CN115172512B - 一种β-Ga2O3基紫外探测器及其制备方法 - Google Patents

一种β-Ga2O3基紫外探测器及其制备方法 Download PDF

Info

Publication number
CN115172512B
CN115172512B CN202210866247.6A CN202210866247A CN115172512B CN 115172512 B CN115172512 B CN 115172512B CN 202210866247 A CN202210866247 A CN 202210866247A CN 115172512 B CN115172512 B CN 115172512B
Authority
CN
China
Prior art keywords
beta
electrode
substrate
layer
gan
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202210866247.6A
Other languages
English (en)
Other versions
CN115172512A (zh
Inventor
王相虎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Dianji University
Original Assignee
Shanghai Dianji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Dianji University filed Critical Shanghai Dianji University
Priority to CN202210866247.6A priority Critical patent/CN115172512B/zh
Publication of CN115172512A publication Critical patent/CN115172512A/zh
Application granted granted Critical
Publication of CN115172512B publication Critical patent/CN115172512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/042Coating on selected surface areas, e.g. using masks using masks
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • C30B25/02Epitaxial-layer growth
    • C30B25/18Epitaxial-layer growth characterised by the substrate
    • C30B25/186Epitaxial-layer growth characterised by the substrate being specially pre-treated by, e.g. chemical or physical means
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/08Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors
    • H01L31/10Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof in which radiation controls flow of current through the device, e.g. photoresistors characterised by potential barriers, e.g. phototransistors
    • H01L31/101Devices sensitive to infrared, visible or ultraviolet radiation
    • H01L31/102Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier
    • H01L31/109Devices sensitive to infrared, visible or ultraviolet radiation characterised by only one potential barrier the potential barrier being of the PN heterojunction type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Nanotechnology (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Light Receiving Elements (AREA)

Abstract

本发明公开了一种β‑Ga2O3基紫外探测器及制备方法,紫外探测器由下至上包括依次层叠设置的衬底(1)、n+‑β‑Ga2O3:Sn导电层(2)、第一电极(3)、n‑β‑Ga2O3:Sn纳米棒陈列(7)、p‑GaN层(5)和第二电极(6)。所述p‑GaN层(5)填充并置于所述n‑β‑Ga2O3:Sn纳米棒陈列(7)之上。2.根据权利要求1所述的β‑Ga2O3基紫外探测器,其特征在于,所述第一电极(3)与p‑GaN层(5)之间设置有第一绝缘层(4)。本发明提高了β‑Ga2O3基异质结紫外光探测器光响应速度。

Description

一种β-Ga2O3基紫外探测器及其制备方法
技术领域
本发明属于半导体光电器件技术领域,特别涉及一种β-Ga2O3基紫外探测器及其制备方法。
背景技术
由于臭氧层对200~280nm波段紫外辐射的完全吸收,此波段在大气层中几乎不存在,因此该波段称之为“日盲”波段。基于此波段的紫外探测器由于具有背景噪声低和虚警率低等优点,其在紫外制导、紫外空间预警和导弹预警等军事领域,以及在高响应火灾预警、电晕检测、大气环境监测等民生领域有着广泛的应用前景,并受到研究者的广泛关注。
虽然Si、Ge等传统半导体材料具有低成本和技术成熟的优势,但由于禁带宽度窄,通常需要增加降温装置,导致设备体积大,在高温、高压等环境下性能不稳定等缺陷,在“日盲”波段探测方面,需要高质量滤光片,限制了其响应度。
发明内容
为了解决现有日盲紫外探测器探测响应度的问题,本发明实施例提供一种β-Ga2O3基纳米棒阵列异质结自供能紫外探测器,该探测器包括,
由下至上包括依次层叠设置的衬底、n+-β-Ga2O3:Sn导电层、第一电极、n-β-Ga2O3:Sn纳米棒陈列、p-GaN层和第二电极。其中,
所述p-GaN层填充并置于所述n-β-Ga2O3:Sn纳米棒陈列之上。
所述第一电极与p-GaN层之间设置有第一绝缘层。
所述衬底材料可以是蓝宝石或石英。
所述第一电极的材料可以为Ti/Au合金,所述第二电极的材料可以为Ru/Ni/Ag/Pt/Au合金。
所述第一绝缘层的材料可以为Al2O3。
本发明实施例利用化学气相沉积(CVD)技术、金属有机物气相外延(MOVPE)、脉冲激光沉积(PLD)等真空制膜等技术,在蓝宝石等透明衬底上有效制备β-Ga2O3基纳米棒阵列异质结紫外探测器的方法,提高了β-Ga2O3基异质结紫外光探测器光响应速度。
附图说明
通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,其中:
图1为本发明实施例之一的β-Ga2O3基纳米棒日盲探测器的结构示意图。
图2为本发明实施例之一的β-Ga2O3基纳米棒日盲探测器的Al2O3圆环形掩膜板或Ti/Au电极示意图。
图3为本发明实施例之一的β-Ga2O3基纳米棒日盲探测器的光电流曲线图。
其中,1——衬底,
2——n+-β-Ga2O3:Sn导电(籽晶)层,
3——Ti/Au电极,
4——Al2O3绝缘层,
5——p-GaN层,
6——Ru/Ni/Ag/Pt/Au背电极,
7——n-β-Ga2O3:Sn纳米棒(阵列)。
具体实施方式
宽禁带半导体具有禁带宽度大、导热性能好、电子饱和漂移速度高以及化学稳定和抗辐射特性好等优点,用于耐高温和高效能的高频大功率器件以及工作于紫外波段的光探测器件,具有显著的材料性能优势。宽带隙半导体紫外探测器直接响应紫外光子,无需复杂昂贵的光学元件,具有体积小机动灵活、稳定性高、可集成和量子效率高等优点。
因为β-Ga2O3的禁带宽度为4.90eV,处于“日盲”波段,同时具有极高的化学稳定性和热稳定性,是天然的日盲紫外探测材料。目前,n型β-Ga2O3可以通过Sn、Si等元素掺杂实现,该方法可引自文献[S.C.Siah,R.E.Brandt,K.Lim,L.T.Schelhas,R.Jaramillo,M.D.Heinemann,D.Chua,J.Wright,J.D.Perkins,C.U.Segre,R.G.Gordon,M.F.Toney,andT.Buonassisi.Dopant activation in Sn-doped Ga2O3investigated by X-rayabsorption spectroscopy.APPLIED PHYSICS LETTERS 107,252103(2015)]。
而p型β-Ga2O3难以获得,导致β-Ga2O3基光电探测器主要以光电导型[金属-半导体-金属(MSM)结构]和异质结两种结构。例如。目前MSM结构探测器属于光电导型器件,其相当于一个光敏电阻,依靠光子把材料中的电子从价带激发到导带,使其电学性能发生改变,工作时两端须加上一定的偏置电压,在电场的作用下,形成与入射光功率成正比的光电流。
目前已知的β-Ga2O3基探测器中可能存在以下缺点:
1)异质结探测器存在持续光电导现象,光响应速度慢,为秒量级;
2)感光面积小。MSM结构一般以金属电极作为上电极,由于金属电极的遮挡,实际感光面积只有光照面积的一半;
3)需外加偏压。MSM结构探测器必须外加电压才能获得理想的光响应,增加了设备的尺寸和能耗。
根据一个或者多个实施例,如图1所示,一种n+-β-Ga2O3:Sn导电(籽晶)薄膜/n-β-Ga2O3:Sn纳米棒阵列/p-GaN结构的日盲探测器结构。
本公开的β-Ga2O3基纳米棒阵列日盲探测器,包括衬底、n+-β-Ga2O3:Sn薄膜层、n-β-Ga2O3:Sn纳米棒阵列、p-GaN、电极。其中,
n+-β-Ga2O3:Sn薄膜层设置于衬底上,n-β-Ga2O3:Sn纳米棒阵列设置n+-β-Ga2O3:Sn薄膜层上,p-GaN薄膜层设置n-β-Ga2O3:Sn纳米棒阵列上,电极分别设置于n+-β-Ga2O3:Sn薄膜层和p-GaN薄膜层上,从而形成“衬底/n+-β-Ga2O3:Sn导电(籽晶)薄膜/电极/n-β-Ga2O3:Sn纳米棒/p-GaN薄膜填充层/电极”紫外探测器结构。
进一步的,所述衬底的材质为蓝宝石、石英等透明衬底。
所述n+-β-Ga2O3:Sn导电(籽晶)薄膜中Sn原子百分含量为0.5at%~5at%,厚度为50nm~1000nm;n-β-Ga2O3:Sn纳米棒阵列中Sn原子百分含量为0.01at%~1at%,其长度为200nm~2000nm。
所述p-GaN薄膜采用MOVPE制备,为Mg掺杂p-GaN薄膜(p-GaN:Mg)。
所述n+-β-Ga2O3:Sn导电薄膜电极为Ti/Au合金,Ti的厚度为10-500nm,Au厚度为50-1000nm;p-GaN薄膜电极为Ru/Ni/Ag/Pt/Au合金,Ru的厚度为5-50nm;Ni的厚度为10-100nm;Ag的厚度为10-100nm;Pt的厚度为10-100nm;Au的厚度为50-1000nm。
所述Ti/Au、Ru/Ni/Ag/Pt/Au合金电极,采用电子束、磁控溅射等真空技术,结合掩模板技术制备。
根据一个或者多个实施例,β-Ga2O3基纳米棒阵列日盲探测器的制作工艺,通过以下步骤来实现:
a)衬底清洗:将衬底依次用乙醇、丙酮、去离子水各清洗t1秒时刻;用酸稀盐酸、磷酸和硫酸混合溶液分别浸煮t2、t3秒时刻后,用去离子水清洗;然后用氮气吹干;
b)将清洗后的衬底放进脉冲激光沉积设备生长室,设置生长温度、气氛、真空度等工艺参数,制备n+-β-Ga2O3:Sn导电(籽晶)薄膜;
c)将“衬底/n+-β-Ga2O3:Sn导电(籽晶)薄膜/掩膜板”放进气相输运设备(CVD)中进行n-β-Ga2O3:Sn纳米棒阵列的制备;
d)利用掩膜板技术,覆盖住n-β-Ga2O3:Sn纳米棒阵列,使用磁控溅射(或电子束沉积、真空镀膜等)技术,沉积圆环形电极;
e)使用PLD(或磁控溅射技术等)在圆环形电极上沉积绝缘层;
f)将“衬底/n+-β-Ga2O3:Sn导电(籽晶)薄膜/圆环形电极/绝缘层/n-β-Ga2O3:Sn纳米棒阵列”放进MOVPE生长室,进行P-GaN薄膜制备;
g)利用磁控溅射(或电子束沉积、真空镀膜等)技术在P-GaN薄膜上分别制电极。
步骤a)中,首先用80℃稀盐酸浸煮3~20分钟;然后用H3PO4:H2SO4=1:3的混合酸溶液浸煮,温度为80~200℃,时间为的5~20分钟。
步骤c)中,源材料采用Ga-Sn合金,Sn的原子百分含量为0.1at%~10at%。掩膜板为圆环形Al2O3,其形状尺寸如图2所示。
步骤d)中,掩膜板为圆形Al2O3,其半径为1mm。电极为圆环形Ti/Au,其形状尺寸如图2所示。图中,电极和掩模板形状尺寸一样。
步骤e)中,绝缘层为圆环形Al2O3,其形状尺寸如图2所示。
在本公开的制作工艺还包括:
(a)PLD制备n+-β-Ga2O3:Sn导电(籽晶)薄膜的工艺参数为:通入O2气体,生长压强为0.01~5Pa,生长温度为350~950℃,衬底与靶材之间距离为20~50mm,生长时间为10~240min;
(b)n-β-Ga2O3:Sn纳米棒阵列的生长温度为800~1400℃,生长时间为30~180min。
针对β-Ga2O3基异质结日盲探测器响应时间长等问题,本公开实施例的β-Ga2O3基纳米棒日盲紫外探测器,在n-β-Ga2O3:Sn纳米棒/p-GaN异质结中,利用n-β-Ga2O3:Sn纳米棒阵列提高了异质结对光的利用率;通过Sn的掺杂,提高了异质结内建电场的强度,有效分离光生载流子;光生载流子沿n-β-Ga2O3:Sn纳米棒的迁移率大大提高,提高了探测器响应度。
根据一个或者多个实施例,一种β-Ga2O3基纳米棒阵列异质结自供能紫外探测器制备方法,包括以下步骤:
S201,蓝宝石衬底清洗。将衬底依次用酸溶液浸煮;用去离子水、乙醇、丙酮各清洗10分钟,然后用氮气吹干;用80℃稀盐酸浸煮10分钟;然后用H3PO4:H2SO4=1:3的混合酸溶液浸煮,温度为150℃,时间为的15分钟。
S202,将清洗后的衬底放进脉冲激光沉积设备生长室,通入O2气体,生长压强为0.85Pa,生长温度为550℃,衬底与靶材之间距离为45mm,生长时间为120min制备n+-β-Ga2O3:Sn导电(籽晶)薄膜。
S203,首先,将10克Ga-Sn合金(Sn的原子百分含量为1at%)源,放入Al2O3坩埚舟;然后,将带有Al2O3圆环形掩模板的衬底/n+-β-Ga2O3:Sn导电(籽晶)薄膜放置于坩埚舟上,并位于Ga-Sn合金源正上方,距离为3mm;最后,将Al2O3坩埚舟放置于CVD设备正中央。
S204,将CVD设备抽真空至1.5×10-4Pa,通入O2:Ar=5:1气体,升温至950℃,生长120min后,获得n-β-Ga2O3:Sn纳米棒阵列,降温至室温,取出样品。
S205,将圆形模板置于n-β-Ga2O3:Sn纳米棒阵列上,利用磁控溅射技术依次沉积圆环形Ti/Au电极和Al2O3阻挡层。
S206,将圆环形Al2O3掩模板置于Al2O3阻挡层上,并将其放置于MOVPE反应室,三甲基镓(TMGa)、二茂镁(Cp2Mg)和高纯氨气(NH3)分别作Ga、Mg和N源。高纯氢气(H2)作载气。将蓝宝石衬底经1050℃H2气氛下烘烤、H2/NH3气氛下氮化、550℃下生长180min后,获得p-GaN:Mg。
S207,将步骤S206中获得的样品,在850℃N2气氛下快速热退火(RTA)5min。
S208,利用磁控溅射技术,制备出Ru/Ni/Ag/Pt/Au背电极,获得“蓝宝石衬底/n+-β-Ga2O3:Sn导电(籽晶)薄膜/(Ti/Au)圆环形电极/Al2O3圆环形绝缘层/n-β-Ga2O3:Sn纳米棒/p-GaN薄膜填充层/(Ru/Ni/Ag/Pt/Au)背电极”紫外光探测器。
S209,对步骤S208中所得的β-Ga2O3基纳米棒紫外探测器进行光电性能测试,结果表明,该器件在0V偏压下,用266nm的Nd:YAG脉冲激光器作为光源,激光器脉宽为10ns。从图3中可以看出,该异质结光电探测器的脉冲响应具22ns的上升时间,下降时间为152ns,比目前文献报道的响应时间都短。同时,利用365nm的紫外光对所得β-Ga2O3基纳米棒紫外探测器进行光电检测,发现无光电流响应,表明本发明所得的柔性紫外探测器具有日盲特性。
本公开实施例的β-Ga2O3基纳米棒日盲探测器制作工艺,利用n+-β-Ga2O3:Sn薄膜作为籽晶层,避免了Au等催化剂的使用;以Ga-Sn合金作为源,制备出Sn掺杂的n-β-Ga2O3:Sn纳米棒阵列。相比于现有技术,具有以下优点:
1)光射入n-β-Ga2O3:Sn纳米棒中,纳米棒结构增加对光的散射,提高了光的吸收率;
2)通过Sn的有效掺杂,可以提高异质结的电势差,提高自建电场强度,实现有效分离光生载流子;
3)光生载流子的迁移率沿纳米棒生长方向得到极大提高。
使得本公开实施例的β-Ga2O3基纳米棒日盲探测器具有快速响应的特点,相比目前的薄膜异质结紫外光探测器(例如,授权公告号:CN208738268U,公开的脉冲响应上升、下降时间为25ms),其响应时间提高了近100倍。
值得说明的是,虽然前述内容已经参考若干具体实施方式描述了本发明创造的精神和原理,但是应该理解,本发明并不限于所公开的具体实施方式,对各方面的划分也不意味着这些方面中的特征不能组合,这种划分仅是为了表述的方便。本发明旨在涵盖所附权利要求的精神和范围内所包括的各种修改和等同布置。

Claims (8)

1.一种β-Ga2O3基紫外探测器的制备方法,所述β-Ga2O3基紫外探测器,由下至上包括依次层叠设置的衬底(1)、n+-β-Ga2O3:Sn导电层(2)、第一电极(3)、n-β-Ga2O3:Sn纳米棒陈列(7)、p-GaN层(5)和第二电极(6),其中,所述p-GaN层(5)填充并置于所述n-β-Ga2O3:Sn纳米棒陈列(7)之上,
所述第一电极(3)与p-GaN层(5)之间设置有第一绝缘层(4),其特征在于,所述制备方法包括以下步骤:
S101,对衬底(1)进行清洗;
S102,将清洗后的衬底(1)上通过PLD生长n+-β-Ga2O3:Sn导电层(2);
S103,采用CVD在所述n+-β-Ga2O3:Sn导电层(2)上制备n-β-Ga2O3:Sn纳米棒陈列(7);
S104,采用掩膜板覆盖n-β-Ga2O3:Sn纳米棒陈列(7),使用磁控溅射、电子束沉积或真空镀膜沉积第一电极(3);
S105,采用PLD或者磁控溅射,在所述第一电极(3)上沉积第一绝缘层(4);
S106,在n-β-Ga2O3:Sn纳米棒陈列(7)和第一绝缘层(4)上采用MOVPE继续生长p-GaN层(5);
S107,在所述p-GaN层(5)上利用磁控溅射、电子束沉积或真空镀膜制备第二电极(6)。
2.根据权利要求1所述的制备方法,其特征在于,所述n+-β-Ga2O3:Sn导电层(2)的工艺参数包括:通入O2气体,生长压强为0.01~5Pa,生长温度为350~950℃,衬底与靶材之间距离为20~50mm,生长时间为10~240min;
n-β-Ga2O3:Sn纳米棒陈列(7)的工艺参数包括:生长温度为800~1400℃,生长时间为30~180min。
3.根据权利要求1所述的制备方法,其特征在于,所述衬底(1)材料是蓝宝石或石英。
4.根据权利要求1所述的制备方法,其特征在于,所述第一电极(3)的材料为Ti/Au合金,所述第二电极(6)的材料为Ru/Ni/Ag/Pt/Au合金。
5.根据权利要求1所述的制备方法,其特征在于,所述第一绝缘层(4)的材料为Al2O3
6.根据权利要求1所述的制备方法,其特征在于,所述n+-β-Ga2O3:Sn导电层(2)中Sn原子百分含量为0.5at%~5at%,厚度为50nm~1000nm。
7.根据权利要求1所述的制备方法,其特征在于,所述n-β-Ga2O3:Sn纳米棒阵列(7)中Sn原子百分含量为0.01at%~1at%,其长度为200nm~2000nm。
8.根据权利要求1所述的制备方法,其特征在于,所述p-GaN层(5)采用MOVPE制备,为Mg掺杂p-GaN薄膜。
CN202210866247.6A 2022-07-22 2022-07-22 一种β-Ga2O3基紫外探测器及其制备方法 Active CN115172512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202210866247.6A CN115172512B (zh) 2022-07-22 2022-07-22 一种β-Ga2O3基紫外探测器及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202210866247.6A CN115172512B (zh) 2022-07-22 2022-07-22 一种β-Ga2O3基紫外探测器及其制备方法

Publications (2)

Publication Number Publication Date
CN115172512A CN115172512A (zh) 2022-10-11
CN115172512B true CN115172512B (zh) 2023-10-27

Family

ID=83496086

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202210866247.6A Active CN115172512B (zh) 2022-07-22 2022-07-22 一种β-Ga2O3基紫外探测器及其制备方法

Country Status (1)

Country Link
CN (1) CN115172512B (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107611004A (zh) * 2017-08-14 2018-01-19 南京大学 一种制备自支撑GaN衬底材料的方法
CN110678990A (zh) * 2017-04-10 2020-01-10 挪威科技大学 纳米结构
CN112038427A (zh) * 2020-06-16 2020-12-04 杭州紫芯光电有限公司 氧化镓基异质结集成光电芯片、远程紫外阵列监测器及其制作方法
CN112382691A (zh) * 2020-10-16 2021-02-19 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN112635678A (zh) * 2020-12-22 2021-04-09 哈尔滨工业大学 一种基于甲胺基氯化铅/氧化镓异质结的高效自供能uva波段紫外光电探测器及其制备方法
CN113658852A (zh) * 2021-07-27 2021-11-16 上海大学 硅基尺寸可控β-Ga2O3纳米线的制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101036453B1 (ko) * 2009-07-06 2011-05-24 한양대학교 산학협력단 p-i-n 나노선을 이용한 태양전지

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110678990A (zh) * 2017-04-10 2020-01-10 挪威科技大学 纳米结构
CN107611004A (zh) * 2017-08-14 2018-01-19 南京大学 一种制备自支撑GaN衬底材料的方法
CN112038427A (zh) * 2020-06-16 2020-12-04 杭州紫芯光电有限公司 氧化镓基异质结集成光电芯片、远程紫外阵列监测器及其制作方法
CN112382691A (zh) * 2020-10-16 2021-02-19 华南师范大学 含氮化镓/氧化镓纳米柱阵列的自供电探测器及制备方法
CN112635678A (zh) * 2020-12-22 2021-04-09 哈尔滨工业大学 一种基于甲胺基氯化铅/氧化镓异质结的高效自供能uva波段紫外光电探测器及其制备方法
CN113658852A (zh) * 2021-07-27 2021-11-16 上海大学 硅基尺寸可控β-Ga2O3纳米线的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Self-Powered Ultraviolet Photodetector with Superhigh Photoresponsivity (3.05 A/W) Based on the GaN/Sn:Ga2O3 pn Junction;Daoyou Guo等;《ACS Nano》;第12卷;12827-12835 *

Also Published As

Publication number Publication date
CN115172512A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US8735290B2 (en) Amorphous group III-V semiconductor material and preparation thereof
Chu et al. Fabrication and characterization of Ni-Doped ZnO nanorod arrays for UV photodetector application
JP4797083B2 (ja) 薄膜太陽電池モジュール
US20110290310A1 (en) Solar cell and solar cell manufacturing method
CN110459640B (zh) 一种基于Cs3Cu2I5钙钛矿的自供能光电探测器及其制备方法
CN110265504B (zh) 一种紫外光电探测器及其制备方法
Shewale et al. The effects of pulse repetition rate on the structural, surface morphological and UV photodetection properties of pulsed laser deposited Mg-doped ZnO nanorods
CN112086344B (zh) 一种铝镓氧/氧化镓异质结薄膜的制备方法及其在真空紫外探测中的应用
CN111739989A (zh) AlGaN基深紫外LED外延片及制备方法
KR101360113B1 (ko) 광흡수 재료 및 그것을 이용한 광전 변환 소자
CN108346712B (zh) 一种硅掺杂氮化硼/石墨烯的pn结型紫外探测器制备方法
US20180358182A1 (en) Method for producing a layer with perovskite material
CN114657637A (zh) 镓酸锌薄膜及制备方法、紫外探测器及制备方法
Abdulgafour et al. Sensing devices based on ZnO hexagonal tube-like nanostructures grown on p-GaN heterojunction by wet thermal evaporation
CN115172512B (zh) 一种β-Ga2O3基紫外探测器及其制备方法
JP5732558B2 (ja) 光電変換装置及びその作製方法
JP4758496B2 (ja) 薄膜太陽電池モジュール
CN110828589B (zh) 一种柔性日盲紫外光电探测器及其制备方法
RU2499850C1 (ru) Способ получения металлсодержащего углеродного наноматериала
CN115295677A (zh) 高响应度β-Ga2O3基异质结自供能紫外探测器及其制备方法和应用
US8237161B2 (en) Amorphous boron carbide films for p-n junctions and method for fabricating same
CN114566566A (zh) 一种氮化铝日盲光电探测器及其制备方法
CN210092100U (zh) 一种基于石墨烯模板上AlGaN纳米柱基MSM型紫外探测器
CN113054050A (zh) 一种V2O5-Ga2O3异质结自供电日盲光电探测器及制备方法
JP4758495B2 (ja) 薄膜太陽電池モジュール

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant