CN111129205B - 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用 - Google Patents

碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用 Download PDF

Info

Publication number
CN111129205B
CN111129205B CN201911242875.1A CN201911242875A CN111129205B CN 111129205 B CN111129205 B CN 111129205B CN 201911242875 A CN201911242875 A CN 201911242875A CN 111129205 B CN111129205 B CN 111129205B
Authority
CN
China
Prior art keywords
carbon nanotube
phototransistor
thin film
composite thin
light absorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911242875.1A
Other languages
English (en)
Other versions
CN111129205A (zh
Inventor
江潮
樊园
王亮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Center for Nanosccience and Technology China
Original Assignee
National Center for Nanosccience and Technology China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Center for Nanosccience and Technology China filed Critical National Center for Nanosccience and Technology China
Priority to CN201911242875.1A priority Critical patent/CN111129205B/zh
Publication of CN111129205A publication Critical patent/CN111129205A/zh
Application granted granted Critical
Publication of CN111129205B publication Critical patent/CN111129205B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/112Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor
    • H01L31/113Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor
    • H01L31/1136Devices sensitive to infrared, visible or ultraviolet radiation characterised by field-effect operation, e.g. junction field-effect phototransistor being of the conductor-insulator-semiconductor type, e.g. metal-insulator-semiconductor field-effect transistor the device being a metal-insulator-semiconductor field-effect transistor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Electromagnetism (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳纳米管‑Z907复合薄膜光电晶体管及其制备方法和应用,其包括碳纳米管薄膜和覆盖在碳纳米管薄膜表面的Z907分子吸光层;制备方法包括,采用溶液滴涂法制备碳纳米管薄膜和在碳纳米管薄膜表面采用高速旋涂法制备Z907分子吸光层。本发明将碳纳米管薄膜与Z907组合制备出对可见光响应度较高的光电晶体管,其沟道为迁移率为10‑20cm2/v·s的高纯度的半导体性碳纳米薄膜,Z907分子作为吸光层为器件提供光生载流子,当可见光照到器件表面时吸光层中迅速产生大量光生电子,光生电子在Z907‑CNT界面处通过碳纳米管通道迅速传输,实现光电流发生变化;其响应度明显高于纯碳纳米管器件光电探测器。

Description

碳纳米管-Z907复合薄膜光电晶体管及其制备方法和应用
技术领域
本发明属于电子器件技术领域,具体涉及一种碳纳米管-Z907复合薄膜光电晶体管及其制备方法和应用。
背景技术
不同组成和界面的异质结会产生内置电场,耗尽或积累纳米结构中的电子和空穴,这些特性已经在光电技术的纳米器件应用中显示出了独特的性能,如照明二极管、光伏和光学传感器等。
基于单壁碳纳米管异质结的光响应现象已经引起了广泛的关注,因为单壁碳纳米管具有较窄的直接带隙和高的空穴迁移率,其在光电探测方面显现出极大的应用潜力,碳纳米管不仅可以作为光吸收材料在光照下作为激子的产生者,也可以作为光生载流子的传导者,因此,诸多研究者将碳纳米管与其他材料相结合,发挥各自的优势,制备成具有不同响应特性的光电探测器;例如,与石墨烯结合制得的低噪声宽光谱响应的探测器,与C60结合制备出高性能的红外探测器,与ZnO结合制备出高性能的紫外探测器等一系列光电器件。
研究发现,有关碳纳米管基异质结构光电晶体管在可见光波段的研究很少,再加上半导体性碳纳米管晶体管器件本身对于可见光波段的响应度极低这一现象,可以考虑选择一种材料与半导体性碳纳米管形成异质结构提高其对可见光的响应度。
基于此,特提出本发明。
发明内容
针对现有技术存在的不足,本发明提供了一种碳纳米管-Z907复合薄膜光电晶体管及其制备方法和应用。
为达到上述目的,本发明采用以下技术方案:
一种碳纳米管-Z907复合薄膜光电晶体管,包括碳纳米管薄膜和覆盖在所述碳纳米管薄膜表面的Z907分子吸光层。
Z907由于具有稳定性好和光吸收范围大等优点,被广泛应用于太阳能电池中作为光敏染料,能够吸收全部的可见光和紫外线,而且激发态的染料分子能级与碳纳米管SWCNT的能级相匹配,能尽量的避免电子在传输过程中能量损耗的问题。在半导体性碳纳米管与Z907分子结合形成异质结构中,Z907分子由于其好的吸收系数和消光系数作为器件的吸光层,半导体性碳纳米管则作为器件的沟道材料,二者结合制备出对可见光响应度较高的光电晶体管。
在一个优选实施方式中,所述Z907分子吸光层的厚度为15-40nm,优选为20-35nm,进一步优选为30nm。
在一个优选实施方式中,所述碳纳米管薄膜的厚度为1-5nm,优选为1-3nm,进一步优选为2nm。
在一个具体实施方式中,所述碳纳米管-Z907复合薄膜光电晶体管包括从下而上依次设置的重掺杂P型硅片、二氧化硅层、碳纳米管薄膜、Z907分子吸光层和金属电极阵列。
具体地,在上述技术方案中,所述二氧化硅层的厚度为250-360nm。
具体地,在上述技术方案中,所述金属电极阵列的电极大小为90μm*90μm。
本发明另一方面还提供了上述碳纳米管-Z907复合薄膜光电晶体管的制备方法,包括:
S1、采用溶液滴涂法制备碳纳米管薄膜作为沟道材料;
S2、采用高速旋涂法在所述碳纳米管薄膜表面制备Z907分子吸光层。
具体地,在一个优选实施方式中,步骤S1具体为,将超声分散均匀后的碳纳米管溶液滴加后在55-60℃下烘干,自然冷却后用甲苯清洗干净,并用气枪吹干,此为一个循环,循环3-5次,最后在110-128℃下退火20-35min即可。
具体地,在一个优选实施方式中,步骤S2具体为,将Z907溶于乙醇中制得浓度为2-4.2mg/mL的Z907溶液,将Z907溶液滴加在所述碳纳米管薄膜表面,在450-520rpm下旋涂4-6s后再在1800-2250rpm下旋涂25-32s,即得。
优选地,在一个具体实施方式中,步骤S2具体为,将Z907溶于乙醇中制得浓度为3mg/mL的Z907溶液,将Z907溶液滴加在所述碳纳米管薄膜表面,在500rpm下旋涂5s后再在2000rpm下旋涂30s,即得。
进一步地,在上述技术方案中,所述制备方法还包括,采用真空蒸镀法在Z907分子吸光层制备厚度为40-55nm的金属电极阵列。
优选地,在上述技术方案中,所述金属电极阵列为厚度为50nm的Au电极阵列。
本发明又一方面还提供了上述碳纳米管-Z907复合薄膜光电晶体管或上述制备方法在光电器件制备中的应用。
本发明的优点:
本发明将碳纳米管薄膜与Z907组合制备出对可见光响应度较高的光电晶体管,该光电晶体管的沟道为高纯度的半导体性碳纳米薄膜,其迁移率在10-20cm2/v·s之间,表现出较好的场效应电学性能,Z907分子作为光电晶体管的吸光层,为器件提供光生载流子,当可见光照到器件表面时吸光层中迅速产生大量的光生电子,光生电子在Z907-CNT界面处通过碳纳米管通道迅速传输,最终实现光电流发生变化,同时也观测到电流随光的动态响应过程;分析检测数据可以发现,当入射光波长为475nm时,器件的响应度为2.2A/W,明显高于现有技术中纯碳纳米管器件光电探测器的响应度。
附图说明
图1为本发明实施例中碳纳米管-Z907复合薄膜光电晶体管的结构示意图;
图2为本发明实施例中碳纳米管-Z907复合薄膜光电晶体管在475nm下的转移曲线图;
图3为本发明实施例中碳纳米管-Z907复合薄膜光电晶体管在475nm下的动态响应曲线图;
图4为本发明实施例中碳纳米管-Z907复合薄膜光电晶体管在633nm下的转移曲线图;
图5为本发明实施例中碳纳米管-Z907复合薄膜光电晶体管在633nm下的动态响应曲线图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
以下实施例用于说明本发明,但不用来限制本发明的保护范围,本发明的保护范围以权利要求书为准。
若未特别指明,本发明实施例中所用的实验试剂和材料等均可市售获得。
若未具体指明,本发明实施例中所用的技术手段均为本领域技术人员所熟知的常规手段。
在以下实施例中,匀胶旋涂仪为市售设备,型号为WS-400B-8N;光学显微镜购于Leica公司,型号为DM4000M;真空蒸镀仪购于BOC Edwards公司,型号为Auto 306;铜网掩膜版购于Gilder Grids公司;真空探针台购于Lake Shore公司;高纯碳纳米管溶液由苏州纳米所赵建文老师组提供;Z907从Sigma-Aldrich商购获得,纯度为99%。
实施例
在生长有300nm二氧化硅的重掺杂p型硅片上滴涂高纯半导体性碳纳米管溶液,具体过程如下:将碳纳米管溶液在100W功率下超声分散3min,同时,对重掺杂p型硅片进行O2plasma预处理,具体参数为:时间3min,放电功率50-100W;用移液枪吸取一定的碳纳米管溶液,滴加在已plasma处理过的重掺杂p型硅片上,等待碳纳米管溶液挥发干净后置于60℃热板上烘烤2min,自然冷却至室温,用吸管吸取甲苯清洗1-2次保证表面无明显痕迹残留并用气枪吹干表面,此为一个循环,循环45次,最后在120℃下退火30min,得到致密的碳纳米管薄膜作为沟道材料;紧接着在薄膜上旋涂Z907溶液,Z907溶液中溶剂为乙醇,其浓度为3mg/mL,旋涂参数为:500r:5s,2000r:30s,得到约30nm的吸光层,随后在以上基础上蒸镀金属电极阵列,电极大小90微米*90微米,沟道长度40微米,沟道宽度90微米。
其结构如图1所示,包括从下而上依次设置的重掺杂P型硅片、二氧化硅层、碳纳米管薄膜、Z907分子吸光层和金属电极阵列,其中,二氧化硅层厚度为300nm,金属电极阵列为厚度50nm的Au电极阵列。
在真空探针台中对器件进行电表征,结果如图2-5所示。
图2所示为给定入射光为475nm,光强为101mW/cm2时,晶体管器件在光态和暗态下各自的转移曲线,其中,测试时给定的偏压为-2V。
通过对转移曲线的数据进行计算,利用光电器件响应度计算公式:
Figure BDA0002306754370000051
得到器件的响应度为2.2A/W,与前期实验对比响应度有了极大提高。
图3所示为在上述光照条件下,器件不断处于光态和暗态交替进行的状态下时检测到的器件的一个动态响应过程;从该动态响应图可以看出器件具有稳定性较好和响应时间短等特性。
图4所示为给定入射光为633nm,光强为101mW/cm2时,晶体管器件在光态和暗态下各自的转移曲线,其中,测试时给定的偏压为-2V。
通过对转移曲线的数据进行计算,利用光电器件响应度计算公式得到器件的响应度为0.4A/W,与475nm相比响应度有所降低,但是相对于未加Z907分子吸光层的CNT-FET晶体管相比响应度仍有不小的提升。
图5所示为在图4对应的光照条件下的一个器件动态响应曲线,与图3对比曲线中的电流在循环过程中有上升的趋势,我们将这一趋势归结为同时由于红光产生的热效应使得整体的电流有一个上升的趋势而不是恢复到原位。
最后,以上仅为本发明的较佳实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (14)

1.一种碳纳米管-Z907复合薄膜光电晶体管,其特征在于,包括碳纳米管薄膜和覆盖在所述碳纳米管薄膜表面的Z907分子吸光层;
所述碳纳米管薄膜采用溶液滴涂法制备得到,具体的:将超声分散均匀后的碳纳米管溶液滴加后在55-60 ℃下烘干,自然冷却后用甲苯清洗干净,并用气枪吹干,此为一个循环,循环3-5次,最后在110-128 ℃下退火20-35 min即可。
2.根据权利要求1所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述Z907分子吸光层的厚度为15-40 nm。
3.根据权利要求2所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述Z907分子吸光层的厚度为20-35 nm。
4.根据权利要求3所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述Z907分子吸光层的厚度为30 nm。
5.根据权利要求1所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述碳纳米管薄膜的厚度为1-5 nm。
6.根据权利要求5所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述碳纳米管薄膜的厚度为1-3 nm。
7.根据权利要求6所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述碳纳米管薄膜的厚度为2 nm。
8.根据权利要求1-7任一项所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,包括从下而上依次设置的重掺杂P型硅片、二氧化硅层、碳纳米管薄膜、Z907分子吸光层和金属电极阵列。
9.根据权利要求8所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述二氧化硅层的厚度为250-360 nm。
10.根据权利要求8所述的碳纳米管-Z907复合薄膜光电晶体管,其特征在于,所述金属电极阵列的电极大小为90 μm * 90 μm。
11.权利要求1-10中任一项所述的碳纳米管-Z907复合薄膜光电晶体管的制备方法,其特征在于,包括:
S1、采用溶液滴涂法制备碳纳米管薄膜作为沟道材料;
S2、采用高速旋涂法在所述碳纳米管薄膜表面制备Z907分子吸光层。
12.根据权利要求11所述的制备方法,其特征在于,
步骤S1具体为,将超声分散均匀后的碳纳米管溶液滴加后在55-60 ℃下烘干,自然冷却后用甲苯清洗干净,并用气枪吹干,此为一个循环,循环3-5次,最后在110-128 ℃下退火20-35 min即可;
和/或,步骤S2具体为,将Z907溶于乙醇中制得浓度为2-4.2 mg/mL的 Z907溶液,将Z907溶液滴加在所述碳纳米管薄膜表面,在450-520 rpm下旋涂4-6 s后再在1800-2250rpm下旋涂25-32 s,即得。
13.根据权利要求11或12所述的制备方法,其特征在于,还包括,采用真空蒸镀法在Z907分子吸光层制备厚度为40-55 nm的金属电极阵列。
14.权利要求1-10中任一项所述的碳纳米管-Z907复合薄膜光电晶体管或权利要求11-13中任一项所述的制备方法在光电器件制备中的应用。
CN201911242875.1A 2019-12-06 2019-12-06 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用 Active CN111129205B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911242875.1A CN111129205B (zh) 2019-12-06 2019-12-06 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911242875.1A CN111129205B (zh) 2019-12-06 2019-12-06 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111129205A CN111129205A (zh) 2020-05-08
CN111129205B true CN111129205B (zh) 2021-10-08

Family

ID=70496260

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911242875.1A Active CN111129205B (zh) 2019-12-06 2019-12-06 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111129205B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928174B (zh) * 2021-02-18 2023-09-19 北京信息科技大学 纳米材料修饰透光薄膜的光电探测器及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN107110852A (zh) * 2014-09-18 2017-08-29 诺基亚技术有限公司 用于可控地用电荷载流子填充沟道的装置和方法
CN108767049A (zh) * 2018-05-23 2018-11-06 上海交通大学 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件
CN109256467A (zh) * 2018-09-07 2019-01-22 苏州欣替纳米科技有限公司 高性能单壁碳纳米管薄膜晶体管及其制备方法
JP6459385B2 (ja) * 2014-10-23 2019-01-30 日本電気株式会社 半導体素子、及び半導体装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201008144D0 (en) * 2010-05-14 2010-06-30 Solar Press Uk The Ltd Surface modified electrode layers in organic photovoltaic cells
US9857328B2 (en) * 2014-12-18 2018-01-02 Agilome, Inc. Chemically-sensitive field effect transistors, systems and methods for manufacturing and using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN107110852A (zh) * 2014-09-18 2017-08-29 诺基亚技术有限公司 用于可控地用电荷载流子填充沟道的装置和方法
JP6459385B2 (ja) * 2014-10-23 2019-01-30 日本電気株式会社 半導体素子、及び半導体装置
CN108767049A (zh) * 2018-05-23 2018-11-06 上海交通大学 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件
CN109256467A (zh) * 2018-09-07 2019-01-22 苏州欣替纳米科技有限公司 高性能单壁碳纳米管薄膜晶体管及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
浅谈印刷半导体碳纳米管薄膜晶体管光电性能研究;王海娃;《福建电脑》;20151231(第1期);正文左栏第5-8段 *

Also Published As

Publication number Publication date
CN111129205A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
Long et al. Progress, challenges, and opportunities for 2D material based photodetectors
Tsai et al. Efficiency enhancement of silicon heterojunction solar cells via photon management using graphene quantum dot as downconverters
Lim et al. Organic-on-silicon complementary metal–oxide–semiconductor colour image sensors
Tang et al. Photoswitches and Phototransistors from Organic Single‐Crystalline Sub‐micro/nanometer Ribbons
CN108258118B (zh) 基于体异质结-分层结构的高性能有机晶体管光电探测器
US8866265B2 (en) Carbon-based semiconductors
Aftab et al. Transition metal dichalcogenides solar cells and integration with perovskites
Chen et al. Ultrasensitive ZnO nanowire photodetectors with a polymer electret interlayer for minimizing dark current
Hadi et al. Rapid laser fabrication of Nickel oxide nanoparticles for UV detector
Ho et al. Sunlight-activated graphene-heterostructure transparent cathodes: enabling high-performance n-graphene/p-Si Schottky junction photovoltaics
Ge et al. Visible to mid-infrared photodetection based on flexible 3D graphene/organic hybrid photodetector with ultrahigh responsivity at ambient conditions
Han et al. Photodetectors based on two-dimensional materials and organic thin-film heterojunctions
Liu et al. Highly efficient broadband photodetectors based on lithography-free Au/Bi 2 O 2 Se/Au heterostructures
Mukherjee et al. Enhanced quantum efficiency in vertical mixed-thickness n-ReS2/p-Si heterojunction photodiodes
Cai et al. Recent progress of photodetector based on carbon nanotube film and application in optoelectronic integration
Tao et al. A self-powered, flexible photodetector based on perovskite nanowires with Ni-Al electrodes
Tang et al. Significant enhancement of single-walled carbon nanotube based infrared photodetector using PbS quantum dots
Yan et al. A ferroelectric p–i–n heterostructure for highly enhanced short‐circuit current density and self‐powered photodetection
Li et al. High‐responsivity graphene/4H‐SiC ultraviolet photodetector based on a planar junction formed by the dual modulation of electric and light fields
Liang et al. A comprehensive investigation of organic active layer structures toward high performance near-infrared phototransistors
Srivastava et al. Pentacene and CuO nanocomposite based self-powered broadband photodetector
Salvato et al. Increasing efficiency in single-walled carbon nanotube/n-Si photodetectors by voltage doping
CN111129205B (zh) 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用
CN110190150B (zh) 基于硒化钯薄膜/硅锥包裹结构异质结的宽波段高性能光电探测器及其制作方法
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant