CN111312830A - 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用 - Google Patents

碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用 Download PDF

Info

Publication number
CN111312830A
CN111312830A CN202010382078.XA CN202010382078A CN111312830A CN 111312830 A CN111312830 A CN 111312830A CN 202010382078 A CN202010382078 A CN 202010382078A CN 111312830 A CN111312830 A CN 111312830A
Authority
CN
China
Prior art keywords
graphene
van der
der waals
carbon nanotube
waals heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010382078.XA
Other languages
English (en)
Other versions
CN111312830B (zh
Inventor
苏言杰
叶小亮
俞健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Micron Electronic Industry Research Institute Co ltd
Nanjing Crystal Carbon Nanotechnology Co Ltd
Original Assignee
Nanjing Micron Electronic Industry Research Institute Co ltd
Nanjing Crystal Carbon Nanotechnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Micron Electronic Industry Research Institute Co ltd, Nanjing Crystal Carbon Nanotechnology Co Ltd filed Critical Nanjing Micron Electronic Industry Research Institute Co ltd
Priority to CN202010382078.XA priority Critical patent/CN111312830B/zh
Publication of CN111312830A publication Critical patent/CN111312830A/zh
Application granted granted Critical
Publication of CN111312830B publication Critical patent/CN111312830B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/028Inorganic materials including, apart from doping material or other impurities, only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/074Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising a heterojunction with an element of Group IV of the Periodic Table, e.g. ITO/Si, GaAs/Si or CdTe/Si solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Light Receiving Elements (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用,属于半导体光电器件技术领域。包括:绝缘性基底,设置在绝缘性基底上表面两侧的电极对,位于电极对之间的图形化石墨烯,位于图形化的石墨烯间定向排布且密度可控的半导体性碳纳米管。与现有技术相比,本发明采用图形化石墨烯与定向排布的半导体性碳纳米管形成范德华异质结构,可以充分利用石墨烯与半导体性碳纳米管超高的载流子迁移率和半导体性碳纳米管的吸光能力。更重要的是,可以通过调节半导体性碳纳米管排布密度、图形化石墨烯尺寸等方式实现增大器件光电响应率的同时大幅度降低器件暗电流,进而提高器件的比探测率。

Description

碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用
技术领域
本发明属于半导体光电器件技术领域,尤其是一种碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用。
背景技术
碳纳米管(CNT)优异的电学、热学、机械特性和化学稳定性以及独特的一维纳米结构,使其成为应用在微纳电子器件中的理想功能材料。尤其是,半导体性半壁碳纳米管(SWCNTs)对从 UV-vis-NIR 整个光谱区都具有良好的光吸收(尤其是近红外区),其光吸收系数(104-105cm-1)比传统半导体材料高 1-2个数量级,且对光具有飞秒量级的响应特性。因此,基于半导体性SWCNTs的光电器件有望获得极高的光电转换效率。但是,光生载流子在半导体性 SWCNTs 网络垂直方向上的迁移能力较弱,而在平面内的传输则会受到结构缺陷、SWCNTs 末端接触点等影响,导致光生载流子复合几率较高。为了提高器件的光电转换性能,需要构建异质结结构促进光生电子空穴对的分离与输运。基于石墨烯的纳米传感器已被不断证实具有超快和超高灵敏度的响应特质。然而,与其他二维材料一样,石墨烯只有一层表面原子的结构一定程度上限制了光吸收、物理或化学结合位点的数量等,这使得石墨烯的优异性能无法更进一步发挥。研究证实将单壁碳纳米管和石墨烯结合起来,让它们形成范德华异质结则能有效克服它们各自的局限性,从而获得出色的材料性能。
Zhang等人在Sci. Rep. 2016, 6: 38569中报道了基于SWCNT薄膜/石墨烯肖特基结的可见-近红外光电探测器。但由于较厚的SWCNTs薄膜与石墨烯薄膜直接分别连接电极两端,器件的光电响应度0.209AW-1而暗电流在1V偏压下则达到微安量级,严重限制了其可探测率的提高。王枫秋等人公开了一种石墨烯基红外光探测器件(CN201510150620.8),该器件以半导体性碳纳米管为光吸收层,石墨烯为载流子输运通道。尽管采用碳纳米管/石墨烯肖特基结构,但碳纳米管仅作为光吸收层且不与源漏电极相连。光生载流子必须经过连接于源漏电极间的石墨烯传导至外电路。而石墨烯的超高导电性使得器件暗电流较大,限制了器件可探测率的提高。
发明内容
发明目的:提供一种碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用,以解决背景技术中所涉及的问题。
技术方案:一种碳纳米管/石墨烯范德华异质结光电器件,包括:
绝缘性基底;
电极对,设置在所述绝缘性基底上表面两侧,
异质结,位于电极对之间,包括图形化石墨烯,位于图形化的石墨烯与电极之间定向排布且密度可控的半导体性碳纳米管。
作为一个优选方案,所述图形化石墨烯由光刻工艺加工而成,电极对间的图形化石墨烯由一个或多个组成。
作为一个优选方案,所述半导体性碳纳米管至少包括半导体性单壁碳纳米管、半导体性双壁碳纳米管中的一种
作为一个优选方案,所述图形化的石墨烯与电极或图形化石墨烯之间的间距为1~5μm,定向排布的半导体性碳纳米管的密度为1~100根/μm。
作为一个优选方案,所述定向排布的半导体性碳纳米管通过交流介电泳法获得。
作为一个优选方案,所述碳纳米管网络通过旋涂法或滴涂法获得。
作为一个优选方案,所述绝缘性基底为Si/SiO2、玻璃、PDMS、PET。
作为一个优选方案,所述电极对为Au电极对。
本发明还提供一种碳纳米管/石墨烯范德华异质结光电器件的构筑方法,其特征在于,包括如下步骤:
步骤一、以Si/SiO2衬底作为绝缘性基底,在Si/SiO2衬底上采用湿法转移法转移CVD生长的石墨烯;
步骤二、采用光刻工艺将电极间刻蚀成一个石墨烯图形的结构,并通过氧等离子刻蚀工艺去除多余的石墨烯;
步骤三、通过光刻工艺在需要定向排列碳纳米管的位置留出凹槽,凹槽的间距为1~5μm,通过交流介电泳法将半导体单壁碳纳米管转移到样品上,定向排布的半导体性碳纳米管的密度为1~100根/μm;通过lift-off工艺清洗掉除凹槽以外部分的碳管;
步骤四、通过光刻工艺光刻出电极的图形,采用传统微加工工艺沉积图形化的Au电极对;
步骤五、利用lift-off工艺去胶,即得到碳纳米管/石墨烯范德华异质结器件。
本发明还提供一种碳纳米管/石墨烯范德华异质结光电器件在制备光电导式或场效应晶体管式光电探测器上的应用。在进一步的实施例中,
有益效果:本发明涉及一种碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用,本发明采用定向排布半导体性碳纳米管网络,一方面能够提高碳纳米管的光吸收,另一方面使得光生载流子沿平面方向传输,避免了垂直碳纳米管方向激子扩散长度的限制。更重要的是,碳纳米管与石墨烯间具有高效的电荷转移效率,光照条件下空穴转移并被限制于图形化后的石墨烯,大幅度降低光生载流子复合几率,同时降低由连续石墨烯作为导电沟道引起的较大暗电流,进而大幅度提高器件的光电性能。
附图说明
图1为实施例1所提供的由一个石墨烯与定向排布碳纳米管组成的光电器件示意图。
图2为实施例1所提供的由一个石墨烯与定向排布碳纳米管组成的光电器件示意图。
图3为实施例2所提供的由二个石墨烯与定向排布碳纳米管组成的光电器件示意图。
图4为实施例3所提供的由四个石墨烯与定向排布碳纳米管组成的光电器件示意图。
附图标记为:绝缘性基底1、定向排布半导体性碳纳米管网络2、图形化后的石墨烯3、电极4。
具体实施方式
下面结合实施例,对本发明作进一步说明,所述的实施例的示例旨在解释本发明,而不能理解为对本发明的限制。应当指出的是,对本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进。这些都属于本发明的保护范围
实施例1
本实施例提供一种碳纳米管/石墨烯范德华异质结光电器件及其制备方法,其结构示意图如图1所示。其构筑方法如下:
(1)以Si/SiO2衬底作为绝缘性基底,在Si/SiO2衬底上采用湿法转移法转移CVD生长的石墨烯。
(2)采用光刻工艺将电极间刻蚀成一个石墨烯图形的结构,并通过氧等离子刻蚀工艺去除多余的石墨烯。
(3)通过光刻工艺在需要定向排列碳纳米管的位置留出凹槽,凹槽的间距为1μm,通过交流介电泳法将半导体单壁碳纳米管转移到样品上,定向排布的半导体性碳纳米管的密度为100根/μm;通过lift-off工艺清洗掉除凹槽以外部分的碳管。
(4)通过光刻工艺光刻出电极的图形,采用传统微加工工艺沉积图形化的Au电极对。
(5)利用lift-off工艺去胶,即得到碳纳米管/石墨烯范德华异质结器件。
实施例2
本实施例提供一种碳纳米管/石墨烯范德华异质结光电器件及其制备方法,其结构示意图如图2所示。其构筑方法如下:
(1)以Si/SiO2衬底作为绝缘性基底,在Si/SiO2衬底上采用湿法转移法转移CVD生长的石墨烯。
(2)采用光刻工艺将电极间刻蚀成两个石墨烯图形的结构,并通过氧等离子刻蚀工艺去除多余的石墨烯。
(3)通过光刻工艺在需要定向排列碳纳米管的位置留出凹槽,凹槽的间距为3μm,通过交流介电泳法将半导体单壁碳纳米管转移到样品上,定向排布的半导体性碳纳米管的密度为20根/μm;通过lift-off工艺清洗掉除凹槽以外部分的碳管。
(4)通过光刻工艺光刻出电极的图形,采用传统微加工工艺沉积图形化的Au电极对。
(5)利用lift-off工艺去胶,即得到碳纳米管/石墨烯范德华异质结器件。
实施例3
本实施例提供一种碳纳米管/石墨烯范德华异质结光电器件及其制备方法,其结构示意图如图3所示。其构筑方法如下:
(1)以Si/SiO2衬底作为绝缘性基底,在Si/SiO2衬底上采用湿法转移法转移CVD生长的石墨烯。
(2)采用光刻工艺将电极间刻蚀成四个石墨烯图形的结构,并通过氧等离子刻蚀工艺去除多余的石墨烯。
(3)通过光刻工艺在需要定向排列碳纳米管的位置留出凹槽,凹槽的间距为5μm,通过交流介电泳法将半导体单壁碳纳米管转移到样品上,图形化石墨烯间的定向排布的半导体性碳纳米管的密度为1根/μm;通过lift-off工艺清洗掉除凹槽以外部分的碳管。
(4)通过光刻工艺光刻出电极的图形,采用传统微加工工艺沉积图形化的Au电极对。
(5)利用lift-off工艺去胶,即得到碳纳米管/石墨烯范德华异质结器件。
检测例
对实施例1制备的光电探测器的进行光电导特性测试,在固定光强度为165mWcm-2、600nm的入射光,研究10V偏压下的伏安特性曲线,在光照由“开”(光照条件)和“关”(暗场条件)过程中,实施例1中的光电探测器的响应度1.56A/W和光电探测器上的光电流和暗电流之比达到3.2×103,,均远高于同类器件1~3个数量级。
总之,现有技术以薄膜石墨烯为导电通道,发挥了石墨烯超快载流子迁移的优势但也导致了大的暗态电流。与之相比,本发明采用定向排布半导体性碳纳米管网络一方面能够提高碳纳米管的光吸收,另一方面使得光生载流子沿平面方向传输,避免了垂直碳纳米管方向激子扩散长度的限制。更重要的是,碳纳米管与石墨烯间具有高效的电荷转移效率,光照条件下空穴转移并被限制于图形化后的石墨烯,大幅度降低光生载流子复合几率,同时降低由连续石墨烯作为导电沟道引起的较大暗电流,进而大幅度提高器件的光电性能。
另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合。为了避免不必要的重复,本发明对各种可能的组合方式不再另行说明。

Claims (10)

1.一种碳纳米管/石墨烯范德华异质结光电器件,其特征在于,包括:
绝缘性基底;
电极对,设置在所述绝缘性基底上表面两侧,
异质结,位于电极对之间,包括图形化石墨烯,位于图形化的石墨烯与电极之间定向排布且密度可控的半导体性碳纳米管。
2.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述图形化石墨烯由光刻工艺加工而成,电极对间的图形化石墨烯由一个或多个组成。
3.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述半导体性碳纳米管至少包括半导体性单壁碳纳米管、半导体性双壁碳纳米管中的一种。
4.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述图形化的石墨烯与电极或图形化石墨烯之间的间距为1~5μm,定向排布的半导体性碳纳米管的密度为1~100根/μm。
5.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述定向排布的半导体性碳纳米管通过交流介电泳法获得。
6.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述碳纳米管网络通过旋涂法或滴涂法获得。
7.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述绝缘性基底为Si/SiO2、玻璃、PDMS、PET。
8.根据权利要求1所述的碳纳米管/石墨烯范德华异质结光电器件,其特征在于,所述电极对为Au电极对。
9.一种基于权利要求1~8中任一项所述的碳纳米管/石墨烯范德华异质结光电器件的构筑方法,其特征在于,包括如下步骤:
步骤一、以Si/SiO2衬底作为绝缘性基底,在Si/SiO2衬底上采用湿法转移法转移CVD生长的石墨烯;
步骤二、采用光刻工艺将电极间刻蚀成一个石墨烯图形的结构,并通过氧等离子刻蚀工艺去除多余的石墨烯;
步骤三、通过光刻工艺在需要定向排列碳纳米管的位置留出凹槽,凹槽的间距为1~5μm,通过交流介电泳法将半导体单壁碳纳米管转移到样品上,定向排布的半导体性碳纳米管的密度为1~100根/μm;通过lift-off工艺清洗掉除凹槽以外部分的碳管;
步骤四、通过光刻工艺光刻出电极的图形,采用传统微加工工艺沉积图形化的Au电极对;
步骤五、利用lift-off工艺去胶,即得到碳纳米管/石墨烯范德华异质结器件。
10.一种基于权利要求1~8中任一项所述的碳纳米管/石墨烯范德华异质结光电器件在制备光电导式或场效应晶体管式光电探测器上的应用。
CN202010382078.XA 2020-05-08 2020-05-08 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用 Active CN111312830B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010382078.XA CN111312830B (zh) 2020-05-08 2020-05-08 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010382078.XA CN111312830B (zh) 2020-05-08 2020-05-08 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用

Publications (2)

Publication Number Publication Date
CN111312830A true CN111312830A (zh) 2020-06-19
CN111312830B CN111312830B (zh) 2020-09-25

Family

ID=71146413

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010382078.XA Active CN111312830B (zh) 2020-05-08 2020-05-08 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用

Country Status (1)

Country Link
CN (1) CN111312830B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213454A (zh) * 2021-04-21 2021-08-06 温州大学 以石墨烯为催化剂制备单壁碳纳米管的方法
CN113328038A (zh) * 2021-04-21 2021-08-31 温州大学 一种石墨烯-碳纳米管异质结的制备方法
CN113540154A (zh) * 2021-06-25 2021-10-22 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺
CN114203921A (zh) * 2021-11-08 2022-03-18 上海交通大学 一种基于石墨烯纳米带/单壁碳纳米管分子内异质结光伏器件的制备方法
CN113540154B (zh) * 2021-06-25 2024-05-24 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN101788516A (zh) * 2010-02-22 2010-07-28 中国科学院苏州纳米技术与纳米仿生研究所 交流电泳定向组装碳纳米管阵列传感器件的制作方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101771092A (zh) * 2009-12-16 2010-07-07 清华大学 一种基于石墨烯/硅肖特基结的光伏电池及其制备方法
CN101788516A (zh) * 2010-02-22 2010-07-28 中国科学院苏州纳米技术与纳米仿生研究所 交流电泳定向组装碳纳米管阵列传感器件的制作方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BAOFANG CAI ET AL: "Highly Sensitive Broadband Single-Walled Carbon Nanotube Photodetectors Enhanced by Separated Graphene Nanosheets", 《ADVANCED OPTICAL MATERIALS》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113213454A (zh) * 2021-04-21 2021-08-06 温州大学 以石墨烯为催化剂制备单壁碳纳米管的方法
CN113328038A (zh) * 2021-04-21 2021-08-31 温州大学 一种石墨烯-碳纳米管异质结的制备方法
CN113328038B (zh) * 2021-04-21 2022-08-30 温州大学 一种石墨烯-碳纳米管异质结的制备方法
CN113540154A (zh) * 2021-06-25 2021-10-22 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺
CN113540154B (zh) * 2021-06-25 2024-05-24 西安交通大学 基于二维材料的双异质结构的柔性光电探测器及其制备工艺
CN114203921A (zh) * 2021-11-08 2022-03-18 上海交通大学 一种基于石墨烯纳米带/单壁碳纳米管分子内异质结光伏器件的制备方法

Also Published As

Publication number Publication date
CN111312830B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
CN111312830B (zh) 碳纳米管/石墨烯范德华异质结光电器件、其构筑方法和应用
Zhang et al. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction
Li et al. Restoring the photovoltaic effect in graphene-based van der Waals heterojunctions towards self-powered high-detectivity photodetectors
Zeng et al. Carbon nanotube arrays based high-performance infrared photodetector
Liu et al. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors
Yang et al. Carbon nanotube photoelectronic and photovoltaic devices and their applications in infrared detection
US8916825B1 (en) Ultraviolet, infrared and terahertz photo/radiation sensors using graphene layers to enhance sensitivity
Li et al. SOCl2 enhanced photovoltaic conversion of single wall carbon nanotube/n-silicon heterojunctions
Cai et al. Highly sensitive broadband single‐walled carbon nanotube photodetectors enhanced by separated graphene nanosheets
Ozdemir et al. Silicon nanowire-poly (3, 4-ethylenedioxythiophene)-poly (styrenesulfonate) heterojunction solar cells
Liu et al. Toward High‐Performance Carbon Nanotube Photovoltaic Devices
Lu et al. Construction of PtSe 2/Ge heterostructure-based short-wavelength infrared photodetector array for image sensing and optical communication applications
He et al. Enhanced responsivity of a graphene/Si-based heterostructure broadband photodetector by introducing a WS 2 interfacial layer
US9812595B1 (en) All-wavelength (VIS-LWIR) transparent electrical contacts and interconnects and methods of making them
Itkis et al. Enhanced photosensitivity of electro-oxidized epitaxial graphene
Wu et al. Polarity‐Switchable and Self‐Driven Photo‐Response Based on Vertically Stacked Type‐III GeSe/SnS2 Heterojunction
Liu et al. Carbon nanotube-based heterostructures for high-performance photodetectors: Recent progress and future prospects
CN111584719A (zh) 一种碳纳米管/砷化镓异质结宽光谱超薄太阳能电池及其构筑方法
Ye et al. Si-CMOS-compatible 2D PtSe2-based self-driven photodetector with ultrahigh responsivity and specific detectivity
Katzir et al. Tunable inkjet printed hybrid carbon nanotubes/nanocrystals light sensor
Salvato et al. Increasing efficiency in single-walled carbon nanotube/n-Si photodetectors by voltage doping
Tang et al. High responsivity of Gr/n-Si Schottky junction near-infrared photodetector
CN108767049B (zh) 一种基于碳纳米管/石墨烯肖特基结的高性能光电器件
Zhang et al. A micro broadband photodetector based on single wall carbon nanotubes-graphene heterojunction
Zeng et al. Doping-free fabrication of carbon nanotube thin-film diodes and their photovoltaic characteristics

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant