热30分钟去除茴香醚溶剂,随后将硫硒化亚锡纳米片/PMMA转移至缓冲氧化物刻蚀液(BOE)中浸泡刻蚀90s后立即转移到装有去离子水的玻璃培养皿中,用镊子小心揭起硫硒化亚锡纳米片/PMMA薄膜并用去离子水清洗三遍;将硫硒化亚锡纳米片/PMMA薄膜转移至GaAs衬底上,使硫硒化亚锡纳米片与GaAs窗口接触,二者重叠部分形成范德瓦尔斯异质结,随后在70℃热丙酮中加热7分钟软化PMMA薄膜,在新丙酮溶液中浸泡15分钟溶解PMMA,获得洁净的硫硒化亚锡纳米片/GaAs异质结。
5.采用无掩膜紫外光刻系统和热蒸发镀膜机在硫硒化亚锡纳米片/GaAs异质结上制备60nmAu电极,然后在氩气下200℃进行退火30min,去除电极与半导体材料之间的小分子杂质从而降低接触势垒,制得横向硫硒化亚锡/GaAs异质结光电二极管。
图1为实施例1制备的硫硒化亚锡纳米片/GaAs异质结的光学显微镜图,所选的硫硒化亚锡中硫和硒质量比为1:1。从图1可知,部分硫硒化亚锡纳米片与GaAs重合形成硫硒化亚锡纳米片/GaAs异质结,Au电极分别位于硫硒化亚锡纳米片/SiO2和GaAs上。图2为实施例1的横向硫硒化亚锡纳米片/GaAs异质结光电二极管的电流-电压曲线图。其中,阳极接硫硒化亚锡,阴极接GaAs,从测试结果得知,该异质结在偏压为-1V的电流与偏压为1V的电流比值约为6,说明该P-N硫硒化亚锡/GaAs异质结二极管有一定的整流行为。图3为实施例1制备的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在不同入射波长下的电流-电压曲线图。从图3中可知,横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm、635nm和808nm入射光照射下都发生光电效应和光伏效应,其中在405nm照射下,开路电压(Voc)和短路电流(Isc)分别达到0.38V和55nA,说明该异质结光电二极管的内建电场大、界面接触质量好,横向硫硒化亚锡/GaAs异质结光电二极管展现出优异的光伏特性。图4为实施例1制备的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在不同波长下的电流-时间曲线图,由图4可以得知,横向硫硒化亚锡纳米片/GaAs异质结光电二极管在不同入射波长下的开态和关态电流变化稳定可重复,具有优异的多波长响应光开关特性。图5为实施例1制备的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm激光下的自驱动响应时间曲线图,由图5可以得知,横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm入射波长下的上升时间和下降时间分别为0.5ms和3.47ms,说明在II型能带排列和内建电场作用下,光生载流子可以快速发生分离,同时硫硒化亚锡的能级缺陷变浅也对响应时间的缩短起重要作用。图6为实施例1制得的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在不同入射波长和偏压为0V下的归一化光响应度曲线图。由图6可以得知,横向硫硒化亚锡纳米片/GaAs异质结光电二极管在偏压为0V下对400-1100都有一定的光电流产生,其中在496nm入射波长其归一化光响应度达到最大,是该横向硫硒化亚锡纳米片/GaAs异质结光电二极管的最优吸收波长,通过调节硫和硒的质量比可以调控横向硫硒化亚锡纳米片/GaAs异质结光电二极管的最优吸收波长位置和响应时间。图7为实施例1制得的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm入射光和偏压为0V下的光响应度-光电流与光功率密度关系曲线图。由图7可以得知,在光功率密度不断增加下,光响应度先增加后降低,其中在0.51mW·cm-2下,光响应度达到最大值为10.2A·W-1。图8为实施例1制得的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm入射光和偏压为0V下的外量子效率-比探测率与光功率密度关系曲线图。由图8可以得知,横向硫硒化亚锡/GaAs异质结光电二极管的外量子效率、比探测率与光响应度随光功率密度的变化趋势一致,其中最大外量子效率和比探测率分别达到3000%和4.8×1012Jones。图9为实施例1制得的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在偏振光照射下的三维结构示意图。图10为实施例1制得的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm入射光下的归一化光照电流-角度极坐标图。由图9和10可以得知,横向硫硒化亚锡纳米片/GaAs异质结光电二极管在405nm照射下具有双叶草的偏振光电流行为,其中二色性比达到1.25,最大光电流的角度在100°/280°。图11为实施例1制得的横向硫硒化亚锡纳米片/GaAs异质结光电二极管在635nm入射光下的归一化光照电流-角度极坐标图。由图11可以得知,横向硫硒化亚锡纳米片/GaAs异质结光电二极管在635nm照射下具有双叶草的偏振光电流行为,其中二色性比增强到1.45,最大光电流的角度发生改变,位于60°/240°。说明该横向硫硒化亚锡纳米片/GaAs异质结光电二极管的最优吸收方向与入射波长有关,这与合金中的硫化亚锡和硒化亚锡组分的晶格取向与入射波长的变化趋势有一定关系。
实施例2
与实施例1不同点在于:在步骤3中将硫化亚锡和硒化亚锡粉末按1:3质量比配制得到前驱物。需要注意的是,由于硒化亚锡具有更低的平衡蒸气压,获得的硫硒化亚锡纳米片中硒元素含量偏高。因此,可以酌情减少硒化亚锡的质量。
实施例3
与实施例1不同点在于:在步骤5中蒸镀Au电极,除了在表面的硫硒化亚锡纳米片/GaAs异质结上制备60nmAu电极,还对GaAs背面蒸镀100nmAu薄膜,随后通过银浆将样品和铜片粘合,在加热板上80℃加热20min,获得垂直硫硒化亚锡纳米片/GaAs异质结光电二极管,源漏探针分别扎在硫硒化亚锡纳米片和铜片上测试垂直方向电流。图12为实施例3的垂直硫硒化亚锡纳米片/GaAs异质结光电二极管的电流-电压曲线。从图12中可知,垂直硫硒化亚锡纳米片/GaAs异质结光电二极管的整流比值可以达到103,说明硫硒化亚锡纳米片和GaAs之间有良好的内建电压和接触。实施例1中横向(水平)异质结光电二极管的电极均在硫硒化亚锡纳米片的表面,测试的是硫硒化亚锡纳米片/GaAs异质结的横向电流,而本实施例中的垂直异质结光电二极管的电极一个在硫硒化亚锡纳米片表面纳米片上,另一个在GaAs背面电极上,测试的是硫硒化亚锡纳米片/GaAs异质结的垂直电流。
实施例4
与实施例1不同点在于:在步骤4中转移硫硒化亚锡纳米片到GaAs衬底时,将质量分数为9%的聚苯乙烯(PS)甲苯溶液旋涂在硫硒化亚锡纳米片上,条件为3000rpm,高速旋涂1min,随后在加热板上90℃加热20min成PS薄膜。将其浸泡在装有去离子水的玻璃培养皿中,用尖嘴镊子小心刮边缘缓慢揭起薄膜得到硫硒化亚锡纳米片/PS薄膜,通过光学显微镜硫硒化亚锡纳米片和对准GaAs窗口的位置后,继续90℃加热GaAs衬底使PS薄膜与GaAs衬底充分接触,最后在甲苯溶剂中浸泡1-12h,得到硫硒化亚锡/GaAs异质结。
本发明所述光电二极管包括横向硫硒化亚锡纳米片/GaAs异质结的光电二极管和垂直硫硒化亚锡纳米片/GaAs异质结的光电二极管;所述横向硫硒化亚锡纳米片/GaAs异质结的光电二极管中Au电极分别蒸镀在硫硒化亚锡纳米片和GaAs窗口上;所述垂直硫硒化亚锡纳米片/GaAs异质结的光电二极管中Au电极分别蒸镀在硫硒化亚锡纳米片和GaAs的背面。所述Au电极的厚度为20~500nm;所述保护气体为氮气或氩气;所述退火的时间为15~120min;所述硫硒化亚锡纳米片的横向尺寸为10~100μm,厚度为5~100nm。基于硫硒化亚锡纳米片(硫:硒元素质量比=1:1)/GaAs异质结光电二极管具有宽波谱响应(405~1064nm)、自驱动光电性能(405nm激光照射下其最大光响应度达到10.2A·W-1,最大比探测率达到4.8×1012Jones,上升和下降时间为0.5/3.47ms)。此外,硫硒化亚锡纳米片/GaAs异质结在405nm的二色性比为1.25,在635nm的二色性比为1.45,可以获得显著的极化光电流,在特定波长的自驱动偏振敏感光电探测器的应用中显示出良好的潜力。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于硫硒化亚锡纳米片/GaAs异质结的光电二极管,其特征在于,所述光电二极管的结构为硫硒化亚锡纳米片/GaAs异质结,所述硫硒化亚锡纳米片和GaAs重叠,分别在硫硒化亚锡纳米片和GaAs上蒸镀Au电极,在保护气体中150~250℃进行退火处理制得。
2.根据权利要求1所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管,其特征在于,所述Au电极的厚度为20~500nm;所述保护气体为氮气或氩气;所述退火的时间为15~120min;所述硫硒化亚锡纳米片的横向尺寸为10~100μm,厚度为5~100nm。
3.根据权利要求1所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管,其特征在于,所述光电二极管包括横向硫硒化亚锡纳米片/GaAs异质结的光电二极管和垂直硫硒化亚锡纳米片/GaAs异质结的光电二极管;所述横向硫硒化亚锡纳米片/GaAs异质结的光电二极管中Au电极分别蒸镀在硫硒化亚锡纳米片和GaAs窗口上;所述垂直硫硒化亚锡纳米片/GaAs异质结的光电二极管中Au电极分别蒸镀在硫硒化亚锡纳米片和GaAs的背面。
4.根据权利要求1-3任一项所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,其特征在于,包括如下具体步骤:
S1.将N型GaAs衬底依次用丙酮、异丙醇和去离子水分别清洗,用氮气枪吹干,通过原子层沉积法或等离子体增强化学气相沉积法在GaAs上沉积介质层薄膜;
S2.利用紫外光刻法在介质层薄膜上光刻显影出窗口,再置于刻蚀液中将露出的介质层窗口完整刻蚀,制得GaAs窗口;
S3.在硫硒化亚锡纳米片/衬底表面旋涂可溶解性聚合物溶液,然后在100~150℃加热固化,制得聚合物薄膜/硫硒化亚锡纳米片/衬底;
S4.将聚合物薄膜/硫硒化亚锡纳米片/衬底置于处理液中浸泡,将与衬底分离后的聚合物薄膜/硫硒化亚锡纳米片对准步骤S2制得的GaAs窗口,在100~150℃加热使硫硒化亚锡纳米片与GaAs窗口接触形成范德瓦尔斯异质结,制得聚合物薄膜/硫硒化亚锡纳米片/GaAs衬底;
S5.将聚合物薄膜/硫硒化亚锡纳米片/GaAs衬底在70℃的丙酮中加热,随后转移至新丙酮溶液浸泡,清洗后去除聚合物薄膜,分别在硫硒化亚锡纳米片和GaAs窗口上蒸镀Au电极,在保护气体中150~250℃进行退火处理,制得硫硒化亚锡纳米片/GaAs异质结的光电二极管。
5.根据权利要求4所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,其特征在于,步骤S1中所述介质层薄膜为SiO2、Al2O3或HfO2,其厚度为12~300nm。
6.根据权利要求4所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,其特征在于,步骤S2中所述刻蚀液为氢氟酸水溶液和氟化铵水溶液;所述氢氟酸水溶液和氟化铵水溶液的体积比为(1~4):(6~24);所述氢氟酸水溶液的体积浓度为40~49%,所述氟化铵水溶液的体积浓度为30~40%。
7.根据权利要求4所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,其特征在于,步骤S3中所述硫硒化亚锡纳米片的横向尺寸为10~100μm,厚度为5~100nm;所述衬底为SiO2/Si、云母或蓝宝石。
8.根据权利要求4所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,其特征在于,步骤S3中所述可溶解性聚合物溶液为质量分数为8~10wt%的聚甲基丙烯酸甲酯的茴香醚溶液或聚苯乙烯的甲苯溶液,所述旋涂的速率为3000~7000rpm,旋涂的时间为30~120s,所述加热的时间为15~45min。
9.根据权利要求4所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管的制备方法,其特征在于,步骤S4中所述加热的时间为5~20min;步骤S5中所述加热的时间为7~15min,所述浸泡的时间为10min~12h;所述清洗的溶剂依次为异丙醇、无水乙醇和去离子水。
10.权利要求1-3任一项所述的基于硫硒化亚锡纳米片/GaAs异质结的光电二极管在光伏器件或自驱动偏振敏感光电探测器领域中的应用。
CN202111093985.3A 2021-09-17 2021-09-17 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用 Pending CN113964230A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202111093985.3A CN113964230A (zh) 2021-09-17 2021-09-17 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
US17/889,703 US20230098095A1 (en) 2021-09-17 2022-08-17 PHOTODIODE BASED ON STANNOUS SELENIDE SULFIDE NANOSHEET/GaAs HETEROJUNCTION AND PREPARATION METHOD AND USE THEREOF

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202111093985.3A CN113964230A (zh) 2021-09-17 2021-09-17 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN113964230A true CN113964230A (zh) 2022-01-21

Family

ID=79462065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202111093985.3A Pending CN113964230A (zh) 2021-09-17 2021-09-17 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用

Country Status (2)

Country Link
US (1) US20230098095A1 (zh)
CN (1) CN113964230A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980902A (zh) * 2022-12-15 2023-04-18 华中科技大学 一种基于二维硒化亚锡的可调波长偏振器及其设计方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116916722B (zh) * 2023-08-25 2024-03-15 华南理工大学 GaAs表面微纳结构及其制备方法和异质结太阳电池

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019930A1 (en) * 2011-07-20 2013-01-24 Alliance For Sustainable Energy, Llc Secondary Treatment of Films of Colloidal Quantum Dots for Optoelectronics and Devices Produced Thereby
CN108715440A (zh) * 2018-05-28 2018-10-30 广东工业大学 一种硫硒化亚锡二维半导体材料及其制备方法
CN113097319A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130019930A1 (en) * 2011-07-20 2013-01-24 Alliance For Sustainable Energy, Llc Secondary Treatment of Films of Colloidal Quantum Dots for Optoelectronics and Devices Produced Thereby
CN108715440A (zh) * 2018-05-28 2018-10-30 广东工业大学 一种硫硒化亚锡二维半导体材料及其制备方法
CN113097319A (zh) * 2021-03-08 2021-07-09 华南师范大学 一种碳化硅/二硫化锡异质结光电晶体管及其制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MENGMENG YANG ET AL.: ""Self-driven SnS1−xSex alloy/GaAs heterostructure based unique polarization sensitive photodetectors"", NANOSCALE, vol. 13, no. 36, pages 15193 - 15204 *
高伟: ""IIIA-VIA二维半导体材料及其异质结的制备、各向异性和光电性能研究"", 中国博士学位论文全文数据库 工程科技I辑, no. 3, pages 020 - 104 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115980902A (zh) * 2022-12-15 2023-04-18 华中科技大学 一种基于二维硒化亚锡的可调波长偏振器及其设计方法
CN115980902B (zh) * 2022-12-15 2024-01-16 华中科技大学 一种基于二维硒化亚锡的可调波长偏振器及其设计方法

Also Published As

Publication number Publication date
US20230098095A1 (en) 2023-03-30

Similar Documents

Publication Publication Date Title
Wang et al. A high-performance near-infrared light photovoltaic detector based on a multilayered PtSe 2/Ge heterojunction
Park et al. High efficiency NiO/ZnO heterojunction UV photodiode by sol–gel processing
Won et al. Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector
US20230098095A1 (en) PHOTODIODE BASED ON STANNOUS SELENIDE SULFIDE NANOSHEET/GaAs HETEROJUNCTION AND PREPARATION METHOD AND USE THEREOF
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
CN209929345U (zh) 一种铁电场调控的二维材料pn结光电探测器
Wang et al. Monocrystalline perovskite wafers/thin films for photovoltaic and transistor applications
Sun et al. SbSI whisker/PbI 2 flake mixed-dimensional van der Waals heterostructure for photodetection
Yan et al. A ferroelectric p–i–n heterostructure for highly enhanced short‐circuit current density and self‐powered photodetection
Li et al. Recent progress on synthesis, intrinsic properties and optoelectronic applications of perovskite single crystals
Mathews et al. Near IR photodiodes with tunable absorption edge based on Ge1-y Sny alloys integrated on silicon
CN115000233A (zh) 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用
WO2023221714A1 (zh) 一种δ掺杂层制备方法及电子器件
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
Zumuukhorol et al. Effect of a SiO₂ Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors
CN114759143A (zh) 基于铁电p-i-n结的光电探测器及其制备方法
Hwang et al. A surface-plasmon-enhanced silicon solar cell with KOH-etched pyramid structure
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
Patel et al. A study of the optical properties of wide bandgap oxides for a transparent photovoltaics platform
Fang et al. Carbon dots/graphene hybrids for UV photodetectors
Tokranova et al. Hybrid solar cells based on organic material embedded into porous silicon
Amirpoor et al. Fabrication of UV detector by Schottky Pd/ZnO/Si contacts
YANG et al. Rapid thermal evaporation for cadmium selenide thin-film solar cells
CN116364801A (zh) 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination