CN115621353A - 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用 - Google Patents

一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用 Download PDF

Info

Publication number
CN115621353A
CN115621353A CN202211057033.0A CN202211057033A CN115621353A CN 115621353 A CN115621353 A CN 115621353A CN 202211057033 A CN202211057033 A CN 202211057033A CN 115621353 A CN115621353 A CN 115621353A
Authority
CN
China
Prior art keywords
mote
heterojunction
phototransistor
nano
conversion efficiency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202211057033.0A
Other languages
English (en)
Inventor
陈建茹
高伟
但智颖
韩理想
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China Normal University
Original Assignee
South China Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China Normal University filed Critical South China Normal University
Priority to CN202211057033.0A priority Critical patent/CN115621353A/zh
Publication of CN115621353A publication Critical patent/CN115621353A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明属于二维光电晶体管领域,公开提供了一种具有栅压调控光电转化效率的Bi2O2Se/MoTe2异质结光电晶体管及其制备方法和应用。该光电晶体管包括SiO2/Si衬底、Bi2O2Se/MoTe2异质结和电极;先将Bi2O2Se纳米片转移到SiO2/Si衬底,再将MoTe2纳米片垂直堆叠到Bi2O2Se纳米片上,交叠部分形成Bi2O2Se/MoTe2异质结,在异质结区域外制备金属粘附层/Au电极。本发明的光电晶体管具有1~8%的栅极调控光电转化效率,并在405~1310nm宽谱波段范围具有优异的自驱动光电性能,可用在太阳能电池、紫外‑可见光‑近红外成像和低功耗光电子器件领域。

Description

一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结 光电晶体管及其制备方法和应用
技术领域
本发明属于二维光电晶体管技术领域,更为具体地,涉及一种具有栅压调控光电转化效率的硒氧铋(Bi2O2Se)/二碲化钼(MoTe2)异质结光电晶体管及其制备方法和应用。
背景技术
随着技术的进步和时代的发展,光电晶体管已经成为许多现代设备的部件之一,广泛应用在军事、空间探索、医疗设备和人们的日常生活中,受到了学界的高度关注和研究。传统材料制备的光电晶体管由于工艺和技术极限、产能和能耗问题限制了光电晶体管的应用场景,这时基于二维半导体材料构建的光电晶体管为行业的发展一个新的选择。常见的二维材料有石墨烯(Graphene)、六方氮化硼(h-BN)、黑磷(BP)等,材料的禁带宽度从0eV到几eV,可以实现从紫外、可见光、近红外到远红外波长的宽光谱吸收,同时具有强的光与物质相互作用能力及出色的载流子输运能力,是构成灵敏度高、光响应度大、响应速度快的光电晶体管的候选材料。
Bi2O2Se具有超高的迁移率、突出的稳定性、可调谐的带隙和优异的力学性能,在电子和光电子领域表现出显著的应用前景。2017年以来,北京大学彭海琳等成功合成了由(Bi2O2)2n+和(Se)2n-通过静电力逐层结合组成的二维Bi2O2Se,与机械剥离法相比,CVD法可以得到大面积、高质量、原子层厚度的Bi2O2Se纳米片。此外,Bi2O2Se在空气中能够稳定存在,具有0.8eV的窄禁带、在温度为2K时具有高达20000cm2V-1s-1的霍尔迁移率、360~1600nm的宽带光谱响应,且具有大于106的极高开关比。最近,彭等观察到贫硒的Bi2O2Se具有大于500%的SdH振荡和线性磁电阻的现象。
然而,由于高载流子浓度(1018~1020cm-3)和本征的辐射效应,大多数Bi2O2Se基光电晶体管会表现出大于10-6A的暗电流、较小的光开关比(小于10)、相对缓慢或不稳定的响应速度和持续的光电导行为。虽然它们可以通过精确可控的合成工艺和顶栅调制得到缓解,但这将阻碍其在大规模制造和高速成像领域的潜在应用。近年来,随着聚合物转移技术的快速发展,可以从云母中完全分离出高质量的Bi2O2Se纳米片,提高了Bi2O2Se器件的性能,促进了忆阻器、THz探测、光晶体管、电阻开关、光子集成电路和热电转化等新型功能器件的探索。对于Bi2O2Se/3D范德华异质结,江等将Bi2O2Se转移到硅波导上应用于通信,在Vds=2V条件下获得了72.9nA的小暗电流、3.5A·W-1的高光响应度、22/78ns的响应速度和15.1pW·Hz-0.5的低噪声等效功率。
而对于Bi2O2Se/2D范德华异质结构,比如使用具有双极性导电特性的WSe2、BP等二维材料与Bi2O2Se集成在一起,可以抑制暗电流,拓宽响应光谱,提高响应速度。2021年,刘等研究了一种基于Bi2O2Se/BP范德华I型异质结的宽光谱光电晶体管,在1310nm波长处响应度为4.3A·W-1,响应时间为9ms。但器件相对较低的整流比(20)和BP在空气中不稳定等因素也限制了其进一步应用。相比之下,彭等人发展了一种II型Bi2O2Se/WSe2范德华异质结,由于其高效的电荷分离和强的层间耦合,该异质结具有365-2000nm的宽光谱探测能力。但在532nm波长条件下器件光响应度只有284mA·W-1,不能够得到业界的认可。2H-MoTe2是一种能在空气种稳定的双极型半导体材料,具有禁带宽度在0.80~1.15eV,且具有厚度依赖导电行为,具备从p型-双极型-n型转变的优势。然而,Bi2O2Se/MoTe2异质结的理论能带匹配计算、表征、电学和光电性能尚未见报道。因此,这类结构的研究这可以丰富Bi2O2Se基器件家族,有望促进Bi2O2Se范德华异质结体系的发展。
发明内容
为了解决上述现有技术存在的不足和缺点,本发明的目的在于提供一种具有栅压调控光电转化效率的Bi2O2Se/MoTe2异质结的光电晶体管。
本发明的另一目的在于提供上述具有栅压调控光电转化效率的Bi2O2Se/MoTe2异质结的光电晶体管的制备方法。
本发明的再一目的在于提供上述具有栅压调控光电转化效率的Bi2O2Se/MoTe2异质结的光电晶体管的应用。
为实现上述发明目的,本发明使用下述技术方案:
一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结的光电晶体管,所述Bi2O2Se/MoTe2异质结的光电晶体管包括SiO2/Si衬底、垂直Bi2O2Se/MoTe2异质结和电极;所述光电晶体管是利用聚苯乙烯辅助将Bi2O2Se纳米片材料转移在SiO2/Si衬底上,然后使用干法将MoTe2纳米片堆叠至Bi2O2Se纳米片上,Bi2O2Se纳米片与MoTe2纳米片交叠部分形成垂直Bi2O2Se/MoTe2异质结,然后在该异质结区域外的Bi2O2Se纳米片和MoTe2纳米片上分别进行光刻显影和蒸镀金属粘附层/Au电极制得。
优选地,所述Bi2O2Se纳米片的厚度为0.8~200nm,横向尺寸为2~200μm;所述MoTe2纳米片的厚度为0.7~100nm,横向尺寸为10~100μm。
优选地,所述Bi2O2Se纳米片是在通过化学气相沉积的方法在云母衬底上生长得到,MoTe2纳米片使用化学气相沉积合成或胶带机械剥离到SiO2/Si衬底上制得。
优选地,所述金属粘附层为Cr或Ti,其厚度为3~15nm,所述Au的厚度为20~200nm。
所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼的异质结光电晶体管的制备方法,包括以下具体步骤:
S1.通过化学气相沉积的方法在云母衬底上生长Bi2O2Se纳米片,并使用光学金相显微镜选择Bi2O2Se纳米片;然后使用聚苯乙烯辅助转移把Bi2O2Se纳米片无损地转移到经清洗的SiO2/Si衬底上,然后将其分别浸泡在甲苯和丙酮去除样品表面的聚苯乙烯残留和其它有机分子;
S2.通过光学金相显微镜选定化学气相沉积制备或者机械剥离的MoTe2纳米片,利用干法转移工艺在三维微区转移平台上将MoTe2纳米片堆叠到Bi2O2Se纳米片上,制得垂直Bi2O2Se/MoTe2异质结;
S3.使用紫外光刻系统在垂直Bi2O2Se/MoTe2异质结光刻和显影出电极图案,并通过电子束和热蒸发蒸镀的方式分别在Bi2O2Se纳米片和MoTe2纳米片上蒸镀金属粘结层/Au电极,制得Bi2O2Se/MoTe2异质结的光电晶体管。
所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼的异质结的光电晶体管在太阳能电池、紫外-可见光-近红外成像或低功耗光电子器件领域中的应用。
与现有技术相比,本发明具有以下有益效果:
1.本发明通过栅压调控光电转化效率的Bi2O2Se/MoTe2范德华异质结的光电晶体管具有直接隧穿的电学输运机制,该光电晶体管在偏压Vds=1/-1V条件下可实现1.3×102的高整流比。该光电晶体管具有1~8%的栅极调控光电转化效率,并在405~1310nm宽谱波段范围具有优异的自驱动光电性能,可用在太阳能电池、紫外-可见光-近红外成像和低功耗光电子器件领域。
2.本发明的Bi2O2Se/MoTe2范德华异质结的光电晶体管实现了高的光电转换效率和填充因子,并且具有显著的栅极调控特性。其中在0V到-60V栅极电压条件下,Bi2O2Se/MoTe2范德华异质结的光电晶体管的填充因子从0.37上升到0.52,光电转化效率从2.7%增加到8%,这种高填充因子和高光电转效率使该Bi2O2Se/MoTe2范德华异质结的光电晶体管应用在太阳能电池和逻辑光电器件中。
3.本发明的Bi2O2Se/MoTe2范德华异质结的光电晶体管具有优异的宽谱响应(405~1310nm)和自驱动光电性能,当Vds=0V,Vg=0V时,光电晶体管的最大光响应度达到1.24A·W-1,最大比探测率达到1.5×1012Jones;当Vg=-60V时,最大光响应度达到4.96A·W-1,最大比探测率达到4.37×1012Jones,该自驱动性能在光电晶体管中处于上游水平。
4.本发明的Bi2O2Se/MoTe2范德华异质结光电晶体管具有良好的欧姆接触、超高的光开关比(超过104)、极佳的工作稳定性(经历300次循环还能保持稳定的光响应)和超快的响应速度(上升时间和下降时间分别为16ms和21.2ms),同时相较于同种类Bi2O2Se光电探测器,本发明的暗电流能降低103量级(0.52pA),可以使用在低功耗和高灵敏度的光电探测领域,使本发明能够有广阔的应用前景。
附图说明
图1为本发明的Bi2O2Se/MoTe2范德华异质结的光电晶体管的示意图。
图2为实施例1制备的Bi2O2Se/MoTe2范德华异质结的光电晶体管的光学显微镜照片。
图3为实施例1的Bi2O2Se/MoTe2异质结的KPFM测试结果。
图4为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管黑暗条件下的电压-电流曲线。
图5为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在Vds=1V、2V和3V条件下的的转移曲线图。
图6为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在Vds=0V时经过405nm、635nm、808nm、1310nm激光照射条件下的自驱动时间响应曲线。
图7为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光栅压为0V、-60V下的响应度、比探测率与光功率密度曲线图。
图8为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光栅压为0V、-60V下的动态响应速度曲线图。
图9为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光栅压为-60V下超过160次循环的自驱动时间响应曲线图。
图10为实施例1的Bi2O2Se/MoTe2范德华异质结光电晶体管在405nm入射光和栅压为0V、-60V下的填充因子、光转化效率光与光功率密度关系曲线图。
图11为实施例2制备的Bi2O2Se/MoTe2范德华异质结的光电晶体管的光学显微镜照片。
图12为实施例2制备的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光不同光功率密度下时间响应曲线图。
图13为实施例3制备的Bi2O2Se/MoTe2范德华异质结的光电晶体管的光学显微镜照片。
图14为实施例3制备的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光不同光功率密度下时间响应曲线图。
具体实施方式
结合本发明的附图对本发明实施例中的技术方案进行清楚、完整地描述,但不应理解为对本发明的限制。基于本发明中的实施例,下述实施例中所述实验方法,如无特殊说明,均为常规方法;所述试剂和材料,如无特殊说明,均可从公开商业途径获得。下面来对本发明做进一步详细的说明。
实施例1
1.将云母和SiO2/Si衬底用丙酮、异丙醇、去离子水各超声10min,之后用氮气枪吹干备用;
2.使用化学气相沉积的方法在云母衬底上生长出Bi2O2Se纳米片,纳米片的横向尺寸为2~200μm,厚度控制在0.8~200nm;
3.使用光学金相显微镜在步骤2中的云母沉底上选择合适厚度(12nm)和形状的Bi2O2Se纳米片,通过聚苯乙烯薄膜辅助转移的方法把Bi2O2Se纳米片转移到清洗后的SiO2/Si衬底上,最后使用甲苯、丙酮液体清洗掉聚苯乙烯薄膜和残留污染物,露出Bi2O2Se纳米片的洁净表面;
4.用机械剥离法在清洗过的SiO2/Si衬底上剥离出MoTe2纳米片,通过光学金相显微镜寻找并选择横向尺寸为10~100μm,厚度为14nm的MoTe2纳米片;
5.利用干法转移的方法在三维微区转移平台上将步骤4所选的MoTe2纳米片转移到步骤3所选的Bi2O2Se纳米片,使二者产生部分重叠,然后用二甲基亚砜浸泡,除去转移过程使用的残留试剂,制备垂直Bi2O2Se/MoTe2异质结,
6.在垂直Bi2O2Se/MoTe2异质结的SiO2/Si衬底上旋涂光刻胶,使用紫外光刻系统在垂直Bi2O2Se/MoTe2异质结外的Bi2O2Se纳米片和MoTe2纳米片上分别光刻显影出电极图案,最后使用蒸镀工艺在Bi2O2Se/MoTe2范德华异质结区域外的Bi2O2Se纳米片和MoTe2纳米片上制备10nm Cr/50nm Au电极,制得Bi2O2Se/MoTe2异质结的光电二级管。
图1为Bi2O2Se/MoTe2范德华异质结的光电晶体管的示意图。其中,黑线注明的为Bi2O2Se纳米片和MoTe2纳米片,1和2、3和4分别是蒸镀在Bi2O2Se和MoTe2材料上的两对电极。
图2为实施例1制备的Bi2O2Se/MoTe2异质结光电二极管的光学显微镜照片,其中虚线包围的分别是MoTe2纳米片和Bi2O2Se纳米片。由图2可知,Bi2O2Se/MoTe2异质结基光电晶体管是将Bi2O2Se纳米片转移到SiO2/Si衬底上,然后再使用干法转移方式将MoTe2纳米片部分搭在Bi2O2Se纳米片上,重叠部分形成垂直Bi2O2Se/MoTe2范德华异质结,然后在Bi2O2Se/MoTe2异质结区域外的Bi2O2Se纳米片和MoTe2纳米片上分别蒸镀两对Ti/Au电极。
图3为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管重叠边缘位置的KPFM图像,结果显示Bi2O2Se纳米片上和MoTe2纳米片上的接触面有明显的接触电势差,在异质结结区形成内建电场,并且存在1μm长度的耗尽区。异质结结区附近的内建电场就是Bi2O2Se/MoTe2范德华异质结光电晶体管能够进行自驱动的光电探测的主要因素。
图4为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管黑暗条件下的IV曲线。从图4可知,异质结的电学输运特性是直接隧穿,在Vds=-1V/1V时器件的整流比大于102,具有良好的整流特性。
图5为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在黑暗条件下Vds=1V、2V和3V的转移曲线。从图5可知,说明栅极对光电晶体管的电流具有很强的调控能力,该光电晶体管具有明显的双极性。
图6为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在Vds=0V时经过405nm、635nm、808nm、1310nm激光激光照射条件下的自驱动时间响应曲线。在4种波长的激光照射下,Bi2O2Se/MoTe2范德华异质结光电晶体管都能够产生明显的光电流,这表明该光电晶体管的光电响应范围在405~1310nm,是优良的宽光谱光电探测器。
图7为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光栅压为0V、-60V下的响应度、比探测率与光功率密度曲线图。图8为实施例1的Bi2O2Se/MoTe2范德华异质结的光电晶体管在405nm激光栅压为0V、-60V下的动态响应速度曲线。从图7和8可知,Bi2O2Se/MoTe2异质结的光电晶体管在Vg=0V条件下,最大光响应度达到1.24A·W-1,最大比探测率为1.5×1012Jones,上升/下降时间为42.3/32.1ms;当Vg=-60V时,该光电晶体管的最大光响应度达到4.96A·W-1,最大比探测率达到4.37×1012Jones,上升/下降时间为16.1/21.2ms,即通过施加栅极电压能够有效的提高Bi2O2Se/MoTe2范德华异质结光电晶体管的响应度、比探测率和响应速度等光信号探测能力。说明Bi2O2Se/MoTe2异质结的栅极对光电探测能力的调控作用。
图9为实施例1的Bi2O2Se/MoTe2范德华异质结光电晶体管在405nm激光栅压为-60V超过160次循环的自驱动响应时间曲线图。自驱动的工作条件下,光响应电流在经历上百次循环之后没有明显衰减,暗电流仍然保持在极低的水平,即Bi2O2Se/MoTe2范德华异质结光电晶体管在进行高性能光电探测工作中能保持稳定,证明实施例1中光电晶体管具有强的抗老化能力。
图10为实施例1的Bi2O2Se/MoTe2范德华异质结光电晶体管在405nm入射光和栅极电压为0V、-60V下的填充因子、光转化效率光与光功率密度关系曲线图。从图10可知,当Vg=0V时,光电晶体管的最大填充因子和光电转化效率分别达到0.37和2.7%,具有明显的光电池的特性。并且栅压对光电晶体管的光转化效率和填充因子具有极强的调控作用,Vg=-60V时可以使填充因子上升到0.52,光电转化效率增加到8%,表现出优良的光电转化能力和光电池性能。
实施例2
与实施例1不同的在于:选择的Bi2O2Se厚度约为8.1nm,MoTe2厚度为11.2nm。图11为实施例2制备的Bi2O2Se/MoTe2范德华异质结光电晶体管的光学显微镜照片。图12为实施例2制备的Bi2O2Se/MoTe2范德华异质结光电晶体管在405nm激光不同光功率密度下的时间响应曲线。从图11和12可知,该光电晶体管在不同功率的405nm激光照射,Vds=0V,Vgs=-60V条件下能够产生0.2~2nA的光电流。说明该光电晶体管在光照条件下能够产生很强自驱动光电流。
实施例3
与实施例1不同的在于:选择的Bi2O2Se厚度约7.8nm,MoTe2厚度为10.8nm。图13为实施例3制备的Bi2O2Se/MoTe2范德华异质结光电晶体管的光学显微镜照片。图14为实施例3制备的Bi2O2Se/MoTe2范德华异质结光电晶体管在405nm激光不同光功率密度下的时间响应曲线,从图13和14可知,该光电晶体管在不同功率的405nm激光照射,Vds=0V,Vgs=-60V条件下能够产生0.2~2.5nA的光电流。说明该光电晶体管在光照条件下也能够产生很强自驱动光电流。
综上所述,本发明通过栅压调控光电转化效率的Bi2O2Se/MoTe2范德华异质结的光电晶体管具有直接隧穿的电学输运机制,该光电晶体管在偏压Vds=1/-1V条件下可实现1.3×102的高整流比。该光电晶体管具有1~8%的栅极调控光电转化效率,并在405~1310nm宽谱波段范围具有优异的自驱动光电性能,可用在太阳能电池、紫外-可见光-近红外成像和低功耗光电子器件领域。本发明的Bi2O2Se/MoTe2范德华异质结的光电晶体管实现了高的光电转换效率和填充因子,具有显著的栅极调控特性。此外,还具有优异的宽谱响应(405~1310nm)和自驱动光电性能,具有良好的欧姆接触、超高的光开关比(超过104)、极佳的工作稳定性(经历300次循环还能保持稳定的光响应)和超快的响应速度(上升时间和下降时间分别为16ms和21.2ms),同时相较于同种类Bi2O2Se光电探测器,本发明的暗电流能降低103量级(0.52pA),可以使用在低功耗和高灵敏度的光电探测领域,使本发明能够有广阔的应用前景。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合和简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管,其特征在于,所述Bi2O2Se/MoTe2异质结的光电晶体管包括SiO2/Si衬底、垂直Bi2O2Se/MoTe2异质结和电极;所述光电晶体管是利用聚苯乙烯辅助将Bi2O2Se纳米片材料转移在SiO2/Si衬底上,然后使用干法将MoTe2纳米片堆叠至Bi2O2Se纳米片上,Bi2O2Se纳米片与MoTe2纳米片交叠部分形成垂直Bi2O2Se/MoTe2异质结,然后在该异质结区域外的Bi2O2Se纳米片和MoTe2纳米片上分别进行光刻显影和蒸镀金属粘附层/Au电极制得。
2.根据权利要求1所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管,其特征在于,所述Bi2O2Se纳米片的厚度为0.8~200nm,横向尺寸为2~200μm;所述MoTe2纳米片的厚度为0.7~100nm,横向尺寸为10~100μm。
3.根据权利要求1所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管,其特征在于,所述Bi2O2Se纳米片是在通过化学气相沉积的方法在云母衬底上生长得到,MoTe2纳米片使用化学气相沉积合成或胶带机械剥离到SiO2/Si衬底上制得。
4.根据权利要求1所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管,其特征在于,所述金属粘附层为Cr或Ti,其厚度为3~15nm,所述Au的厚度为20~200nm。
5.根据权利要求1-4任一项所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼的异质结光电晶体管的制备方法,其特征在于,包括以下具体步骤:
S1.通过化学气相沉积的方法在云母衬底上生长Bi2O2Se纳米片,并使用光学金相显微镜选择Bi2O2Se纳米片;然后使用聚苯乙烯辅助转移把Bi2O2Se纳米片无损地转移到经清洗的SiO2/Si衬底上,然后将其分别浸泡在甲苯和丙酮去除样品表面的聚苯乙烯残留和其它有机分子;
S2.通过光学金相显微镜选定化学气相沉积制备或者机械剥离的MoTe2纳米片,利用干法转移工艺在三维微区转移平台上将MoTe2纳米片堆叠到Bi2O2Se纳米片上,制得垂直Bi2O2Se/MoTe2异质结;
S3.使用紫外光刻系统在垂直Bi2O2Se/MoTe2异质结光刻和显影出电极图案,并通过电子束和热蒸发蒸镀的方式分别在Bi2O2Se纳米片和MoTe2纳米片上蒸镀金属粘结层/Au电极,制得Bi2O2Se/MoTe2异质结光电晶体管。
6.权利要求1-4任一项所述的具有栅压调控光电转化效率的硒氧铋/二碲化钼的异质结光电晶体管在太阳能电池、紫外-可见光-近红外成像或低功耗光电子器件领域中的应用。
CN202211057033.0A 2022-08-30 2022-08-30 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用 Pending CN115621353A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202211057033.0A CN115621353A (zh) 2022-08-30 2022-08-30 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202211057033.0A CN115621353A (zh) 2022-08-30 2022-08-30 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用

Publications (1)

Publication Number Publication Date
CN115621353A true CN115621353A (zh) 2023-01-17

Family

ID=84856883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202211057033.0A Pending CN115621353A (zh) 2022-08-30 2022-08-30 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN115621353A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116443822A (zh) * 2023-04-11 2023-07-18 中山大学 一类铋基氧硫族一维材料的可控合成制备方法
CN118156339A (zh) * 2023-12-28 2024-06-07 云南师范大学 MoTe2/CdS0.42Se0.58薄片异质结光电探测器及制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116443822A (zh) * 2023-04-11 2023-07-18 中山大学 一类铋基氧硫族一维材料的可控合成制备方法
CN118156339A (zh) * 2023-12-28 2024-06-07 云南师范大学 MoTe2/CdS0.42Se0.58薄片异质结光电探测器及制备方法

Similar Documents

Publication Publication Date Title
Wang et al. Broadband photodetectors based on 2D group IVA metal chalcogenides semiconductors
Dai et al. Ultrafast and sensitive self-powered photodetector featuring self-limited depletion region and fully depleted channel with van der Waals contacts
Won et al. Efficient photovoltaic effect in graphene/h-BN/silicon heterostructure self-powered photodetector
Yang et al. Developing seedless growth of ZnO micro/nanowire arrays towards ZnO/FeS2/CuI PIN photodiode application
CN115621353A (zh) 一种具有栅压调控光电转化效率的硒氧铋/二碲化钼异质结光电晶体管及其制备方法和应用
Liu et al. Bi 2 O 2 Se/BP van der Waals heterojunction for high performance broadband photodetector
CN111682088A (zh) 一种基于范德华异质结的隧穿型光电探测器及其制备方法
Han et al. High-performance phototransistors based on MnPSe3 and its hybrid structures with Au nanoparticles
Tekcan et al. A near-infrared range photodetector based on indium nitride nanocrystals obtained through laser ablation
US11961934B2 (en) Visible light detector with high-photoresponse based on TiO2/MoS2 heterojunction and preparation thereof
Yang et al. Gate-tunable and high optoelectronic performance in multilayer WSe 2 P–N diode
Hang et al. Photo-electrical properties of trilayer MoSe2 nanoflakes
Jiang et al. Van der Waals epitaxial growth of two-dimensional PbSe and its high-performance heterostructure devices
CN113964230A (zh) 一种硫硒化亚锡纳米片/GaAs异质结光电二极管及其制备方法和应用
Liu et al. Integrating Graphene Enables Improved and Gate‐Tunable Photovoltaic Effect in Van der Waals Heterojunction
Zheng et al. Hybrid graphene-perovskite quantum dot photodetectors with solar-blind UV and visible light response
Li et al. High-Performance Photodetectors Based on Graphene/MoS₂ Heterojunction FETs
Ahmed et al. Recent advances in 2D transition metal dichalcogenide-based photodetectors: a review
CN115621354A (zh) 一种具有光电流极性可调的二硫化钨/二碲化钨异质结的光电晶体管及其制备方法和应用
CN116544302A (zh) 一种基于准一维范德华材料ZrS3纳米带的可调偏振光电探测器的制备方法
CN116364801A (zh) 一种基于γ-InSe/Ge混维异质结的光电二极管及其制备方法和应用
CN108649095B (zh) 基于纳晶结构碳膜的场效应管结构光电器件及其制备方法
Pradhan et al. Electronic and optoelectronic properties of the heterostructure devices composed of two-dimensional layered materials
Wu et al. Integration of PbS Quantum Dots with 3D-Graphene for Self-powered Broadband Photodetectors in Image Sensors
CN117855322B (zh) 基于二硒化钯二硒化钨异质结的光探测器的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination