CN113206168A - 可见光探测器及制备方法 - Google Patents

可见光探测器及制备方法 Download PDF

Info

Publication number
CN113206168A
CN113206168A CN202110383874.XA CN202110383874A CN113206168A CN 113206168 A CN113206168 A CN 113206168A CN 202110383874 A CN202110383874 A CN 202110383874A CN 113206168 A CN113206168 A CN 113206168A
Authority
CN
China
Prior art keywords
seo
film
visible light
light detector
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110383874.XA
Other languages
English (en)
Other versions
CN113206168B (zh
Inventor
刘兴钊
刘倢瑃
任羿烜
李雨麒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN202110383874.XA priority Critical patent/CN113206168B/zh
Publication of CN113206168A publication Critical patent/CN113206168A/zh
Application granted granted Critical
Publication of CN113206168B publication Critical patent/CN113206168B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/086Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Light Receiving Elements (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)

Abstract

可见光探测器及制备方法,及电子信息材料与元器件技术,本发明的可见光探测器包括设置于Si(100)衬底上表面的Bi2O3层,所述Bi2O3层的上表面设置有Bi2(SeO3)3薄膜层,在Bi2O3层的上表面和Bi2(SeO3)3薄膜层的上表面设置有电极。本发明的探测器具有较低的暗电流和较快的光响应速度。

Description

可见光探测器及制备方法
技术领域
本发明涉及电子信息材料与元器件技术。
背景技术
光电探测器作为现代社会最重要的光电器件之一,已经于人类生活密不可分。该类器件可以将光信号精确地、快速地转换为电信号(通常是电流或者电压),因而被广泛应用于图像传感、光通信、生物医学热成像、环境监测、国防技术和运动监测等领域。近几十年来,金属氧化物半导体材料由于其优异的物理性能,稳定的化学性能以及便于批量生产等优点而备受关注。
光电探测器根据太阳光的光谱范围,可简单分为紫外、可见和红外探测器。可见光的波长范围是390-780nm,可见光探测器即为探测到人眼可见的光。可见光探测器在光通信、遥感、光谱分析、监视、荧光生物医学成像等领域有着广泛的应用。因此,可见光电探测器的应用前景以及社会需求相对而言较大。
Bi2O3具有特殊的物理性质和晶体形态,现有的文献报道了其具有六种Bi2O3的多晶型,分别标记为α、β、γ、δ、ε、ω相。其中低温α-Bi2O3和高温δ-Bi2O3是稳定的;其他是高温亚稳相。每一种晶型都具有不同的晶体结构和物理性质,即电学、光学和光电等。氧化铋薄膜具有范围在2~3.96eV的直接带隙,同时具有高折射率、高介电常数以及显著的光电导和光致发光特性。这些特性使得Bi2O3材料作为可见光探测器材料使用有很大的潜力,但是相对于平时经常使用的可见光探测器又有所不足,如载流子迁移率较低,空穴-电子复合率较高,光生电流较小,为了进一步提升其性能和适应在可见光探测器的应用,选择制作Bi2(SeO3)3-Bi2O3异质结探测器。Bi2(SeO3)3是通过Se颗粒加热蒸发和Bi2O3颗粒电子打击溅射在Si(100)单晶基片表面反应生成。
发明内容
本发明所要解决的技术问题是,提供一种具有较低的暗电流和较快的光响应速度的可见光探测器及其制备方法。
本发明解决所述技术问题采用的技术方案是,可见光探测器,其特征在于,包括设置于Si衬底上表面的Bi2O3层,所述Bi2O3层的上表面设置有Bi2(SeO3)3薄膜层,在Bi2O3层的上表面和Bi2(SeO3)3薄膜层的上表面设置有电极,
本发明还提供一种可见光探测器的制备方法,包括下述步骤:
(S1)以Bi2O3为Bi和O源,以高纯的Se颗粒为Se源,利用分子束外延方法在Si衬底的表面依次生长Bi2O3薄膜和Bi2(SeO3)3薄膜;
(S2)在Bi2O3薄膜和Bi2(SeO3)3薄膜上利用掩模版生长Au/Ti电极。
进一步的,所述步骤(S1)为:
将Si衬底移入分子束外延设备中,使用机械泵和分子泵仪器腔内压强到4×10- 4Pa,调节衬底温度为200度,打开电子枪生长Bi2O3薄膜2小时。随后冷却到室温,取出样品在Bi2O3薄膜上放置预定的掩模版,然后在放入分子束外延仪器内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜;
所述步骤(S2)为:
使用电子枪仪器,将生长好的Bi2(SeO3)3薄膜上放置预定掩模版,随后放入电子束蒸发仪器中,通过机械泵和分子泵使腔内压强到3.6×10-4Pa,然后生长1分钟的Ti和生长5分钟的Au形成Au\Ti电极。
本发明使用分子束外延设备生长制备Bi2(SeO3)3-Bi2O3异质结可见光探测器,通过改变Se的蒸发温度,从而改变沉积的Bi2(SeO3)3薄膜的Se原子含量和晶体质量,优化Bi2(SeO3)3-Bi2O3异质结的光电性能,同时达到Bi2O3薄膜不分相,结晶性高、颗粒分布均匀等特点,进而使Bi2(SeO3)3-Bi2O3异质结可见光探测器具有较低的暗电流和较快的光响应速度,同时可工作在10V外加偏压下,并且具有较高的灵敏度,为研制高性能光电探测器件提供有效的解决方案。
附图说明
图1为本发明的可见光探测器的结构示意图;
图2为本发明的制备方法的流程示意图;
图3为本发明实施例1的电流-电压特性曲线图;
图4为本发明实施例1的电流-时间特性曲线图;
图5为本发明实施例2的电流-电压特性曲线图;
图6为本发明实施例2的电流-时间特性曲线图;
图7为本发明实施例3的电流-电压特性曲线图;
图8为本发明实施例3的电流-时间特性曲线图;
图9为本发明实施例4的电流-电压特性曲线图;
图10为本发明实施例4的电流-时间特性曲线图。
图11为本发明制备的Bi2O3薄膜测试的XRD数据
图12为本发明制备的Bi2(SeO3)3薄膜测试的XRD数据
图中,light表示光照下的电流-电压特性曲线,dark表示黑暗环境下的电流-电压特性曲线。
具体实施方式
为了扩展Bi2O3在可见光探测器的应用,同时提高所制作出来的Bi2(SeO3)3与Bi2O3薄膜的晶体质量、光电性能、光响应度等性质,本发明提供一种Bi2(SeO3)3与Bi2O3异质结可见光探测器及其制备方法,使用Bi2O3颗粒为Bi和O源,以高纯的Se颗粒为Se源,利用分子束外延方法在Si衬底的表面依次生长Bi2O3和Bi2(SeO3)3薄膜,使制备的Bi2O3薄膜具有结晶性高、颗粒分布均匀、薄膜稳定性好等特点,进而使Bi2(SeO3)3-Bi2O3异质结探测器具有较低的暗电流和较快的光响应速度。
本发明的可见光探测器包括从下至上依次叠加的Si衬底、Bi2O3薄膜、Bi2(SeO3)3薄膜,以及设置于Bi2O3薄膜和Bi2(SeO3)3薄膜上表面的Au/Ti电极。
所述Bi2O3薄膜为α-Bi2O3薄膜。
本发明的Bi2(SeO3)3-Bi2O3异质结可见光探测器吸收波长为200-800nm,Bi2(SeO3)3-Bi2O3异质结可见光探测器的光响应波长为200-800nm.
本发明还提供一种Bi2(SeO3)3-Bi2O3异质结可见光探测器的制备方法,包括如下步骤:
S1、以Bi2O3为Bi和O源,以高纯的Se颗粒为Se源,利用分子束外延方法在Si衬底的表面依次生长Bi2O3和Bi2(SeO3)3薄膜;
S2、在Bi2O3和Bi2(SeO3)3薄膜上利用特制的掩模版生长Au/Ti电极。
分子束外延设备使用的电子束流为12mA.
步骤S2中,采用电子束蒸发长电极时,先Ti生长1分钟,然后Au生长5分钟。
如图1所示,本发明提供的Bi2(SeO3)3-Bi2O3异质结可见光探测器,包括:按照从下至上的顺序依次叠加的Si衬底4、Bi2O3薄膜3、Bi2(SeO3)3薄膜2和电极1。
Bi2O3薄膜为α-Bi2O3,属于直接带隙半导体,禁带宽度在2~3ev之间,使Bi2O3通过掺Se能够更好的改变其光电性质,增强可见光区域的探测能力。
Bi2(SeO3)3-Bi2O3异质结可见光探测器的光吸收波长为200-800nm。
Bi2(SeO3)3-Bi2O3异质结可见光探测器的光响应波长为200-800nm.
Bi2(SeO3)3-Bi2O3异质结可见光探测器的制备方法为使用分子束外延设备仪器,Bi2O3作为Bi、O源和Se颗粒作为Se源,加热衬底到一定温度,在衬底上先生长Bi2O3薄膜、然后生长Bi2(SeO3)3薄膜。
电极的制备方法为:使用电子束蒸发仪器,同时在Bi2(SeO3)3-Bi2O3异质结上使用特制的掩模版,先生长1分钟的Ti,然后生长5分钟的Au.
上述内容详细说明了本发明提供的Bi2(SeO3)3-Bi2O3异质结可见光探测器的结构。与上述Bi2(SeO3)3-Bi2O3异质结可见光探测器相对应,本发明还提供一种Bi2(SeO3)3-Bi2O3异质结可见光探测器的制备方法.
图2示出了本发明提供的Bi2(SeO3)3-Bi2O3异质结可见光探测器的制备方法的流程。
如图2所示,本发明提供的Bi2(SeO3)3-Bi2O3异质结可见光探测器的制备方法,包括如下步骤:
S1、以Bi2O3为Bi和O源,以高纯的Se颗粒为Se源,利用分子束外延方法在Si衬底的表面依次生长Bi2O3和Bi2(SeO3)3薄膜;
将Si衬底移入分子束外延设备中,使用机械泵和分子泵仪器腔内压强到4×10- 4Pa,调节衬底温度为200度,打开电子枪生长Bi2O3薄膜2小时。随后冷却到室温,取出样品在Bi2O3薄膜上放置特定的掩模版,然后在放入分子束外延仪器内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜。
在步骤S1之前,还可以包括如下步骤:
S0、对衬底进行清洗。使用丙酮和乙醇依次在超声波仪器中清洗衬底5分钟,然后在重复操作清洗一次,最后用干燥的氮气吹干。
S0为可选步骤,如果衬底干净,可以不进行此步骤。
S2、在Bi2O3和Bi2(SeO3)3薄膜上利用掩模版生长Au/Ti电极。
使用电子枪仪器,将生长好的Bi2(SeO3)3薄膜上放置特制掩模版,随后放入电子束蒸发仪器中,通过机械泵和分子泵使腔内压强到3.6×10-4Pa,然后生长在1分钟的Ti和生长5分钟的Au形成Au\Ti电极。
下面以几个具体实施例对本发明提供的Bi2O3和Bi2(SeO3)3可见光探测器的制备方法及其性能进行详细说明。
实施例1
将清洗好的Si(100)衬底放入MBE设备的生长腔内,调节生长的衬底温度到200度,压强为4×10-4Pa。使用Bi2O3作为Bi源和O源,Se颗粒作为Se源。Se的蒸发温度为170度,电子枪的电子束流为12mA,生长2小时的Bi2O3薄膜。随后冷却到室温,取出样品在Bi2O3薄膜上放置特定的掩模版,然后在放入分子束外延设备的生长腔内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜。得到Bi2(SeO3)3-Bi2O3异质结。
使用电子枪仪器,将生长好的Bi2(SeO3)3-Bi2O3薄膜上放置特制掩模版,随后放入分子束外延仪器中,通过机械泵和分子泵仪器腔内压强到3.6×10-4Pa,然后生长在1分钟的Ti和生长5分钟的Au形成Au/Ti电极。
对实施例1中得到的Bi2(SeO3)3-Bi2O3异质结探测器进行暗态下和460nm光照下的电流-电压特性和I-T特性测试,得到其图谱分别如图3和图4所示。从图3和图4中可以看出,制备的Bi2(SeO3)3-Bi2O3异质结探测器在10V下的暗电流约为80nA,光电流为4.4μA,光暗电流比为55,且光响应速度较快,说明制备的Bi2(SeO3)3-Bi2O3异质结探测器具有较好的光电性能。
实施例2
将清洗好的Si(100)衬底放入MBE设备的生长腔内,调节生长的衬底温度到200度,压强为4×10-4Pa。使用Bi2O3作为Bi源和O源,Se颗粒作为Se源。Se的蒸发温度为180度,电子枪的电子束流为12mA,生长2小时的Bi2O3薄膜。随后冷却到室温,取出样品在Bi2O3薄膜上放置特定的掩模版,然后在放入分子束外延设备的生长腔内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜。得到Bi2(SeO3)3-Bi2O3异质结。
使用电子枪仪器,将生长好的Bi2(SeO3)3-Bi2O3薄膜上放置特制掩模版,随后放入分子束外延仪器中,通过机械泵和分子泵仪器腔内压强到3.6×10-4Pa,然后生长在1分钟的Ti和生长5分钟的Au形成Au/Ti电极。
对实施例1中得到的Bi2(SeO3)3-Bi2O3异质结探测器进行暗态下和460nm光照下的电流-电压特性和I-T特性测试,得到其图谱分别如图5和图6所示。从图5和图6中可以看出,制备的Bi2(SeO3)3-Bi2O3异质结探测器在10V下的暗电流约为400nA,光电流为8μA,光暗电流比为20,且光响应速度较快,说明制备的Bi2(SeO3)3-Bi2O3异质结探测器具有较好的光电性能。
实施例3
将清洗好的Si(100)衬底放入MBE设备的生长腔内,调节生长的衬底温度到200度,压强为4×10-4Pa。使用Bi2O3作为Bi源和O源,Se颗粒作为Se源。Se的蒸发温度为190度,电子枪的电子束流为12mA,生长2小时的Bi2O3薄膜。随后冷却到室温,取出样品在Bi2O3薄膜上放置特定的掩模版,然后在放入分子束外延设备的生长腔内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜。得到Bi2(SeO3)3-Bi2O3异质结。
使用电子枪仪器,将生长好的Bi2(SeO3)3-Bi2O3薄膜上放置特制掩模版,随后放入分子束外延仪器中,通过机械泵和分子泵仪器腔内压强到3.6×10-4Pa,然后生长在1分钟的Ti和生长5分钟的Au形成Au/Ti电极。
对实施例1中得到的Bi2(SeO3)3-Bi2O3异质结探测器进行暗态下和460nm光照下的电流-电压特性和I-T特性测试,得到其图谱分别如图7和图8所示。从图7和图8中可以看出,制备的Bi2(SeO3)3-Bi2O3异质结探测器在10V下的暗电流约为140nA,光电流为5.2μA,光暗电流比为13,且光响应速度较快,说明制备的Bi2(SeO3)3-Bi2O3异质结探测器具有较好的光电性能。
实施例4
将清洗好的Si(100)衬底放入MBE设备的生长腔内,调节生长的衬底温度到200度,压强为4×10-4Pa。使用Bi2O3作为Bi源和O源,Se颗粒作为Se源。Se的蒸发温度为200度,电子枪的电子束流为12mA,生长2小时的Bi2O3薄膜。随后冷却到室温,取出样品在Bi2O3薄膜上放置特定的掩模版,然后在放入分子束外延设备的生长腔内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜。得到Bi2(SeO3)3-Bi2O3异质结。
使用电子枪仪器,将生长好的Bi2(SeO3)3-Bi2O3薄膜上放置特制掩模版,随后放入分子束外延仪器中,通过机械泵和分子泵仪器腔内压强到3.6×10-4Pa,然后生长在1分钟的Ti和生长5分钟的Au形成Au/Ti电极。
对实施例1中得到的Bi2(SeO3)3-Bi2O3异质结探测器进行暗态下和460nm光照下的电流-电压特性和I-T特性测试,得到其图谱分别如图9和图10所示。从图9和图10中可以看出,制备的Bi2(SeO3)3-Bi2O3异质结探测器在10V下的暗电流约为120nA,光电流为12μA,光暗电流比为100,且光响应速度较快,说明制备的Bi2(SeO3)3-Bi2O3异质结探测器具有较好的光电性能。

Claims (4)

1.可见光探测器,其特征在于,包括设置于Si(100)衬底上表面的Bi2O3层,所述Bi2O3层的上表面设置有Bi2(SeO3)3薄膜层,在Bi2O3层的上表面和Bi2(SeO3)3薄膜层的上表面设置有电极。
2.如权利要求1所述的可见光探测器,其特征在于,所述电极为Ti/Au复合电极。
3.可见光探测器的制备方法,其特征在于,包括下述步骤:
(S1)以Bi2O3为Bi和O源,以高纯的Se颗粒为Se源,利用分子束外延方法在Si(100)衬底的表面依次生长Bi2O3薄膜和Bi2(SeO3)3薄膜;
(S2)在Bi2O3薄膜和Bi2(SeO3)3薄膜上利用掩模版生长Au/Ti电极。
4.如权利要求3所述的可见光探测器的制备方法,其特征在于,所述步骤(S1)为:
将Si衬底移入分子束外延设备中,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,打开电子枪生长Bi2O3薄膜2小时。随后冷却到室温,取出样品在Bi2O3薄膜上放置预定的掩模版,然后在放入分子束外延仪器内,使用机械泵和分子泵仪器腔内压强到4×10-4Pa,调节衬底温度为200度,同时蒸发Bi2O3源和Se源,生长2小时的Bi2(SeO3)3薄膜;
所述步骤(S2)为:
使用电子枪仪器,将生长好的Bi2(SeO3)3薄膜上放置预定掩模版,随后放入电子束蒸发仪器中,通过机械泵和分子泵使腔内压强到3.6×10-4Pa,然后生长Ti和Au形成Ti/Au电极。
CN202110383874.XA 2021-04-09 2021-04-09 可见光探测器及制备方法 Expired - Fee Related CN113206168B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110383874.XA CN113206168B (zh) 2021-04-09 2021-04-09 可见光探测器及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110383874.XA CN113206168B (zh) 2021-04-09 2021-04-09 可见光探测器及制备方法

Publications (2)

Publication Number Publication Date
CN113206168A true CN113206168A (zh) 2021-08-03
CN113206168B CN113206168B (zh) 2022-10-25

Family

ID=77026514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110383874.XA Expired - Fee Related CN113206168B (zh) 2021-04-09 2021-04-09 可见光探测器及制备方法

Country Status (1)

Country Link
CN (1) CN113206168B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864732A (zh) * 2022-03-21 2022-08-05 电子科技大学 紫外光探测器及制备方法
CN115888767A (zh) * 2022-11-04 2023-04-04 电子科技大学长三角研究院(湖州) 一种碳负载缺陷态硒酸铋异质结光催化剂及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783552A (zh) * 2017-01-22 2017-05-31 北京大学 二维硒氧化铋晶体及近红外光电探测器件
CN108217607A (zh) * 2017-12-18 2018-06-29 国家纳米科学中心 Bi2OxSe纳米片、其制备方法及用途
CN111463295A (zh) * 2020-04-14 2020-07-28 华中科技大学 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
CN112563353A (zh) * 2020-12-29 2021-03-26 中国科学院长春光学精密机械与物理研究所 一种异质结紫外探测器及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106783552A (zh) * 2017-01-22 2017-05-31 北京大学 二维硒氧化铋晶体及近红外光电探测器件
CN108217607A (zh) * 2017-12-18 2018-06-29 国家纳米科学中心 Bi2OxSe纳米片、其制备方法及用途
CN111463295A (zh) * 2020-04-14 2020-07-28 华中科技大学 氧等离子体处理的硒氧化铋纳米片光电探测器及制备方法
CN112563353A (zh) * 2020-12-29 2021-03-26 中国科学院长春光学精密机械与物理研究所 一种异质结紫外探测器及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
UDAY M. NAYEF等: "Enhancement the Electrical Properties of Porous Silicon for Photodetectors Applications by depositing Bi2O3 nanoparticles", 《OPTIK - INTERNATIONAL JOURNAL FOR LIGHT AND ELECTRON OPTICS》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114864732A (zh) * 2022-03-21 2022-08-05 电子科技大学 紫外光探测器及制备方法
CN115888767A (zh) * 2022-11-04 2023-04-04 电子科技大学长三角研究院(湖州) 一种碳负载缺陷态硒酸铋异质结光催化剂及其制备方法
CN115888767B (zh) * 2022-11-04 2024-03-15 电子科技大学长三角研究院(湖州) 一种碳负载缺陷态硒酸铋异质结光催化剂及其制备方法

Also Published As

Publication number Publication date
CN113206168B (zh) 2022-10-25

Similar Documents

Publication Publication Date Title
Xu et al. ZnO-based photodetector: from photon detector to pyro-phototronic effect enhanced detector
Gu et al. Effect of annealing temperature on the performance of photoconductive ultraviolet detectors based on ZnO thin films
CN113206168B (zh) 可见光探测器及制备方法
CN110676339B (zh) 一种氧化镓纳米晶薄膜日盲紫外探测器及其制备方法
CN103579415B (zh) 一种氧化锌纳米线阵列紫外光电探测器的制备方法
CN108767028B (zh) 基于氧化镓异质结结构的柔性日盲紫外探测器及其制备方法
CN108767050B (zh) 基于氧化亚铜/氧化镓pn结的柔性紫外光电探测器及其制备方法
CN110323294A (zh) 一种氧化锌/铯铅溴核壳微米线及其制备方法以及一种光探测器
CN114220920A (zh) 一种量子点红外探测器及其制备方法
CN109360862A (zh) 一种基于ZnO纳米棒/Si异质结的自驱动光电探测器及其制备方法
CN111864080A (zh) 一种二维有机无机杂化钙钛矿晶体光电探测器及其制备方法
Zhang et al. A high-performance self-powered photodetector based on a concentric annular α-FAPbI 3/MAPbI 3 single crystal lateral heterojunction with broadband detectivity
CN108735826B (zh) 一种玻璃纤维基柔性氧化镓纳米阵列日盲紫外探测器及其制备方法
CN109957759A (zh) Cu掺杂β-Ga2O3薄膜的制备方法及相应的结构
Zheng et al. Boosting the performance of deep-ultraviolet photodetector arrays based on phase-transformed heteroepitaxial β-Ga2O3 films for solar-blind imaging
CN108258081B (zh) CdZnTe薄膜和AlN/CdZnTe基紫外光探测器制备方法及应用
CN107170853B (zh) 一种复合结构的GaN/CdZnTe薄膜紫外光探测器的制备方法
CN113097321B (zh) 一种MoS2/SnSe2/H-TiO2异质结光电探测器的制备方法
TWI732704B (zh) 鈣鈦礦金屬-半導體-金屬型光電探測器及其製法
Zhou et al. All-organic arrayed photodetectors with fast UVA–UVC response based on self-aligned planar BPEA nanowires
CN109301002B (zh) 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法
CN109285910B (zh) 基于(AlxGa1-x)2O3材料MSM结构的紫外光电探测器及其制备方法
Liu et al. High-quality Bi2Te3 single crystalline films on flexible substrates and bendable photodetectors
CN114899264B (zh) 硒自支撑薄膜光电探测器及其制备方法
Wang et al. Wurtzite Mg 0.3 Zn 0.7 O film and UV detector

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20221025

CF01 Termination of patent right due to non-payment of annual fee