CN110729376A - 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法 - Google Patents

基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法 Download PDF

Info

Publication number
CN110729376A
CN110729376A CN201911011267.XA CN201911011267A CN110729376A CN 110729376 A CN110729376 A CN 110729376A CN 201911011267 A CN201911011267 A CN 201911011267A CN 110729376 A CN110729376 A CN 110729376A
Authority
CN
China
Prior art keywords
beta
sputtering
nio
substrate
heterojunction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911011267.XA
Other languages
English (en)
Other versions
CN110729376B (zh
Inventor
唐利斌
项金钟
贾梦涵
姬荣斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kunming Institute of Physics
Original Assignee
Kunming Institute of Physics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kunming Institute of Physics filed Critical Kunming Institute of Physics
Priority to CN201911011267.XA priority Critical patent/CN110729376B/zh
Publication of CN110729376A publication Critical patent/CN110729376A/zh
Application granted granted Critical
Publication of CN110729376B publication Critical patent/CN110729376B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0328Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032
    • H01L31/0336Inorganic materials including, apart from doping materials or other impurities, semiconductor materials provided for in two or more of groups H01L31/0272 - H01L31/032 in different semiconductor regions, e.g. Cu2X/CdX hetero- junctions, X being an element of Group VI of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1864Annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Light Receiving Elements (AREA)

Abstract

基于NiO/β‑Ga2O3异质结的紫外探测器及其制备方法,属于光电技术领域,尤其是一种具有ITO/p‑NiO/n‑β‑Ga2O3/Al简单垂直结构的紫外器件及其制备方法。基于NiO/β‑Ga2O3异质结的紫外探测器,从下至上依次是衬底、阳极层、p‑NiO薄膜层、n‑β‑Ga2O3薄膜层,以及阴极层。制备方法包括清洁衬底、p‑NiO薄膜层溅射、n‑β‑Ga2O3薄膜层溅射,以及蒸镀Al阴极层。本发明的器件对紫外光显示出良好的敏感性,器件性能优异。

Description

基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备 方法
技术领域
本发明属于光电技术领域,尤其是一种具有ITO/p-NiO/n-β-Ga2O3/Al简单垂直结构的紫外器件及其制备方法。
背景技术
基于宽带隙氧化物半导体材料所制备出的光电探测器具有传统的SiC基、GaN基探测器所没有的优点:不易氧化、尺寸小、反应灵敏、易操作等。迄今为止,许多研究人员已经研制了包括ZnO、TiO2、SnO2、NiO、Ga2O3等在内的具有不同结构的高性能紫外光电探测器。其中,Ga2O3的稳定相β-Ga2O3是一种具有超宽禁带宽度(4.9eV)的直接带隙半导体材料,且生长简单,仅对紫外光波段有高光电响应特性,因此成为近年研制深紫外器件的首选材料。为了优化氧化物基紫外光电探测器的器件性能,可以通过将两种氧化物半导体材料结合成异质结器件。而NiO作为少有的本征p型宽带隙(3.6eV)半导体材料,成为近年研究异质结器件的热点p型材料。并且Ga2O3与NiO两种材料的晶格失配度小,在紫外探测领域显现出巨大的应用潜力。
发明内容
本发明的目的在于提供一种高性能具有ITO/p-NiO/n-β-Ga2O3/Al简单垂直结构的器件及其制备方法。通过使用磁控溅射法和后期退火处理,来有效的改善器件性能,且制备的器件仅对紫外光波段有明显相应。
基于NiO/β-Ga2O3异质结的紫外探测器,其特征在于从下至上依次是衬底、阳极层、p-NiO薄膜层、n-β-Ga2O3薄膜层,以及阴极层。
衬底和阳极层构成ITO玻璃衬底、阴极层为Al电极。
所述的基于NiO/β-Ga2O3异质结的紫外探测器,其制备方法具体如下:
S1,清洁衬底:衬底清洗,干燥,以去除表面污垢,增加薄膜的均匀性和附着性;
S2,p-NiO薄膜层溅射:衬底放入磁控溅射设备中,待真空度抽至低于8.0×10-4Pa后,设定溅射压强为0.4-0.6Pa,溅射功率为200W,预溅射5min后计时溅射55-65min,制备p-NiO薄膜层,薄膜厚度80-120nm;
S3,n-β-Ga2O3薄膜层溅射:按S3步骤溅射操作,设定溅射压强为0.6-0.8Pa,溅射功率为200W,溅射时间为55-65min,制备n-β-Ga2O3薄膜层,薄膜厚度70-110nm;
S4,蒸镀阴极层:在n-β-Ga2O3表面使用掩模板蒸镀阴极层。
所述的阴极层上涂覆银浆引出导线分别作为底部和顶部电极。
文中,Ga2O3即为三氧化二镓;NiO为氧化镍。
本发明的技术效果及优点在于:
(1)在不另加衬底温度的条件下,能够制备出多晶p-NiO和n-β-Ga2O3薄膜,且薄膜表面均匀。
(2)两种异质层的制备均采用同一种方法-磁控溅射方法,制备过程简单、成本低。
(3)具有ITO/p-NiO/n-β-Ga2O3/Al简单垂直结构的器件对紫外光显示出良好的敏感性,器件性能优异。
附图说明
图1为实施例1的异质结器件的结构示意图。
图2为实施例1探测器的p-NiO薄膜的XRD图谱。
图3为实施例1的n-β-Ga2O3薄膜的XRD图谱。
图4为实施例1的异质结器件的I-V分析结果图。
图5为实施例1的异质结器件的响应率(R)。
图6为实施例1的异质结器件的探测率(D*)。
其中,衬底1,阳极层2,p-NiO薄膜层3,n-β-Ga2O3薄膜层4,阴极层5,银浆6,光7。
具体实施方式
以下通过具体实施方式对本发明作进一步的详细说明,但不应将此理解为本发明的范围仅限于以下的实例。在不脱离本发明上述方法思想的情况下,根据本领域普通技术知识和惯用手段做出的各种替换或变更,均应包含在本发明的范围内。
实施例1:基于NiO/β-Ga2O3异质结的紫外探测器,从下至上依次是玻璃衬底1、ITO阳极层2、p-NiO薄膜层3、n-β-Ga2O3薄膜层4,以及Al电极阴极层5。
所述的玻璃衬底1、ITO阳极层2则利用磁控溅射的方法在玻璃基地上镀上一层氧化铟锡(ITO)膜加工制作成ITO玻璃衬底。
所述的基于NiO/β-Ga2O3异质结的紫外探测器,其制备方法具体如下:
S1,清洁ITO玻璃衬底:用于溅射的衬底在氨水、过氧化氢和去离子水的混合溶液中进行湿法清洗,将溶液加热至80℃并保持30min,再用去离子水反复冲洗后氮气喷枪吹干待用,以去除表面污垢,增加薄膜的均匀性和附着性。
S2,p-NiO薄膜层溅射:把清洁待用的ITO玻璃衬底放入磁控溅射设备中的衬底台上,并用掩模板遮住一个角的区域,然后对设备进行抽真空,待真空度抽至6.0×10-4Pa后,设定溅射压强为0.5Pa,溅射功率为200W,预溅射5min后计时溅射60min,制备p-NiO薄膜层,厚度为120nm。
S3,n-β-Ga2O3薄膜层溅射:按S3步骤溅射操作,设定溅射压强为0.7Pa,溅射功率为200W,溅射时间为60min,制备n-β-Ga2O3薄膜层,厚度110nm。
S4,蒸镀Al电极阴极层:在n-β-Ga2O3表面使用掩模板蒸镀上Al电极,掩模板规格为3mm×3mm。拆除掩模板后,在留出的ITO玻璃衬底及蒸镀的Al电极上涂覆银浆6引出导线分别作为底部和顶部电极。
如图2所示,为退火前后p-NiO薄膜的XRD图谱,三个主要的衍射峰分别对应于NiO的(111)、(200)和(220)晶面,沿着(200)晶面择优生长,并且退火处理使得各晶面衍射峰增强,薄膜的结晶性得到改善。
如图3所示,为退火前后n-β-Ga2O3薄膜的XRD图谱,图谱中可以观察到属于β相Ga2O3的6个衍射晶面,沿着
Figure BDA0002244263320000031
晶面族择优生长,并且退火处理使得薄膜由非晶态转变为晶态。
如图4所示,为p-NiO/n-β-Ga2O3异质结紫外光电探测器的I-V分析结果图,可见在黑暗和光照条件下均显示出较好的器件性能,证明了器件在UV光照射下可产生光生载流子的事实。
如图5所示,为p-NiO/n-β-Ga2O3异质结紫外光电探测器的响应率(R)随偏置电压变化的关系图。可看出,在光功率密度固定的前提下,器件的响应率大体上随着偏压的增大而增大,最大值为1.63×102AW-1
如图6所示,为p-NiO/n-β-Ga2O3异质结紫外光电探测器的探测率(D*)随偏置电压变化的关系图。探测率大体上随着偏压的增大而呈现出增大的趋势,最高的探测率可达5.0×1011cmHz1/2W-1
本发明提到的一个或多个步骤并不排斥所述组合步骤还存在其他方法及操作过程;还应注意,该实例仅用于说明本发明的可行性,而不是限制本发明的范围。除此之外,在无实质性改变制备技术内容的情况下,亦当视为本发明的内容。

Claims (3)

1.基于NiO/β-Ga2O3异质结的紫外探测器,其特征在于从下至上依次是衬底、阳极层、p-NiO薄膜层、n-β-Ga2O3薄膜层,以及阴极层。
2.如权利要求1所述的基于NiO/β-Ga2O3异质结的紫外探测器,其特征在于衬底和阳极层构成ITO玻璃衬底、阴极层为Al电极。
3.如权利要求1所述的基于NiO/β-Ga2O3异质结的紫外探测器,其特征在于该探测器的制备方法具体如下:
S1,清洁衬底:衬底清洗,干燥,以去除表面污垢,增加薄膜的均匀性和附着性;
S2,p-NiO薄膜层溅射:衬底放入磁控溅射设备中,待真空度抽至低于8.0×10-4Pa后,设定溅射压强为0.4-0.6Pa,溅射功率为200W,预溅射5min后计时溅射55-65min,制备p-NiO薄膜层,薄膜厚度80-120nm;
S3,n-β-Ga2O3薄膜层溅射:按S3步骤溅射操作,设定溅射压强为0.6-0.8Pa,溅射功率为200W,溅射时间为55-65min,制备n-β-Ga2O3薄膜层,薄膜厚度70-110nm;
S4,蒸镀阴极层:在n-β-Ga2O3表面使用掩模板蒸镀阴极层。
CN201911011267.XA 2019-10-23 2019-10-23 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法 Active CN110729376B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911011267.XA CN110729376B (zh) 2019-10-23 2019-10-23 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911011267.XA CN110729376B (zh) 2019-10-23 2019-10-23 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN110729376A true CN110729376A (zh) 2020-01-24
CN110729376B CN110729376B (zh) 2021-07-20

Family

ID=69221779

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911011267.XA Active CN110729376B (zh) 2019-10-23 2019-10-23 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN110729376B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613691A (zh) * 2020-04-16 2020-09-01 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN112038427A (zh) * 2020-06-16 2020-12-04 杭州紫芯光电有限公司 氧化镓基异质结集成光电芯片、远程紫外阵列监测器及其制作方法
CN114497277A (zh) * 2021-12-30 2022-05-13 昆明物理研究所 基于石墨烯/氧化镓异质结的二极管及其制备方法
CN114497271A (zh) * 2021-12-14 2022-05-13 昆明物理研究所 垂直结构NiO/SiO2/ZnO紫外探测器及其制备方法
CN114864732A (zh) * 2022-03-21 2022-08-05 电子科技大学 紫外光探测器及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN109037374A (zh) * 2018-08-31 2018-12-18 西安理工大学 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN109755341A (zh) * 2018-12-06 2019-05-14 北京镓族科技有限公司 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
CN109994560A (zh) * 2019-04-24 2019-07-09 北京镓族科技有限公司 基于铝酸锶和氧化镓异质结构的整流器件及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105742398A (zh) * 2016-03-18 2016-07-06 浙江理工大学 基于β-Ga2O3/SiC异质结薄膜的日盲型紫外探测器及其制备方法
CN109037374A (zh) * 2018-08-31 2018-12-18 西安理工大学 基于NiO/Ga2O3的紫外光电二极管及其制备方法
CN109755341A (zh) * 2018-12-06 2019-05-14 北京镓族科技有限公司 基于β-Ga2O3/FTO异质结的日盲紫外光电探测器及其制备
CN109994560A (zh) * 2019-04-24 2019-07-09 北京镓族科技有限公司 基于铝酸锶和氧化镓异质结构的整流器件及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111613691A (zh) * 2020-04-16 2020-09-01 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN111613691B (zh) * 2020-04-16 2022-01-04 浙江理工大学 基于氧化铜/氧化镓纳米柱阵列pn结的柔性紫外探测器及其制备方法
CN112038427A (zh) * 2020-06-16 2020-12-04 杭州紫芯光电有限公司 氧化镓基异质结集成光电芯片、远程紫外阵列监测器及其制作方法
CN114497271A (zh) * 2021-12-14 2022-05-13 昆明物理研究所 垂直结构NiO/SiO2/ZnO紫外探测器及其制备方法
CN114497277A (zh) * 2021-12-30 2022-05-13 昆明物理研究所 基于石墨烯/氧化镓异质结的二极管及其制备方法
CN114864732A (zh) * 2022-03-21 2022-08-05 电子科技大学 紫外光探测器及制备方法

Also Published As

Publication number Publication date
CN110729376B (zh) 2021-07-20

Similar Documents

Publication Publication Date Title
CN110729376B (zh) 基于氧化镍/β-三氧化二镓异质结的紫外探测器及其制备方法
US20110024793A1 (en) Bulk heterojunction solar cell and method of manufacturing the same
CN107591487B (zh) 平面型光电探测器及其制备方法
CN109841703B (zh) 一种全无机钙钛矿光电探测器及其制备方法
CN104362194A (zh) 背接触层结构及包含其的CdTe太阳能电池
JP2010192870A (ja) シリコンナノワイヤの製造方法、シリコンナノワイヤを含む太陽電池及び太陽電池の製造方法
CN115064605A (zh) 具有过渡层的碲化镉薄膜太阳能电池及其制备方法
CN112054074B (zh) 光电探测器阵列及其制备方法、光电探测器及其制备方法
CN105355699B (zh) 一种多结多叠层碲化镉薄膜太阳能电池及其制备方法
GB2405030A (en) Bifacial thin film solar cell
CN110828587A (zh) 制造光伏器件的方法
CN110993707A (zh) 基于氧化镓多层堆叠结构的pin二极管及其制备方法
CN217182188U (zh) 一种钙钛矿/钙钛矿/硅-锗基三结叠层太阳能电池
KR101300791B1 (ko) 전자빔 조사를 이용한 몰리브덴 박막의 전도도 향상 방법
KR101183111B1 (ko) 단극성 수직형 투명 다이오드
CN110718595A (zh) 基于溶液法制备的氧化物-金属复合电子传输层及包括其的晶硅太阳电池
CN111326659B (zh) 一种金属透明电极及有机太阳能电池
CN111081886B (zh) 基于氧化镓钙钛矿多层堆叠结构的pin二极管及其制备方法
KR20140116770A (ko) 태양전지 및 그의 제조 방법
CN108538937B (zh) 一种太阳电池及其制备方法
CN113113499A (zh) 一种pn结型氧化镓基自供电紫外探测器及其制备方法
CN108039388B (zh) 一种Cu2ZnSn(S,Se)4薄膜太阳能电池及其制备方法
KR101843292B1 (ko) 박막 태양전지 및 그 제조 방법
KR101792801B1 (ko) CZTSe 태양전지의 ZnSe 상 제어 방법 및 그 제조 방법
CN110021679A (zh) 用溶液法制备的电子传输层及包括其的晶硅太阳电池

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant