CN115000233A - 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用 - Google Patents

一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用 Download PDF

Info

Publication number
CN115000233A
CN115000233A CN202210460062.5A CN202210460062A CN115000233A CN 115000233 A CN115000233 A CN 115000233A CN 202210460062 A CN202210460062 A CN 202210460062A CN 115000233 A CN115000233 A CN 115000233A
Authority
CN
China
Prior art keywords
sns
inse
heterojunction
photodiode
nanosheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202210460062.5A
Other languages
English (en)
Inventor
高鹏
高伟
王创垒
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202210460062.5A priority Critical patent/CN115000233A/zh
Publication of CN115000233A publication Critical patent/CN115000233A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于多功能光电二极管技术领域,公开了一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用。所述光电二极管是将InSe纳米片转移至SnS纳米片上,SnS纳米片与InSe纳米片重叠部分形成SnS/InSe异质结,并在惰性气体条件下100~150℃退火0.3~2h,分别在不重叠的InSe纳米片和SnS纳米片上蒸镀Au电极,在保护气体中150~250℃进行退火处理制得。本发明基于SnS/InSe异质结的光电二极管具有明显的整流行为,并在400~1064nm宽谱波段具有优异的自驱动光响应性能和波长选择偏振探测特性,可用于光伏器件或偏振红外成像设备领域中。

Description

一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方 法和应用
技术领域
本发明属于二维材料范德瓦尔斯异质结的技术领域,更具体地,涉及一种基于硫化亚锡/硒化铟(SnS/InSe)异质结的光电二极管及其制备方法和应用。
背景技术
光电探测技术是影响人类现代生活众多技术的核心,极大丰富和方便了人们日常生活;特别是偏振光探测器因具有作用距离远、穿透能力强、抗干扰性好等优势,在偏振成像、图像传感、信号发射等领域都具有极为广泛而重要的应用。传统薄膜半导体(如InGaAs和InSb等)探测器虽工艺成熟,但同时也面临着材料制备困难、工艺复杂、低温工作、成本昂贵等难题。因此,迫切需要发展新材料和新结构,以满足不断提高的偏振光探测技术的快速发展需求。
近年来,随着低维材料的快速发展,二维材料因其原子薄厚度和以及强光物质相互作用力,使其在光电探测领域有着非常好的应用前景。由于无需晶格匹配和材料平滑表面,不同二维材料可以搭建成范德瓦尔斯异质结,将几种材料的优良特性相结合,从而扩展光电探测器的探测范围并且提升其光电性能。在后摩尔时代,基于二维材料/三维材料混维异质结的研究极大地促进了Si、GaAs等其他三维半导体集成技术的发展,已成为材料科学与凝聚态物理学领域最热点的科研前沿之一。
在过渡金属硫属化物二维材料体系中,硫化亚锡是一种具有成本低、无毒性、产量丰富等巨大优势的P型半导体材料。其中热稳定性优异的α相晶体结构为正交晶系,这种结构特别在光学、电学上具有明显的面内各向异性。据理论推测,硫化亚锡在可见-红外范围的光吸收系数和载流子迁移率分别可以达到5×104 cm-1和7.35×104cm2V-1s-1。上述特点说明这两种二元化合物在热电转化、铁电转化、偏振成像、太阳能光伏电池、柔性器件领域具有巨大的应用前景。然而,由于层间作用力强、深能级缺陷较多以及层与层间电场屏蔽效应较强,导致上述材料机械剥离较为困难、光响应时间慢、电流开关特性一般以及光吸收效率有限等问题,严重阻碍了这一类材料的发展。幸运的是,硒化铟(InSe)是一种多层呈直接带隙(1.26eV)的N型半导体材料,且光电性能十分突出,经常被用于范德瓦尔斯异质结中。因此,我们创造性的设计了一种新型的二维材料结构,采用SnS纳米片和的β-InSe搭建异质结,进一步开发了稳定高效的偏振光探测器。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供一种基于SnS/InSe异质结的光电二极管。
本发明的另一目的在于提供上述基于SnS/InSe异质结的光电二极管的制备方法。
本发明的再一目的在于提供上述基于SnS/InSe异质结的光电二极管的应用。
本发明的目的通过下述技术方案来实现:
一种基于硫化亚锡/硒化铟异质结的光电二极管,所述光电二极管是将InSe 纳米片转移至SnS纳米片上,SnS纳米片与InSe纳米片重叠部分形成SnS/InSe 垂直异质结,并在惰性气体条件下100~150℃退火,分别在不重叠的InSe纳米片和SnS纳米片上蒸镀Au电极,在保护气体中150~250℃进行退火处理制得。
优选地,所述Au电极的厚度为20~500nm;所述SnS纳米片的厚度为5~200 nm;所述InSe纳米片的厚度为8~300nm。
更为优选地,所述Au电极的厚度为40~100nm;所述SnS纳米片的厚度为 10~80nm;所述InSe纳米片的厚度为20~80nm。
优选地,所述SnS纳米片是在经清洗的SiO2/Si衬底上通过物理气相沉积法制备获得;所述InSe纳米片是在经清洗的SiO2/Si衬底上通过机械剥离法获得。
优选地,所述惰性气体为氩气:所述保护气体为氮气或氩气;所述100~150℃时退火的时间为15~120min。
所述的基于硫化亚锡纳米片/硒化铟异质结的光电二极管的制备方法,包括以下具体步骤:
S1.在经丙酮、异丙醇、无水乙醇清洗并且经过表面臭氧处理的SiO2/Si衬底上通过物理气相沉积法获得SnS纳米薄片,浸泡无水乙醇超声处理去除样品表面SnS粉末残留,再通过光学金相显微镜选定呈草绿色或黄绿色或深绿色的 SnS纳米片;
S2.通过胶带剥离法获得InSe纳米薄片,再通过光学金相显微镜选定呈草绿色或黄绿色或深绿色的InSe纳米片;
S3.利用干法转移InSe纳米片转移到SnS纳米片上,并在惰性气体条件下100~150℃退火后冷却,制得SnS/InSe垂直异质结;
S4.将SnS/InSe垂直异质结通过无掩模紫外光刻系统光刻和显影电极图案,并分别在不重叠的SnS纳米片和InSe纳米片上蒸镀Au电极,浸泡丙酮除去Au 层,然后在保护气体中150~250℃进行退火处理,制得基于SnS/InSe异质结的光电二极管。
优选地,步骤S1中所述物理气相沉积法是以SiO2/Si衬底,将SnS粉末置于石英管一端,在靠近SnS粉末的一端通入流量为3~5sccm的氮气,在另一端抽真空使石英管内维持10torr的真空度,生长温度为780~820℃,保温时间为 150~170秒。
优选地,步骤S3中需使用聚二甲基硅氧烷粘贴InSe获得InSe纳米片转移到SnS纳米片上制备异质结。
优选地,步骤S3和S4中所述保护气体均为氮气或氩气;步骤S3中所述退火的时间为0.3~2h;步骤S4中所述退火的时间为15~30min。
所述的基于硫化亚锡/硒化铟异质结的光电二极管在光伏器件或自驱动偏振敏感光电探测器领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明的基于SnS/InSe异质结的光电二极管,先利用物理气相沉积法制备出不同厚度的SnS纳米片,再利用干法转移法将SnS纳米片与InSe纳米片构建出P-N结构,用于自驱动偏转敏感光探测。在可见光-近红外光照射下,SnS/InSe 异质结耗尽区产生大量电子-空穴对,可以在零偏压和负偏压下得到快速分离,从而实现了高性能光电探测,解决了SnS基光探测器光响应时间长、探测范围较短,光电性能一般等问题。
2.本发明采用物理气相沉积法制备的SnS,解决了SnS机械剥离较为困难的问题。
3.本发明基于SnS/InSe异质结的光电二极管具有宽波谱响应(405~1064nm)、自驱动光电性能(635nm激光照射下其最大光响应度达到0.65A·W-1,最大比探测率接近1012Jones,上升和下降时间为21ms/0.267ms)。此外,SnS/InSe异质结的光电二极管在635nm的二色性比为2.76,可以获得显著的极化光电流,在特定波长(405~980nm)的自驱动偏振敏感光电探测器的应用中显示出良好的潜力。
4.本发明基于硫化亚锡/硒化铟异质结的光电二极管具有明显的整流行为,并在400~1064nm宽谱波段具有优异的自驱动光响应性能和波长选择偏振探测特性,可用于光伏器件和偏振红外成像设备领域。
附图说明
图1为实施例1制备的SnS/InSe异质结的光学显微镜图。
图2为实施例1的基于SnS/InSe异质结的光电二极管的电流-电压曲线图。
图3为实施例1的基于SnS/InSe的光电二极管在不同入射波长下的电流-电压曲线图。
图4为实施例1的基于SnS/InSe异质结的光电二极管在不同波长下的电流- 时间曲线图。
图5为实施例1的基于SnS/InSe异质结的光电二极管在635nm激光下的自驱动响应时间曲线图。
图6为实施例1的基于SnS/InSe异质结的光电二极管在不同入射波长和偏压为2V下的归一化光响应度曲线图。
图7为实施例1的基于SnS/InSe异质结的光电二极管在635nm入射光和偏压为0V下的光响应度-光电流与光功率密度关系曲线图。
图8为实施例1的基于SnS/InSe异质结的光电二极管在635nm入射光和偏压为0V下的外量子效率-比探测率与光功率密度关系曲线图。
图9为实施例1的基于SnS/InSe异质结的光电二极管在偏振光照射下的三维结构示意图。
图10为实施例1的基于SnS/InSe异质结的光电二极管在635nm入射光下的光照电流-角度极坐标图。
图11为实施例2的基于SnS/InSe异质结光电二极管的电流-电压曲线。
图12为实施例3的基于SnS/InSe异质结的光电二极管在635nm入射光下的光照电流-角度极坐标图。
具体实施方式
结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,但不应理解为对本发明的限制。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的其它实施例,均属于本发明保护的范围。下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从公开商业途径获得。下面来对本发明做进一步详细的说明。
实施例1
1.将SiO2/Si基底用丙酮、异丙醇、去离子水各超声10min,用氮气枪吹干;
2.以SiO2/Si为衬底,采用物理气相沉积法以SiO2/Si为衬底制备硫化亚锡 (SnS)纳米片,具体步骤如下:将适量SnS粉末缓慢放到到石英舟上,随后将经过O2等离子表面处理过的1cm×1cm SiO2/Si片抛光面朝下放置在石英舟上方,将石英舟载体放置在石英管的加热部,封闭石英管,在石英管靠近SnS粉末的一端通入氮气(流量为5scmm),同时在另一端抽真空使石英管内维持在 10Torr的真空度,升温速率为20℃/min,当温度达到800℃之后保温2-4分钟,通过移动石英管使石英舟移到加热区中央,随后移动石英管使石英舟移出加热区,室温冷却后用显微镜观察发现有大量呈草绿色或黄绿色或深绿色的片状样品, SnS单晶纳米片厚度为5~200nm,横向尺寸为10~100μm,通过光学金相显微镜选定呈草绿色或黄绿色或深绿色的厚度为75nm左右的SnS纳米片用于后续使用。
3.用聚二甲基硅氧烷粘贴InSe单晶制备半导体InSe纳米片,通过光学显微镜选择20~70nm厚度的InSe纳米片;
4.通过三维微区转移平台将步骤3所选InSe纳米片与步骤2所选SnS纳米片两两对准,二者重叠部分构建异质结,制备SnS/InSe范德瓦尔斯异质结,然后在氮气或氩气条件下100~150℃退火0.3~2h,增强两者之间的接触,并去除界面的小分子等杂质。
5.采用无掩膜紫外光刻系统和蒸镀工艺在SnS/InSe异质结以外不重叠的SnS纳米片和InSe纳米片上制备50nm Au电极;然后在氮气或氩气条件下 150~250℃退火0.3~1h,用以提高电极SnS/InSe范德瓦尔斯异质结之间的接触质量和降低接触势垒,制得基于SnS/InSe异质结的光电二极管。
图1为实施例1制备的基于SnS/InSe异质结的光学显微镜图。从图1可知,部分SnS纳米片与InSe纳米片重合形成SnS/InSe异质结,Au电极分别位于不重叠的SnS纳米片和InS纳米片上。图2为实施例1的基于SnS/InSe异质结的光电二极管的电流-电压曲线图。其中,阴极接硫化亚锡,阳极接InSe,从测试结果得知,该SnS/InSe异质结在偏压为-1V的电流与偏压为1V的电流比值约为60,说明该P-NSnS/InSe异质结的光电二极管有整流行为。图3为实施例1 制备的基于SnS/InSe异质结的光电二极管在不同入射波长下的电流-电压曲线图。从图3中可知,SnS/InSe异质结的光电二极管在405nm、635nm和808nm入射光照射下都发生光电效应和光伏效应,其中在405nm照射下,开路电压(Voc) 和短路电流(Isc)分别达到0.21V和4.2nA,说明该异质结光电二极管的内建电场大、界面接触质量好,SnS/InSe异质结的光电二极管展现出优异的光伏特性。图4为实施例1制备的基于SnS/InSe异质结的光电二极管在不同波长下的电流- 时间曲线图,由图4可以得知,基于SnS/InSe异质结的光电二极管在不同入射波长下的开态和关态电流变化稳定可重复,具有优异的多波长响应光开关特性。图5为实施例1制备的基于SnS/InSe异质结的光电二极管在635nm激光下的自驱动响应时间曲线图,由图5可以得知,SnS/InSe异质结光电二极管在635nm 入射波长下的上升时间和下降时间分别为21ms和0.267s,说明在II型能带排列和内建电场作用下,光生载流子可以快速发生分离。图6为实施例1制得的 SnS/InSe异质结的光电二极管在不同入射波长和偏压为0V下的归一化光响应度曲线图。由图6可以得知,基于SnS/InSe异质结的光电二极管在偏压为2V下对400-1100都有一定的光电流产生,其中在675nm入射波长其归一化光响应度达到最大,是该SnS/InSe异质结的光电二极管的最优吸收波长。图7为实施例1 制得的基于SnS/InSe异质结的光电二极管在635nm入射光和偏压为0V下的光响应度-光电流与光功率密度关系曲线图。由图7可以得知,基于SnS/InSe异质结的光电二极管的光响应度随光功率密度的增大而减小,其中最大光响应度达到 0.65A/W。图8为实施例1制得的基于SnS/InSe异质结的光电二极管在635nm 入射光和偏压为0V下的外量子效率-比探测率与光功率密度关系曲线图。由图8 可以得知,基于SnS/InSe异质结的光电二极管的外量子效率、比探测率与光响应度随光功率密度的变化趋势一致,其中最大外量子效率和比探测率分别达到128%和3.88×1011Jones。图9为实施例1制得的基于SnS/InSe异质结的光电二极管在偏振光照射下的三维结构示意图。图10为实施例1制得的基于SnS/InSe 异质结的光电二极管在635nm入射光下的归一化光照电流-角度极坐标图。由图 9和10可以得知,基于SnS//InSe异质结的光电二极管在635nm照射下具有双叶草的偏振光电流行为,其中二色性比达到2.76,最大光电流120pA的角度为 300°,对应于SnS纳米片的锯齿形晶格取向。
实施例2
与实施例1不同的在于:选择的SnS纳米片厚度约为80nm,InSe厚度为160nm。图11为实施例2的基于SnS/InSe异质结的光电二极管的电流-电压曲线图。其中,阳极接SnS,阴极接InSe,从测试结果得知,该SnS/InSe异质结的整流比约为32 (即在偏压为-3V的电流与偏压为3V的电流比值),说明该P-N的SnS/InSe的异质结二极管有整流行为。
实施例3
与实施例1不同的在于:选择的SnS厚度约为14nm,InSe厚度约为35nm。图 12为实施例3制得的基于SnS/InSe异质结的光电二极管在635nm入射光下的归一化光照电流-角度极坐标图。由图12可以得知,基于SnS纳米片/InSe异质结光电二极管在635nm照射下具有双叶草的偏振光电流行为,其中二色性比达到4.38,最大光电流465pA的角度在120°。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (10)

1.一种基于硫化亚锡/硒化铟异质结的光电二极管,其特征在于,所述光电二极管是将InSe纳米片转移至SnS纳米片上,SnS纳米片与InSe纳米片重叠部分形成SnS/InSe垂直异质结,并在惰性气体条件下100~150℃退火,分别在不重叠的InSe纳米片和SnS纳米片上蒸镀Au电极,在保护气体中150~250℃进行退火处理制得。
2.根据权利要求1所述的基于硫化亚锡/硒化铟异质结的光电二极管,其特征在于,所述Au电极的厚度为20~500nm;所述SnS纳米片的厚度为5~200nm;所述InSe纳米片的厚度为8~300nm。
3.根据权利要求2所述的基于硫化亚锡/硒化铟异质结的光电二极管,其特征在于,所述Au电极的厚度为40~100nm;所述SnS纳米片的厚度为10~80nm;所述InSe纳米片的厚度为20~80nm。
4.根据权利要求1所述的基于硫化亚锡/硒化铟异质结的光电二极管,其特征在于,所述SnS纳米片是在经清洗的SiO2/Si衬底上通过物理气相沉积法制备获得;所述InSe纳米片是在经清洗的SiO2/Si衬底上通过机械剥离法获得。
5.根据权利要求1所述的基于硫化亚锡/硒化铟异质结的光电二极管,其特征在于,所述惰性气体为氩气:所述保护气体为氮气或氩气;所述100~150℃时退火的时间为15~120min。
6.根据权利要求1-5任一项所述的基于硫化亚锡纳米片/硒化铟异质结的光电二极管的制备方法,其特征在于,包括以下具体步骤:
S1.在经丙酮、异丙醇、无水乙醇清洗并且经过表面臭氧处理的SiO2/Si衬底上通过物理气相沉积法获得SnS纳米薄片,浸泡无水乙醇超声处理去除样品表面SnS粉末残留,再通过光学金相显微镜选定呈草绿色或黄绿色或深绿色的SnS纳米片;
S2.通过胶带剥离法获得InSe纳米薄片,再通过光学金相显微镜选定呈草绿色或黄绿色或深绿色的InSe纳米片;
S3.利用干法转移InSe纳米片转移到SnS纳米片上,并在惰性气体条件下100~150℃退火后冷却,制得SnS/InSe垂直异质结;
S4.将SnS/InSe垂直异质结通过无掩模紫外光刻系统光刻和显影电极图案,并分别在不重叠的SnS纳米片和InSe纳米片上蒸镀Au电极,浸泡丙酮除去Au层,然后在保护气体中150~250℃进行退火处理,制得基于SnS/InSe异质结的光电二极管。
7.根据权利要求6所述的基于硫化亚锡/硒化铟异质结的光电二极管的制备方法,其特征在于,步骤S1中所述物理气相沉积法是以SiO2/Si衬底,将SnS粉末置于石英管一端,在靠近SnS粉末的一端通入流量为3~5sccm的氮气,在另一端抽真空使石英管内维持10torr的真空度,生长温度为780~820℃,保温时间为150~170秒。
8.根据权利要求6所述的基于硫化亚锡/硒化铟异质结的光电二极管的制备方法,其特征在于,步骤S3中需使用聚二甲基硅氧烷粘贴InSe获得InSe纳米片转移到SnS纳米片上制备异质结。
9.根据权利要求6所述的基于硫化亚锡/硒化铟异质结的光电二极管的制备方法,其特征在于,步骤S3和S4中所述保护气体均为氮气或氩气;步骤S3中所述退火的时间为0.3~2h;步骤S4中所述退火的时间为15~30min。
10.权利要求1-5任一项所述的基于硫化亚锡/硒化铟异质结的光电二极管在光伏器件或自驱动偏振敏感光电探测器领域中的应用。
CN202210460062.5A 2022-04-28 2022-04-28 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用 Pending CN115000233A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210460062.5A CN115000233A (zh) 2022-04-28 2022-04-28 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210460062.5A CN115000233A (zh) 2022-04-28 2022-04-28 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115000233A true CN115000233A (zh) 2022-09-02

Family

ID=83024788

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210460062.5A Pending CN115000233A (zh) 2022-04-28 2022-04-28 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115000233A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399924A (zh) * 2023-04-12 2023-07-07 澳门科技大学 光电化学工作电极及其制备方法,光电化学装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551946A (zh) * 2016-01-07 2016-05-04 广东工业大学 一种硫化亚锡纳米片的制备方法及基于其制备的光电探测器
US20190341511A1 (en) * 2018-05-02 2019-11-07 INU Research & Business Foundation Method of Transferring Tin Sulfide Film and Photoelectric Device Using the method
CN111799342A (zh) * 2020-07-22 2020-10-20 深圳大学 一种基于硒化亚锡/硒化铟异质结的光电探测器及其制备方法
CN113328004A (zh) * 2021-04-23 2021-08-31 深圳大学 一种利用硒化亚锡纳米晶进行表面修饰的硒化铟光电探测器及其制备方法
CN113707560A (zh) * 2020-05-21 2021-11-26 哈尔滨工业大学 一种插入二维半导体硒化铟纳米片改善二维过渡金属硫族化合物电接触的方法
CN113964219A (zh) * 2021-09-08 2022-01-21 华南师范大学 一种基于拓扑绝缘体/二碲化钼异质结的光电晶体管及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105551946A (zh) * 2016-01-07 2016-05-04 广东工业大学 一种硫化亚锡纳米片的制备方法及基于其制备的光电探测器
US20190341511A1 (en) * 2018-05-02 2019-11-07 INU Research & Business Foundation Method of Transferring Tin Sulfide Film and Photoelectric Device Using the method
CN113707560A (zh) * 2020-05-21 2021-11-26 哈尔滨工业大学 一种插入二维半导体硒化铟纳米片改善二维过渡金属硫族化合物电接触的方法
CN111799342A (zh) * 2020-07-22 2020-10-20 深圳大学 一种基于硒化亚锡/硒化铟异质结的光电探测器及其制备方法
CN113328004A (zh) * 2021-04-23 2021-08-31 深圳大学 一种利用硒化亚锡纳米晶进行表面修饰的硒化铟光电探测器及其制备方法
CN113964219A (zh) * 2021-09-08 2022-01-21 华南师范大学 一种基于拓扑绝缘体/二碲化钼异质结的光电晶体管及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CONG-XIN XIA ET AL.: "Two-dimensional n-InSe/p-GeSe(SnS) van derWaals heterojunctions: High carrier mobility and broadband performance", PHYSICAL REVIEW B, vol. 97, pages 115416 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116399924A (zh) * 2023-04-12 2023-07-07 澳门科技大学 光电化学工作电极及其制备方法,光电化学装置

Similar Documents

Publication Publication Date Title
CN104157721B (zh) 基于石墨烯/硅/石墨烯的雪崩光电探测器及其制备方法
CN106601857A (zh) 基于掺硼硅量子点/石墨烯/二氧化硅的光电导探测器及制备方法
Zhou et al. Self-powered, ultraviolet-visible perovskite photodetector based on TiO 2 nanorods
US20230098095A1 (en) PHOTODIODE BASED ON STANNOUS SELENIDE SULFIDE NANOSHEET/GaAs HETEROJUNCTION AND PREPARATION METHOD AND USE THEREOF
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
Huang et al. Broadband organic phototransistor with high photoresponse from ultraviolet to near-infrared realized via synergistic effect of trilayer heterostructure
CN109244246B (zh) 一种基于拓扑绝缘体硒化铋电极的宽波段光电探测器
Wang et al. Highly sensitive narrowband Si photodetector with peak response at around 1060 nm
CN104300027A (zh) 基于石墨烯/二氧化硅/硅的雪崩光电探测器及制备方法
Ye et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity
CN113838943B (zh) 一种基于各向异性二维材料的偏振光探测器及其制备方法
CN108630782B (zh) 一种宽探测波段双重等离子工作光电探测器的制备方法
Zhu et al. High-performance near-infrared PtSe2/n-Ge heterojunction photodetector with ultrathin Al2O3 passivation interlayer
CN115000233A (zh) 一种基于硫化亚锡/硒化铟异质结的光电二极管及其制备方法和应用
Sun et al. Research on piezo-phototronic effect in ZnO/AZO heterojunction flexible ultraviolet photodetectors
Liu et al. High-performance self-driven ultraviolet photodetector based on SnO2 pn homojunction
Patel et al. A study of the optical properties of wide bandgap oxides for a transparent photovoltaics platform
Wu et al. Grating Perovskite Enhanced Polarization-Sensitive GaAs-Based Photodetector
Patel et al. New Concepts in All-Metal-Oxide-Based Ultraviolet Transparent Photovoltaics
Zumuukhorol et al. Effect of a SiO₂ Anti-reflection Layer on the Optoelectronic Properties of Germanium Metal-semiconductor-metal Photodetectors
TWI732704B (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
Fu et al. Al-nanoparticle sensitized β-Ga 2 O 3-based solar-blind photodetector fabricated via focused ion beam micro/nano processing
CN111129205B (zh) 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用
Li et al. Deep-ultraviolet β-Ga 2 O 3 photodetectors grown on MgO substrates with a TiN template

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination