CN112614903A - 铅绘电极二维材料纸基GaS光电探测器及其制备方法 - Google Patents

铅绘电极二维材料纸基GaS光电探测器及其制备方法 Download PDF

Info

Publication number
CN112614903A
CN112614903A CN202011466009.3A CN202011466009A CN112614903A CN 112614903 A CN112614903 A CN 112614903A CN 202011466009 A CN202011466009 A CN 202011466009A CN 112614903 A CN112614903 A CN 112614903A
Authority
CN
China
Prior art keywords
gas
interdigital
electrode
lead
dimensional material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011466009.3A
Other languages
English (en)
Other versions
CN112614903B (zh
Inventor
刘为振
仲玮恒
李远征
杨旭慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northeast Normal University
Original Assignee
Northeast Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northeast Normal University filed Critical Northeast Normal University
Priority to CN202011466009.3A priority Critical patent/CN112614903B/zh
Publication of CN112614903A publication Critical patent/CN112614903A/zh
Application granted granted Critical
Publication of CN112614903B publication Critical patent/CN112614903B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/032Inorganic materials including, apart from doping materials or other impurities, only compounds not provided for in groups H01L31/0272 - H01L31/0312
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Electromagnetism (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Biophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种铅绘电极二维材料纸基GaS光电探测器及其制备方法,铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;所述的叉指电极5铅笔绘在基体上,所述的叉指电极5接电部设有蒸镀金层;所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色;所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干;得到了在二维材料探测器领域可观的结果:在532nm激光照射条件下拥有较高的响应度R=109.2A/W和较大的探测率D*=1.94×109Jones。

Description

铅绘电极二维材料纸基GaS光电探测器及其制备方法
技术领域
本发明属于光电探测技术领域,具体涉及铅绘电极二维材料纸基GaS光电探测器及其制备方法。
背景技术
近年来,光电技术蓬勃发展,探测器技术已经渗透到人民群众生产和生活的各个角落,红外成像,光道通讯和军事化监控等应用发展比较成熟。但是,其中发展较早的Si基光电探测器处于一种瓶颈状态,虽然其从可见到红外部分的探测性能已经比较优秀,但是随着器件工艺越来越精细,尺寸把控精准之际,“摩尔定律”的极限把Si基的光电探测排除到经典物理理论之外。不仅如此, Si基光电探测器的较差的光吸收系数和较窄的光谱响应也限制其应用。所以,吸收效率高,频谱响应宽以及柔性较好的新型探测材料的空白需要被填补。随着二维层状材料的科研探索,一些新型二维材料为光电探测领域提供了新机遇和新挑战。高响应,宽波段,可拉伸的光电探测器的未来逐渐明晰TMDs的制备工艺,表征手段和光电性质调控已经逐步被深刻挖掘和探索。组成决定结构,结构决定性质,选择一种拥有高导电性,灵敏光电调控的材料成为了当下的热点问题。而传统制备工艺,如物理气相沉积,化学气相沉积等方法不容易获得大尺寸而比较均匀的材料。
发明内容
本发明目的是为了解决上述问题,而提供了铅绘电极二维材料纸基GaS光电探测器及其制备方法;
铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;
所述的叉指电极5铅笔绘在基体上,
所述的叉指电极5接电部设有蒸镀金层;
所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色;
所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干;
所述的涂GaS层为5-10层;
所述的基体上涂GaS层,然后在涂GaS层上铅笔绘制叉指电极5。
铅绘电极二维材料纸基GaS光电探测器的制备方法:它包括:
1)配制GaS悬浊液:
a.GaS体材料加70%的乙醇;磁力搅拌,溶解;
b.超声;
c.静置分层,弃上清,取下层悬浊液;
2)基体1为纸基,在纸基上打印叉指电极轮廓;
3)用第一掩模板3遮挡住叉指电极区域四周,露出叉指部2和叉指间隙;将GaS悬浊液,滴涂至露出部分完全覆盖;
4)利用热盘加热至80℃烘烤,至黄色;
5)重复上述步骤3)、4)操作5-10次,得 GaS涂层4;
6)取下第一掩模板3,用铅笔绘制叉指电极5;
7)将第二掩模板6,盖住叉指部2,在叉指电极5接电部,蒸镀Au,得蒸镀Au层7;
8)裁减掉多余的基体1,得铅绘电极二维材料纸基GaS光电探测器;
步骤1)所述的超声,其功率1200W,超声时间60min;
所述的叉指电极3cm×1.2cm。
本发明提供了铅绘电极二维材料纸基GaS光电探测器及其制备方法,铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;所述的叉指电极5铅笔绘在基体上,所述的叉指电极5接电部设有蒸镀金层;所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色;所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干;得到了在二维材料探测器领域可观的结果:在532nm激光照射条件下拥有较高的响应度R=109.2A/W和较大的探测率D*=1.94×109Jones。
附图说明
图1-6是本发明铅绘电极二维材料纸基GaS光电探测器的制备流程示意图;
图7是铅绘电极二维材料纸基GaS光电探测器立体图;
图8是本发明铅绘电极二维材料纸基GaS光电探测器的纵切剖面示意图;
图9是本发明铅绘电极二维材料纸基GaS光电探测器的横切剖面示意图;
图10是本发明铅绘电极二维材料纸基GaS光电探测器的光隙曲线示意图;
图11是本发明铅绘电极二维材料纸基GaS光电探测器的拉曼光谱测试图;
图12是本发明铅绘电极二维材料纸基GaS光电探测器的IV曲线图;
图13是本发明铅绘电极二维材料纸基GaS光电探测器的光响应测试图;
图中:基体1,叉指部2,第一掩模板3,GaS涂层4,叉指电极5,第二掩模板6,蒸镀Au层7。
具体实施方式
实施例1铅绘电极二维材料纸基GaS光电探测器
请参见附图7-9,铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极5,所述的叉指电极5为石墨涂层,涂在基体上;在叉指间隙上涂GaS层;所述的叉指电极5铅笔绘在基体上,所述的叉指电极5接电部设有蒸镀金层。
实施例2用于制备GaS二维材料的悬浊液
GaS悬浊液,制备步骤如下:
1)取GaS体材料,尺寸约0.2cm2,厚度约500nm左右;
2)配置体积分数为70%的乙醇水溶液50ml,将GaS体材料浸于配置好的溶液中;
3)将溶液倾倒至锥形瓶中,放置磁力搅拌子,低速搅拌2h;
4) 直至溶液中没有明显的颗粒状或块体材料后,将搅拌子取出,并将溶液一次性转移到200ml烧杯中;
5)无需静止,直接放入超声仪中, 1200W功率,超声60min;
6)取出溶液后,静置12h后,可得到上清下浊的明显分层,保留下层,即得GaS悬浊液。
实施例3纸基GaS光电探测器的制备方法
参见图2-7所示,纸基GaS探测器的制备方法如下:
1)参见附图1,基体1材料为普通打印纸张,本实施例中采用纸张为晨光APYVQ959复印纸(70g/A4);用喷墨或者激光打印机打印出叉指电极轮廓或者画出叉指电极轮廓;每份叉指电极轮廓尺寸约3cm×1.2cm;然后,对绘制有叉指电极轮廓的纸基进行剪裁,裁剪为5cm×3cm大小的基体1;
2)参见附图2和附图3,使用第一掩模板3遮挡住叉指电极区域四周,只露出叉指部2和叉指间隙;将实施例2中得到的GaS悬浊液,滴涂到未被第一掩模板3遮盖的部分,滴涂至GaS悬浊液完全覆盖即可,约3--5滴;
3)利用热盘加热至80℃,直至烘干留有均匀的黄色印记;
4)重复上述2,3操作5-10次,可在基体1上留下被烘干的深黄色的多层GaS悬浊液材料,即GaS涂层4;
5)参见附图4,取下第一掩模板3,除叉指间隙外,参见附图5将叉指电极区域的剩余部分用铅笔(4B)涂满;或其它石墨材料进行均匀涂抹,直至形成均匀的叉指电极5;
6)参见附图6,再用第二掩模板6,盖住叉指部2,只留出接电部,蒸镀0.08g的Au,得蒸镀Au层7;
7)参见附图7,裁减掉多余的基体1,只保留探测器部分。
纸基GaS光电探测器的性能表征
参见图10至图13所示,GaS的理化性质和光电导型光电探测器的基本原理,在自然条件下,GaS是一种层状半导体材料,每层由Ga-S-S-Ga构成重复单元,z方向有稳定的六边形结构,属于六方晶系。GaS层内原子通过共价键连接,层间通过范德华力实现层间耦合;GaS的半导体带隙对于其层数有较强的依赖性,根据第一性原理计算,从体材料到单层材料的过渡的过程中,带隙从2.59eV逐渐变化到1.6eV,这使得GaS层状材料可以用于制造近紫外-短波可见光的探测器件;间接带隙的GaS不具备很好的发光特性,其在发光领域的应用举步维艰。然而GaS对光有比较好的吸收和良好的光电导特性。光电导特性是指:在一定波长的光的照射下,材料电导率会比暗态提升很多的性质;这源于材料在激光作用下产生了很多光生载流子参与导电,大大提升了材料的导电性,GaS即为其中较好的光电导型材料。制备完成的纸基GaS探测器可用万用表对两端蒸镀的Au进行测试;
为鉴定所选材料在经过液相超声剥离后未变质,将滴涂的材料进行了拉曼光谱的测试:GaS在自然条件下可检测到三种振动模式:E2g 1,A1g 1,以及A1g 2,分别对应波数259cm-1,188cm-1,361cm-1
选取叉指间隙中同一点,利用532nm激光进行拉曼光谱测试,发现增强的GaS拉曼信号,确定有大量样品存在于沟道中。也对其用532nm激光进行了光致发光光谱采集,结果如图所示,其发光峰位在655nm左右,可通过带隙推测出测得材料为多层结构。
为了实验的严谨性,考虑到石墨可能存在涂抹不均匀或超出轮廓的误差,需要进一步排除石墨电极的影响。在此,将叉指间隙全部用铅笔进行均匀涂抹,不加GaS悬浊液,在532nm激光低功率照射下,测量其IV曲线。可见,石墨电极导通,但光电流很小,属纳安(nA)级别。而且,其测试条件比较苛刻,在低压下光电流很小,需要在高电压下进行测试,方可测到明显的开启导通状态。
对比上述补充实验,用GaS悬浊液4滴涂作为导电沟道的探测器性能较好。同一测试条件下,光电流有了4-5个数量级的提升,达到了几十微安(μA)的级别,且暗电流仍保持在纳安(nA)。这可以归因于GaS材料的光电导效应,光生载流子,即电子和空穴,拥有相反电性,外加偏压电场在导带和价带分离,形成较大光电流,实现光增益。其次,随着激发光功率的增加,其光电流也随之增强,这也是光电导效应的重要现象之一。
为了探究纸基GaS光电探测器是否具有宽波段的响应,本发明对于可见波段多种激光的进行了探测器的光响应测试。经过反复测试,选取10V作为偏压,可保持一个较低的暗电流和较大的开关比。为比较纸基GaS材料在光电探测器领域的水平,在此引入相关参数的计算和比较。
响应度(Responsivity).衡量单位受光面积受到单位能量激发所产生的光电流。
可表述为如下公式:
Figure 564770DEST_PATH_IMAGE001
此处,I为特定波长激发下产生光生电流的大小,即光电流和暗态电流的差值,P为功率密度,S为辐射面积。分母两项乘积可由功率计直接探测得到。取532nm激发最优,最终计算结果为R=109.2A/W。
(1) 探测率(Detectivity).探测率是衡量探测能力的参数,其大小可作为比较依据,在低维材料中的计算方法如下:
Figure 294960DEST_PATH_IMAGE002
其中R为(1)中计算的响应度;S为辐射面积,本文其平方根取近似,1μm即激光直径;e为电子电量,Idark为暗电流。得到计算结果为D*=1.94×109Jones。
本发明采取铅笔勾勒的方法绘制出石墨电极,并采用体材料液相超声后分散液滴涂的方法,首次制备了宏观尺度的GaS光电探测器。如表1所示,得到了在二维材料探测器领域可观的结果:在532nm激光照射条件下拥有较高的响应度R=109.2A/W和较大的探测率D*=1.94×109Jones。
Figure DEST_PATH_IMAGE003
TMDs作为一种新兴的二维探测器原材料,未来需要满足各种实际需求。一方面需要找到迁移率和吸收效率高的半导体材料,达到可大规模制备的需求;另一方面需要不断优化现有成果:可通过表面增强或者材料掺杂的手段,使得当前各项探测器衡量参数提升到新层次。

Claims (10)

1.铅绘电极二维材料纸基GaS光电探测器,它包括:基体、叉指间隙、叉指电极(5),其特征在于:所述的叉指电极(5)为石墨涂层,涂在基体上;在叉指间隙上涂GaS层。
2.根据权利要求1所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的叉指电极(5)是用铅笔在基体上绘制的。
3.根据权利要求2所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的叉指电极(5)接电部设有蒸镀金层。
4.根据权利要求3所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的涂GaS层,将GaS悬浊液滴加在叉指间隙上,加热烘干至深黄色。
5.根据权利要求1、2、3或4所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的涂GaS层为多层,重复滴加GaS悬浊液,加热烘干。
6.根据权利要求5所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的涂GaS层为5-10层。
7.根据权利要求6所述的铅绘电极二维材料纸基GaS光电探测器,其特征在于:所述的基体上涂GaS层,然后在涂GaS层上铅笔绘制叉指电极(5)。
8.铅绘电极二维材料纸基GaS光电探测器的制备方法:它包括:
1)配制GaS悬浊液:
a.GaS体材料加70%的乙醇;磁力搅拌,溶解;
b.超声;
c.静置分层,弃上清,取下层悬浊液;
2)基体(1)为纸基,在纸基上打印叉指电极轮廓;
3)用第一掩模板(3)遮挡住叉指电极区域四周,露出叉指部(2)和叉指间隙;将GaS悬浊液,滴涂至露出部分完全覆盖;
4)利用热盘加热至80℃烘烤,至黄色;
5)重复上述步骤3)、4)操作5-10次,得 GaS涂层(4);
6)取下第一掩模板(3),用铅笔绘制叉指电极(5);
7)将第二掩模板(6),盖住叉指部(2),在叉指电极(5)接电部,蒸镀Au,得蒸镀Au层(7);
8)裁减掉多余的基体(1),得铅绘电极二维材料纸基GaS光电探测器。
9.根据权利要求8所述的铅绘电极二维材料纸基GaS光电探测器的制备方法,其特征在于:步骤1)所述的超声,其功率1200W,超声时间60min。
10.根据权利要求9所述的铅绘电极二维材料纸基GaS光电探测器的制备方法,其特征在于:所述的叉指电极3cm×1.2cm。
CN202011466009.3A 2020-12-14 2020-12-14 铅绘电极二维材料纸基GaS光电探测器及其制备方法 Active CN112614903B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011466009.3A CN112614903B (zh) 2020-12-14 2020-12-14 铅绘电极二维材料纸基GaS光电探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011466009.3A CN112614903B (zh) 2020-12-14 2020-12-14 铅绘电极二维材料纸基GaS光电探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN112614903A true CN112614903A (zh) 2021-04-06
CN112614903B CN112614903B (zh) 2022-04-29

Family

ID=75233675

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011466009.3A Active CN112614903B (zh) 2020-12-14 2020-12-14 铅绘电极二维材料纸基GaS光电探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN112614903B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686845A (zh) * 2022-03-16 2022-07-01 华南理工大学 一种GaS薄膜及其制备方法和应用

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210018A (ja) * 2004-01-26 2005-08-04 Yoshinori Oyama 光導電素子
JP2010080481A (ja) * 2008-09-24 2010-04-08 Ngk Insulators Ltd 受光素子および受光素子の作製方法
CN102664218A (zh) * 2012-05-29 2012-09-12 哈尔滨工业大学 一种基于二维功能材料制备柔性光探测器的方法
US20130192669A1 (en) * 2012-01-31 2013-08-01 Hyun-Chul Kim Photoelectric device
US20140319465A1 (en) * 2012-01-06 2014-10-30 Commissariat A L'energie Atomique Et Aus Energies Alternatives Photodetection device
CN207165594U (zh) * 2017-08-30 2018-03-30 苏州科技大学 太赫兹波宽频探测器
CN108155294A (zh) * 2017-12-25 2018-06-12 上海集成电路研发中心有限公司 光电探测器及其制作方法、光电探测器织物
WO2018195383A1 (en) * 2017-04-20 2018-10-25 Sabic Global Technologies B.V. Two-dimensional material with electroactivity and photosensitivity
US20190157491A1 (en) * 2017-11-23 2019-05-23 Samsung Electronics Co., Ltd. Avalanche photodetectors and image sensors including the same
CN111244119A (zh) * 2019-12-13 2020-06-05 京东方科技集团股份有限公司 一种探测基板、其制作方法及平板探测器

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005210018A (ja) * 2004-01-26 2005-08-04 Yoshinori Oyama 光導電素子
JP2010080481A (ja) * 2008-09-24 2010-04-08 Ngk Insulators Ltd 受光素子および受光素子の作製方法
US20140319465A1 (en) * 2012-01-06 2014-10-30 Commissariat A L'energie Atomique Et Aus Energies Alternatives Photodetection device
US20130192669A1 (en) * 2012-01-31 2013-08-01 Hyun-Chul Kim Photoelectric device
CN102664218A (zh) * 2012-05-29 2012-09-12 哈尔滨工业大学 一种基于二维功能材料制备柔性光探测器的方法
WO2018195383A1 (en) * 2017-04-20 2018-10-25 Sabic Global Technologies B.V. Two-dimensional material with electroactivity and photosensitivity
CN207165594U (zh) * 2017-08-30 2018-03-30 苏州科技大学 太赫兹波宽频探测器
US20190157491A1 (en) * 2017-11-23 2019-05-23 Samsung Electronics Co., Ltd. Avalanche photodetectors and image sensors including the same
CN108155294A (zh) * 2017-12-25 2018-06-12 上海集成电路研发中心有限公司 光电探测器及其制作方法、光电探测器织物
CN111244119A (zh) * 2019-12-13 2020-06-05 京东方科技集团股份有限公司 一种探测基板、其制作方法及平板探测器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114686845A (zh) * 2022-03-16 2022-07-01 华南理工大学 一种GaS薄膜及其制备方法和应用
CN114686845B (zh) * 2022-03-16 2022-12-16 华南理工大学 一种GaS薄膜及其制备方法和应用

Also Published As

Publication number Publication date
CN112614903B (zh) 2022-04-29

Similar Documents

Publication Publication Date Title
Qiao et al. Piezophototronic effect enhanced photoresponse of the flexible Cu (In, Ga) Se2 (CIGS) heterojunction photodetectors
Du Pasquier et al. Dye sensitized solar cells using well-aligned zinc oxide nanotip arrays
CN101866975B (zh) 一种半导体传感器及制备方法
Pataniya et al. MoS2/WSe2 nanohybrids for flexible paper-based photodetectors
Luo et al. A surface plasmon enhanced near‐infrared nanophotodetector
CN108198897B (zh) 一种石墨烯场效应晶体管量子点光电探测器及其制备方法
Li et al. Filter‐free self‐power CdSe/Sb2 (S1− x, Sex) 3 nearinfrared narrowband detection and imaging
CN106405718A (zh) 一种基于石墨烯栅带结构的电控太赫兹偏振片及使用方法
Li et al. High detectivity photodetectors based on perovskite nanowires with suppressed surface defects
CN106024968B (zh) 石墨烯/碳纳米管薄膜肖特基结光电探测器及其制备方法
KR102115749B1 (ko) 유기 박막 태양 전지 및 유기 박막 태양 전지의 제조 방법
Young et al. Self-powered ZnO nanorod ultraviolet photodetector integrated with dye-sensitised solar cell
Li et al. CdS/CdSe core/shell nanowall arrays for high sensitive photoelectrochemical sensors
Chetri et al. Au/GLAD-SnO 2 nanowire array-based fast response Schottky UV detector
Sarkar et al. Enhanced UV–visible photodetection characteristics of a flexible Si membrane-ZnO heterojunction utilizing piezo-phototronic effect
Salvato et al. Single walled carbon nanotube/Si heterojunctions for high responsivity photodetectors
CN112614903B (zh) 铅绘电极二维材料纸基GaS光电探测器及其制备方法
Zhu et al. Graphene quantum dot-decorated vertically oriented graphene/germanium heterojunctions for near-infrared photodetectors
CN110459548B (zh) 一种基于范德瓦尔斯异质结的光电探测器及其制备方法
CN103681897A (zh) 一种红外光电探测器及其制备方法
Ghods et al. Plasmonic enhancement of photocurrent generation in two-dimensional heterostructure of WSe2/MoS2
Wang et al. Enhancing the performance of Self-Powered Deep-Ultraviolet photoelectrochemical photodetectors by constructing α-Ga2O3@ a-Al2O3 Core-Shell nanorod arrays for Solar-Blind imaging
Tang et al. Photoresponse enhancement in graphene/silicon infrared detector by controlling photocarrier collection
Liu et al. Sensitive silicon nanowire ultraviolet B photodetector induced by leakage mode resonances
CN116130529A (zh) 一种具有宽频光电响应的探测器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant