CN108767049A - 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件 - Google Patents

一种基于碳纳米管/石墨烯肖特基结的高性能光电器件 Download PDF

Info

Publication number
CN108767049A
CN108767049A CN201810502999.8A CN201810502999A CN108767049A CN 108767049 A CN108767049 A CN 108767049A CN 201810502999 A CN201810502999 A CN 201810502999A CN 108767049 A CN108767049 A CN 108767049A
Authority
CN
China
Prior art keywords
carbon nano
nano tube
graphene
schottky junction
performance optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810502999.8A
Other languages
English (en)
Other versions
CN108767049B (zh
Inventor
苏言杰
蔡葆昉
陶泽军
张亚非
杨志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Carbon Technology Co ltd
Original Assignee
Shanghai Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Jiaotong University filed Critical Shanghai Jiaotong University
Priority to CN201810502999.8A priority Critical patent/CN108767049B/zh
Publication of CN108767049A publication Critical patent/CN108767049A/zh
Application granted granted Critical
Publication of CN108767049B publication Critical patent/CN108767049B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/108Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the Schottky type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • H01L31/035227Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures the quantum structure being quantum wires, or nanorods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明涉及一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,包括:绝缘性基底,设置在绝缘性基底上表面两侧的电极对,位于电极对之间的碳纳米管网络,位于碳纳米管网络内的呈岛状的石墨烯。与现有技术相比,本发明采用岛状石墨烯与碳纳米管网络形成肖特基结构使得碳纳米管中的光生空穴转移并被限制于岛状石墨烯,大幅度降低了光生载流子复合几率,同时大幅降低由连续石墨烯作为导电沟道导致的暗电流,进而提高器件的光电性能。

Description

一种基于碳纳米管/石墨烯肖特基结的高性能光电器件
技术领域
本发明属于半导体光电器件技术领域,尤其是涉及一种基于碳纳米管/石墨烯肖特基结的高性能光电器件。
背景技术
半导体性碳纳米管具有较宽的带隙、高载流子迁移率、高热导率、大的光吸收系数和优异的化学稳定性,被认为构建下一代光电子器件的理想材料。尤其是,单壁碳纳米管(SWCNTs)为直径带隙半导体且与其直径成反比,通过选择合适直径的SWCNTs即可构筑高性能近红外-短波红外光电器件。碳纳米管的光吸收系数(104~105cm-1)比传统窄带隙半导体高一个数量级,有望采用超薄碳纳米管薄膜制作半透明光电探测器件。另外,已有理论和实验证实高能光子激发SWCNTs可产生多重光生电子空穴对(也即多激子效应),这将对构筑超高性能SWCNTs基光电器件提供可能。
SWCNTs基光电探测器内光吸收体可分为单根SWCNT、取向SWCNT阵列式、SWCNTs网络和SWCNTs薄膜等四类,与前两种相比,SWCNTs网络和SWCNTs薄膜由于工艺简单而更利于低成本、大面积用于构筑器件。为了提高器件的光电转换性能,需要构建异质结结构促进光生电子空穴对的分离与输运。这其中低维纳米碳(富勒烯、石墨烯)具有与SWCNTs相近的sp2结构而易于形成较强的电子耦合作用,受到广泛关注。研究证实碳纳米管与石墨烯间具有高效的电荷转移效率,Zhang等人报道了基于SWCNT薄膜/石墨烯肖特基结的可见-近红外光电探测器(Sci.Rep.2016,6:38569)。但由于较厚的SWCNTs薄膜与石墨烯薄膜直接分别连接电极两端,器件的光电响应度0.209AW-1而暗电流在1V偏压下则达到微安量级,严重限制了其可探测率的提高。王枫秋等人公开了一种石墨烯基红外光探测器件(CN201510150620.8),该器件以半导体性碳纳米管为光吸收层,石墨烯为载流子输运通道。尽管采用碳纳米管/石墨烯肖特基结构,但碳纳米管仅作为光吸收层且不与源漏电极相连。光生载流子必须经过连接于源漏电极间的石墨烯传导至外电路。而石墨烯的超高导电性使得器件暗电流较大,限制了器件可探测率的提高。
发明内容
本发明的目的就是为了克服上述现有技术存在的缺陷而提供一种基于碳纳米管/石墨烯肖特基结的高性能光电器件。
本发明的目的可以通过以下技术方案来实现:
一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,包括:
绝缘性基底,例如可以采用Si/SiO2衬底,
设置在绝缘性基底上表面两侧的Au电极对,
位于电极对之间的碳纳米管网络,利用碳纳米管网络作为光电子输运沟道,
位于碳纳米管网络内呈岛状的石墨烯,利用岛状石墨烯起到降低载流子复合几率作用,并且与两侧的电极对不连接,从而可以降低由连续石墨烯作为导电沟道引起的较大暗电流,进而大幅度提高器件的光电性能,这是本申请最关键的技术要点。
所述石墨烯为化学气相沉积法制备的高质量石墨烯。
所述石墨烯为随机性碎片结构,散落在碳纳米管网络中,或者为图形化的阵列结构,碳纳米管网络与岛状石墨烯的上下顺序可以互换,石墨烯位于碳纳米管网络上方或下方。
所述碳纳米管网络由半导体性单壁碳纳米管和/或半导体性双壁碳纳米管组成,通过旋涂法、湿法转移或滴涂法获得,厚度为1-15nm,以便和碳纳米管间载流子的平均自由程处于同一量级。
该种光电器件可以作为光电导式或场效应晶体管式光电探测器使用。
现有技术以薄膜石墨烯为导电通道,发挥了石墨烯超快载流子迁移的优势但也导致了大的暗态电流。与之相比,本发明采用碳纳米管网络一方面能够提高碳纳米管的光吸收,另一方面使得光生载流子沿平面方向传输,避免了垂直碳纳米管网络方向激子扩散长度的限制。更重要的是,碳纳米管与石墨烯间具有高效的电荷转移效率,光照条件下空穴转移并被限制于岛状石墨烯,大幅度降低光生载流子复合几率,同时降低由连续石墨烯作为导电沟道引起的较大暗电流,进而大幅度提高器件的光电性能。
附图说明
图1为实施例1所提供的光电导器件示意图;
图2为实施例1所构筑的光电探测器在1064nm光辐照前后电流-电压曲线;
图3为实施例1所构筑的光电探测器在1064nm光辐照条件下光电响应时间;
图4为实施例2所提供的场效应晶体管式光电器件示意图。
图中,1-绝缘性基底、2-碳纳米管网络、3-岛状石墨烯、4-电极、5-源极、6-漏极、7-栅极介电层、8-栅极。
具体实施方式
下面结合具体实施例对本发明进行详细说明。以下实施例将有助于本领域的技术人员进一步理解本发明,但不以任何形式限制本发明。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围。
实施例1
本实施例提供一种基于碳纳米管/石墨烯肖特基结的高性能光电导式探测器,其结构示意图如图1所示。该光电导器件包括绝缘性基底1、碳纳米管网络2、岛状石墨烯3、图形化的电极4,其构筑方法如下:
(1)以Si/SiO2(300nm)衬底作为绝缘性基底,在Si/SiO2(300nm)衬底上采用湿法转移法转移岛状CVD石墨烯;
(2)采用传统微加工工艺沉积图形化的Au电极对,利用氧等离子体刻蚀去除沟道外的岛状石墨烯;
(3)采用滴涂的方法将半导体性SWCNTs网络(10nm)沉积在Au电极对之间。即得到高性能光电导探测器,其在1064nm激光辐照(30mW/cm2)条件下的光电性能如图2,3所示。器件在1V偏压下的暗电流为150nA,光电流则为740nA,但随着偏压增大,光电响应大幅度增强,10V偏压下的光电响应度高达850A/W。另外,器件具有较快的光电响应,其时间仅为44μs。
实施例2
本实施例提供一种基于碳纳米管/石墨烯肖特基结的高性能场效应晶体管式光电探测器,其结构示意图如图4所示。该光电导器件由栅极8、栅极介电层7、碳纳米管网络2、岛状石墨烯3、源极5、漏极6组成,其构筑方法如下:
(1)采用高掺杂Si作为栅极,在其表面热氧化生长SiO2(300nm)为栅极介电层。
(2)Si/SiO2衬底上采用湿法转移法转移岛状CVD石墨烯;
(3)采用传统微加工工艺沉积图形化的Au电极对为源漏电极,利用氧等离子体刻蚀去除沟道外的岛状石墨烯;
(4)采用转移方法将半导体性SWCNTs网络(15nm)沉积在源漏电极之间。即得到高性能场效应晶体管式光电探测器。
实施例3
本实施例提供一种基于碳纳米管/石墨烯肖特基结的高性能光电导式探测器,该光电导器件包括绝缘性基底、半导体性SWCNTs网络、图形化石墨烯、图形化电极组成。其构筑方法如下:
(1)采用湿法转移法转移CVD连续石墨烯至Si/SiO2(300nm)衬底上;
(2)采用传统光刻工艺和氧等离子体处理工艺获得图形化石墨烯。
(3)采用传统微加工工艺沉积图形化的Au电极对,利用氧等离子体刻蚀去除沟道外的图形化石墨烯;
(4)采用旋涂法将半导体性SWCNTs网络(1nm)沉积在图形化石墨烯表面并连接在Au电极上。即得到高性能光电导探测器。
实施例4
本实施例提供一种基于碳纳米管/石墨烯肖特基结的高性能场效应晶体管式光电探测器,该光电导器件包括栅极、栅极介电层、半导体性双壁碳纳米管网络、岛状石墨烯、源极、漏极组成。其构筑方法如下:
(1)采用高掺杂Si作为栅极,在其表面热氧化生长SiO2(300nm)为栅极介电层。
(2)采用旋涂法将半导体性双壁碳纳米管网络(5nm)沉积在Si/SiO2衬底上;
(3)采用湿法转移法转移岛状CVD石墨烯在半导体性双壁碳纳米管网络表面。
(4)用传统微加工工艺沉积图形化的Au电极对为源漏电极,并利用氧等离子体刻蚀去除沟道外的双壁碳纳米管和石墨烯。即得到高性能场效应晶体管式光电探测器。
实施例5
一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,包括:由PET基底构成的绝缘性基底,设置在绝缘性基底上表面两侧的Au电极对,位于电极对之间的碳纳米管网络,厚度为15nm,由半导体性双壁碳纳米管组成,通过、湿法转移获得,并且能够很好控制网络的厚度,位于碳纳米管网络内呈岛状的石墨烯,本实施例中采用的是石墨烯为化学气相沉积法制备的石墨烯,为图形化的阵列结构,位于碳纳米管网络的下方,并且石墨烯位于绝缘性基底上表面的沟道内,与两侧的电极对隔离开,不与电极对产生接触,这样既可以利用岛状石墨烯起到降低载流子复合几率作用,又可以降低由连续石墨烯作为导电沟道引起的较大暗电流,进而大幅度提高器件的光电性能。
实施例6
一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,包括:由玻璃基底构成的绝缘性基底,设置在绝缘性基底上表面两侧的Au电极对,位于电极对之间的碳纳米管网络,厚度为1nm,由半导体性单壁碳纳米管组成,通过旋涂法获得,并且能够很好控制网络的厚度,位于碳纳米管网络内呈岛状的石墨烯,本实施例中采用的是石墨烯为化学气相沉积法制备的石墨烯,为随机性碎片结构,位于碳纳米管网络的上方,并且石墨烯位于绝缘性基底上表面的沟道内,与两侧的电极对隔离开,不与电极对产生接触,这样既可以利用岛状石墨烯起到降低载流子复合几率作用,又可以降低由连续石墨烯作为导电沟道引起的较大暗电流,进而大幅度提高器件的光电性能。
以上对本发明的具体实施例进行了描述。需要理解的是,本发明并不局限于上述特定实施方式,本领域技术人员可以在权利要求的范围内做出各种变形或修改,这并不影响本发明的实质内容。

Claims (10)

1.一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,该光电器件包括:
绝缘性基底,
设置在绝缘性基底上表面两侧的电极对,
位于电极对之间的碳纳米管网络,
位于碳纳米管网络内呈岛状的石墨烯。
2.根据权利要求1所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述石墨烯位于绝缘性基底上表面的沟道内,与两侧的电极对隔离开。
3.根据权利要求1或2所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述石墨烯为化学气相沉积法制备的石墨烯。
4.根据权利要求1或2所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述石墨烯为随机性碎片结构,位于碳纳米管网络上方或下方。
5.根据权利要求1或2所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述石墨烯为图形化的阵列结构,位于碳纳米管网络上方或下方。
6.根据权利要求1所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述碳纳米管网络由半导体性单壁碳纳米管和/或半导体性双壁碳纳米管组成。
7.根据权利要求1或6所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述碳纳米管网络的厚度为1-15nm。
8.根据权利要求1或6所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述碳纳米管网络通过旋涂法、湿法转移或滴涂法获得。
9.根据权利要求1所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述绝缘性基底为Si/SiO2衬底、玻璃基底、PDMS基底或PET基底。
10.根据权利要求1所述的一种基于碳纳米管/石墨烯肖特基结的高性能光电器件,其特征在于,所述电极对为Au电极对。
CN201810502999.8A 2018-05-23 2018-05-23 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件 Active CN108767049B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810502999.8A CN108767049B (zh) 2018-05-23 2018-05-23 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810502999.8A CN108767049B (zh) 2018-05-23 2018-05-23 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件

Publications (2)

Publication Number Publication Date
CN108767049A true CN108767049A (zh) 2018-11-06
CN108767049B CN108767049B (zh) 2020-03-10

Family

ID=64005116

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810502999.8A Active CN108767049B (zh) 2018-05-23 2018-05-23 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件

Country Status (1)

Country Link
CN (1) CN108767049B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950400A (zh) * 2019-03-14 2019-06-28 武汉华星光电技术有限公司 柔性光电探测器和柔性光电探测器制备方法
CN111129205A (zh) * 2019-12-06 2020-05-08 国家纳米科学中心 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275498A1 (en) * 2006-05-26 2007-11-29 Paul Beecher Enhancing performance in ink-jet printed organic semiconductors
US7723684B1 (en) * 2007-01-30 2010-05-25 The Regents Of The University Of California Carbon nanotube based detector
CN104167451A (zh) * 2014-07-07 2014-11-26 北京大学 基于量子点-碳纳米管的红外成像探测器及其制备方法
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN106024968A (zh) * 2016-05-31 2016-10-12 合肥工业大学 石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070275498A1 (en) * 2006-05-26 2007-11-29 Paul Beecher Enhancing performance in ink-jet printed organic semiconductors
US7723684B1 (en) * 2007-01-30 2010-05-25 The Regents Of The University Of California Carbon nanotube based detector
CN104766902A (zh) * 2014-06-16 2015-07-08 南京大学 基于石墨烯碳纳米管复合吸收层的红外光探测晶体管
CN104167451A (zh) * 2014-07-07 2014-11-26 北京大学 基于量子点-碳纳米管的红外成像探测器及其制备方法
CN106024968A (zh) * 2016-05-31 2016-10-12 合肥工业大学 石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109950400A (zh) * 2019-03-14 2019-06-28 武汉华星光电技术有限公司 柔性光电探测器和柔性光电探测器制备方法
CN111129205A (zh) * 2019-12-06 2020-05-08 国家纳米科学中心 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用
CN111129205B (zh) * 2019-12-06 2021-10-08 国家纳米科学中心 碳纳米管-z907复合薄膜光电晶体管及其制备方法和应用

Also Published As

Publication number Publication date
CN108767049B (zh) 2020-03-10

Similar Documents

Publication Publication Date Title
Liu et al. Band alignment engineering in two‐dimensional transition metal dichalcogenide‐based heterostructures for photodetectors
Zhang et al. Graphene‐based mixed‐dimensional van der Waals heterostructures for advanced optoelectronics
Bao et al. Band structure engineering in 2D materials for optoelectronic applications
Jariwala et al. Mixed-dimensional van der Waals heterostructures
Liu et al. Organic‐single‐crystal vertical field‐effect transistors and phototransistors
Li et al. Self‐powered UV–near infrared photodetector based on reduced graphene oxide/n‐Si vertical heterojunction
Wang et al. Considerably improved photovoltaic performance of carbon nanotube-based solar cells using metal oxide layers
Li et al. SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions
Qi et al. High-responsivity two-dimensional p-PbI 2/n-WS 2 vertical heterostructure photodetectors enhanced by photogating effect
Cai et al. Highly sensitive broadband single‐walled carbon nanotube photodetectors enhanced by separated graphene nanosheets
Chen et al. Ultrasensitive ZnO nanowire photodetectors with a polymer electret interlayer for minimizing dark current
Che et al. Ambipolar graphene–quantum dot hybrid vertical photodetector with a graphene electrode
Qian et al. Band engineering of carbon nanotubes for device applications
Liu et al. Toward High‐Performance Carbon Nanotube Photovoltaic Devices
Sun et al. Graphene electronic devices
Cao et al. Double-layer heterostructure of graphene/carbon nanotube films for highly efficient broadband photodetector
CN111312830A (zh) 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用
Tang et al. Significant enhancement of single-walled carbon nanotube based infrared photodetector using PbS quantum dots
Li et al. High‐responsivity graphene/4H‐SiC ultraviolet photodetector based on a planar junction formed by the dual modulation of electric and light fields
Liu et al. Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects
Li et al. Broadband phototransistors realised by incorporating a bi-layer perovskite/NIR light absorbing polymer channel
Chen et al. High-work-function metal/carbon nanotube/low-work-function metal hybrid junction photovoltaic device
CN108767049A (zh) 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件
US20110024792A1 (en) Photovoltaic Device Using Single Wall Carbon Nanotubes and Method of Fabricating the Same
Unalan et al. ZnO Nanowire and $\hbox {WS} _ {2} $ Nanotube Electronics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20231127

Address after: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee after: Su Yanjie

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: SHANGHAI JIAO TONG University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20240125

Address after: 201109 Building 1, No. 600, Jianchuan Road, Minhang District, Shanghai

Patentee after: Shanghai Carbon Technology Co.,Ltd.

Country or region after: China

Address before: 200240 No. 800, Dongchuan Road, Shanghai, Minhang District

Patentee before: Su Yanjie

Country or region before: China

TR01 Transfer of patent right