CN106835041A - 一种低温诱导制备硅纳米线的方法 - Google Patents

一种低温诱导制备硅纳米线的方法 Download PDF

Info

Publication number
CN106835041A
CN106835041A CN201710006437.XA CN201710006437A CN106835041A CN 106835041 A CN106835041 A CN 106835041A CN 201710006437 A CN201710006437 A CN 201710006437A CN 106835041 A CN106835041 A CN 106835041A
Authority
CN
China
Prior art keywords
growth
sputtering
tin
silicon
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710006437.XA
Other languages
English (en)
Inventor
黄仕华
刘剑
井维科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN201710006437.XA priority Critical patent/CN106835041A/zh
Publication of CN106835041A publication Critical patent/CN106835041A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B23/00Single-crystal growth by condensing evaporated or sublimed materials
    • C30B23/02Epitaxial-layer growth
    • C30B23/08Epitaxial-layer growth by condensing ionised vapours
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon

Abstract

本发明公开了一种低温诱导制备硅纳米线的方法,纳米线的生长温度为250~400 0C,最优化的生长温度为350 0C,随着温度的升高,纳米线的长度先增加后减少,当生长温度高于350 0C,在硅纳米线的顶端形成较大的锡‑硅合金液滴,并且锡纳米线的长度开始减少,硅纳米线中存在一个混合的硅非晶和纳米晶相,且纳米晶相随着生长温度的升高而快速地增加。

Description

一种低温诱导制备硅纳米线的方法
技术领域
本发明属于光电薄膜技术领域,尤其涉及一种采用金属锡诱导的低温磁控溅射法制备硅纳米线的方法。
背景技术
硅的一维纳米结构,即硅纳米线作为一维纳米结构材料由于其在独特的光、电、磁学等特性已成为近年的研究热点,受到广泛的关注。其中常用的制备硅纳米线的方法是金属诱导化学气相沉积法。硅纳米材料有望应用于光伏太阳能电池,纳米级传感器、存储器等微电子器件中,因为密集的硅纳米线阵列具有良好的陷光作用,在径向结硅纳米线太阳能电池中有非常大的应用前景。
目前,非晶硅薄膜晶化的主要方法包括:(1)固相晶化法,(2)快速热退火法,(3)准分子激光晶化法,(4)金属诱导晶化法等。在上述的几种方法中,固相晶化和快速热退火方法是利用加热是硅原子获得足够高的能量,从而重新排列变成多晶态,这一般需要在很高的温度(高于900℃)下才能实现。一般的玻璃衬底软化温度比较低(不超过600℃),无法承受住如此高温,所以利用固相晶化和快速热退火方法很难实现玻璃衬底上非晶硅的晶化。如果想要在较低的温度(低于600℃)下实现晶化,需要的时间就要延长,大约20~100小时,这不仅需要消耗大量能量,生产效率低下,而且还不利于大的晶粒的形成。后来,随着激光技术的发展,激光被用于非晶硅薄膜的晶化。由于硅对紫外光有很强的吸收能力,所以使用激光对非晶硅薄膜进行加热,可以使瞬间薄膜获得很高的温度而晶化,并且不影响玻璃衬底。激光诱导非晶硅晶化可以获得大尺寸的晶粒,能够获得高质量的多晶硅薄膜,被广泛应用于TFT显示中。但是激光诱导晶化成本很高,不适合大面积的多晶硅薄膜的生产。
发明内容
为了解决上述问题,本发明提供一种低温诱导制备硅纳米线的方法
,能够在较低温度下,完成硅纳米线的制备,从而适合大面积多晶硅薄膜的生产。
为此采用如下的技术方案:
一种低温诱导制备硅纳米线的方法,其特征在于采用如下步骤:
1)金属锡薄膜的磁控溅射生长:
将衬底材料装入进样真空室,控制真空室的气压达到5×10-4 Pa,通入20 sccm的氩气,调节反应真空室内的气压达到1.0 Pa时,打开锡靶的溅射电源;开始锡薄膜生长前,先进行30分钟的预溅射,去除锡靶材表面的氧化层;预溅射完成后,打开反应室和进样室的插板阀,将样品送入反应室,并将样品进行定位;采用直流溅射,溅射功率60W,溅射温度为室温,溅射时间为20分钟;生长完成后锡薄膜的典型厚度为100 nm;
2)非晶硅薄膜的磁控溅射生长:
在完成锡薄膜的生长后,将生长有一层锡薄膜的衬底材料加热至250~400℃,在原位开始生长非晶硅薄膜;其生长工艺和步骤与步骤1)基本相同,不同之处在于采用射频溅射,溅射功率20W,溅射温度为250~400℃,溅射时间为80分钟;生长完成后非晶硅薄膜的典型厚度为200 nm。
在本发明的技术方案中,采用首先在衬底上和常温下利用磁控溅射法生长一层100 nm厚的金属锡,这层锡对后续生长的非晶硅晶化起到了非常重要的作用。在加热的初始阶段,当温度超过锡-硅共晶点(232 ℃)时,在衬底表面上就会形成大量的纳米级球形锡液滴,这些球形锡液滴就诱导了随后的硅纳米线的生长。锡液滴在硅纳米线的生长中十分关键,若如果当生长温度低于232℃时,这时没有形成锡液滴,不能观察到硅纳米线的生长。
随后把生长有一层锡薄膜的衬底加热到250~400℃以后,之后采用磁控溅射的方法生长一层200 nm厚的非晶硅薄膜,此时,锡液滴作为成核点,吸收从靶材被溅射出来的硅原子形成锡-硅合金液滴,这样不断吸附的硅原子使得锡-硅合金过饱和,导致了固相的硅成核、生长,最终形成了硅纳米线。
附图说明
图1是在250 ℃下生长的硅纳米线SEM图,右上角插图是顶端带有Sn球的硅纳米线的高分辨SEM图。
图2是在300 ℃下生长的硅纳米线SEM图,右上角插图是顶端带有Sn球的硅纳米线的高分辨SEM图。
图3是在350 ℃下生长的硅纳米线SEM图,右上角插图是顶端带有Sn球的硅纳米线的高分辨SEM图。
图4是在400 ℃下生长的硅纳米线SEM图,右上角插图是顶端带有Sn球的硅纳米线的高分辨SEM图。
图5是在350 ℃下生长的硅纳米线(a)顶部和(b)茎部的能量色散X射线谱。
图6是在不同温度下生长的硅纳米线的拉曼谱。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合附图和实施例对本发明作进一步的说明。
1.1 主要的原材料
ITO导电玻璃:面积~4.0×4.0 cm2, 方块电阻~15 Ω, 光透过率≥90%,洛阳龙乾玻璃有限公司。
金属锡靶材:纯度99.99%,合肥科晶材料技术有限公司。
单晶硅靶材:p型,电阻率3.0 Ω.cm,氧含量低于1.5×1018cm-3,碳含量低于5×1016cm-3,合肥科晶材料技术有限公司。
1.2 主要的生产设备
超高真空磁控溅射镀膜系统:主要由抽气系统、供气系统、真空溅射室、进样室、测量控制系统等组成,中国科学院沈阳科学仪器股份有限公司制造,型号JGP450。
1.3 主要的测试仪器
SEM、拉曼光谱仪、能量色散X射线能谱仪。
1.4 制备工艺过程
(1)样品衬底清洗
将普通载玻片玻璃衬底切割成4.0×4.0 cm,然后在超声机中进行清洗。具体步骤为:首先,将样品放在不锈钢样品架上,接着放入烧杯中,依次经过异丙醇、去离子水、丙酮、去离子水、无水乙醇,各超声10分钟;然后,倒掉无水乙醇,加入足量的去离子水,超声振荡10分钟,;最后,用普通氮气把玻璃衬底吹干,放入干燥箱待用。
(2)锡薄膜生长
将玻璃衬底装入进样真空室,依次开启真空机组,使真空室的气压达到5×10-4 Pa时,开始进行薄膜生长。首先,通入20 sccm的氩气,通过调节高真空插板阀,调节反应真空室内的气体压力,当气压达到1.0 Pa时,打开锡靶的溅射电源。开始锡薄膜生长前,先进行30分钟的预溅射,去除锡靶材表面的氧化层。预溅射完成后,就可以打开反应室和进样室的插板阀,将样品送入反应室,并将样品进行定位。采用直流溅射,溅射功率60W,溅射温度为室温,溅射时间为20分钟。生长完成后锡薄膜的典型厚度为100 nm。
(3)锡薄膜加热
在完成锡薄膜的生长后,在原位进行加热至250~400 ℃。
(4)非晶硅薄膜的生长
等到锡薄膜加热至250~400℃以后,在原位开始生长非晶硅薄膜。其生长工艺和步骤与锡薄膜基本相同。采用射频溅射,溅射功率20W,溅射温度为250~400℃,溅射时间为80分钟。生长完成后非晶硅薄膜的典型厚度为200 nm。
1.5 结果与分析
图1 -4是在250~400 ℃下生长的硅纳米线的SEM图。如图1所示,当生长温度为250 ℃时,只有少量的硅纳米线。当生长温度增加到300 ℃以上时,可以看到大量的取向随机且弯曲的硅纳米线。硅纳米线的密度随着生长温度的增加而增加,而硅纳米线的平均长度在250到350 ℃范围内随生长温度的增加而增加,当生长温度高于400 ℃时,硅纳米线的平均长度反而开始变短。因此,如果综合考虑所制备的硅纳米线和的密度长度的话,最优的生长温度为350 ℃。从图1-4的右上角插图中还可以看出,温度越高,锡薄膜就易于收缩形成越大的锡球在硅纳米线的顶端上。
为了确定硅纳米线及锡球的具体元素组成成分,我们对在350 ℃下制备的硅纳米线的锡球部分及纳米线的茎部进行了能谱分析,如图5(a)和(b)所示。分析结果表明,锡球液滴主要是由硅和锡元素组成,而纳米线的茎部主要由硅元素组成。在硅纳米线的顶部出现锡球液滴表明硅纳米线的生长机制是由锡诱导协助的气-固-液生长机制。在锡球部分及纳米线的茎部也探测到了少量的氧元素,这主要来自于反应腔室残余的氧。
为了确定在不同温度下制备的硅纳米线的结构特性,对样品进行了拉曼测试,如图6所示。在250 ℃下生长的硅纳米线,有一个宽的归因于非晶的拉曼峰(475 cm-1)和一个很弱的归因于纳米晶的拉曼峰(503 cm-1)。当生长温度从250增加到400 ℃时,对应于纳米晶的拉曼峰逐渐向高频方向移动且强度也在增强。这说明,随着生长温度的升高,所制备的硅纳米线的晶化程度也在增加。
根据SEM图及能谱分析,我们知道在硅纳米线的最顶端一直存在锡-硅合金液滴。因此,可以用气-固-液生长机制来解释硅纳米线的生长。在加热的初始阶段,当温度超过锡-硅共晶点(232 ℃)时,在衬底表面上就会形成大量的纳米级球形锡液滴,这些球形锡液滴就诱导了随后的硅纳米线的生长。需要指出的是,锡液滴在硅纳米线的生长中扮演着至关重要的角色,因为当生长温度低于232 ℃时(这时也就没有形成锡液滴),不能观察到有硅纳米线的生长。之后开始溅射硅靶材,锡液滴作为成核点吸收被氩离子束打出来的硅原子形成锡-硅合金液滴,不断吸附的硅原子使得锡-硅合金过饱和,导致了固相的硅成核、生长,最终形成了硅纳米线。

Claims (1)

1.一种低温诱导制备硅纳米线的方法,其特征在于采用如下步骤:
1)金属锡薄膜的磁控溅射生长:
将衬底材料装入进样真空室,控制真空室的气压达到5×10-4 Pa,通入20 sccm的氩气,调节反应真空室内的气压达到1.0 Pa时,打开锡靶的溅射电源;开始锡薄膜生长前,先进行30分钟的预溅射,去除锡靶材表面的氧化层;预溅射完成后,打开反应室和进样室的插板阀,将样品送入反应室,并将样品进行定位;采用直流溅射,溅射功率60W,溅射温度为室温,溅射时间为20分钟;生长完成后锡薄膜的典型厚度为100 nm;
2)非晶硅薄膜的磁控溅射生长:
在完成锡薄膜的生长后,将生长有一层锡薄膜的衬底材料加热至250~400℃,在原位开始生长非晶硅薄膜;其生长工艺和步骤与步骤1)基本相同,不同之处在于采用射频溅射,溅射功率20W,溅射温度为250~400℃,溅射时间为80分钟;生长完成后非晶硅薄膜的典型厚度为200 nm。
CN201710006437.XA 2017-01-05 2017-01-05 一种低温诱导制备硅纳米线的方法 Pending CN106835041A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710006437.XA CN106835041A (zh) 2017-01-05 2017-01-05 一种低温诱导制备硅纳米线的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710006437.XA CN106835041A (zh) 2017-01-05 2017-01-05 一种低温诱导制备硅纳米线的方法

Publications (1)

Publication Number Publication Date
CN106835041A true CN106835041A (zh) 2017-06-13

Family

ID=59118547

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710006437.XA Pending CN106835041A (zh) 2017-01-05 2017-01-05 一种低温诱导制备硅纳米线的方法

Country Status (1)

Country Link
CN (1) CN106835041A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565058A (zh) * 2019-08-29 2019-12-13 江苏长电科技股份有限公司 一种bga产品的磁控溅射方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110193053A1 (en) * 2008-10-09 2011-08-11 Ecole Polytechnique Method for making side growth semiconductor nanowires and transistors obtained by said method
CN102605337A (zh) * 2012-04-12 2012-07-25 云南师范大学 一种Ge低温诱导晶化多晶Si薄膜的制备方法
CN103060768A (zh) * 2013-01-17 2013-04-24 云南师范大学 一种非晶硅薄膜的低温快速晶化方法
CN105470312A (zh) * 2016-02-19 2016-04-06 深圳市华星光电技术有限公司 低温多晶硅薄膜晶体管及其制造方法
CN105506734A (zh) * 2015-12-18 2016-04-20 浙江师范大学 一种多晶硅薄膜及其低温制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110193053A1 (en) * 2008-10-09 2011-08-11 Ecole Polytechnique Method for making side growth semiconductor nanowires and transistors obtained by said method
CN102605337A (zh) * 2012-04-12 2012-07-25 云南师范大学 一种Ge低温诱导晶化多晶Si薄膜的制备方法
CN103060768A (zh) * 2013-01-17 2013-04-24 云南师范大学 一种非晶硅薄膜的低温快速晶化方法
CN105506734A (zh) * 2015-12-18 2016-04-20 浙江师范大学 一种多晶硅薄膜及其低温制备方法
CN105470312A (zh) * 2016-02-19 2016-04-06 深圳市华星光电技术有限公司 低温多晶硅薄膜晶体管及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JIAN LIU ET AL: "Tin catalyzed silicon nanowires prepared by magnetron sputtering", 《MATERIALS LETTERS》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110565058A (zh) * 2019-08-29 2019-12-13 江苏长电科技股份有限公司 一种bga产品的磁控溅射方法

Similar Documents

Publication Publication Date Title
Moutinho et al. Investigation of induced recrystallization and stress in close-spaced sublimated and radio-frequency magnetron sputtered CdTe thin films
CN1314134C (zh) 硅薄膜异质结太阳电池的制备方法
Becker et al. Polycrystalline silicon thin films by high-rate electronbeam evaporation for photovoltaic applications–Influence of substrate texture and temperature
CN107287578B (zh) 一种大范围均匀双层二硫化钼薄膜的化学气相沉积制备方法
CN106929827A (zh) 一种少层MoS2薄膜的制备方法
CN102243991B (zh) 用锡诱导非晶硅薄膜晶化为多晶硅薄膜的方法
CN102605335B (zh) 一种离子束磁控溅射两步法制备微晶硅薄膜的方法
CN101740358A (zh) 在玻璃衬底上制备p型多晶硅薄膜的方法
CN103700576A (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN108193276A (zh) 制备大面积单一取向六方氮化硼二维原子晶体的方法
GB2592513A (en) Method for efficiently eliminating graphene wrinkles formed by chemical vapor deposition
CN106835041A (zh) 一种低温诱导制备硅纳米线的方法
CN100385036C (zh) 太阳能电池纳米晶硅薄膜的物理气相沉积装置及其方法
CN111573658A (zh) 一种大面积直接生长的扭角双层石墨烯及其制备方法
CN102709182B (zh) 两步退火辅助氯化镍诱导晶化非晶硅薄膜的方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
Zhao et al. Polycrystalline silicon films prepared by improved pulsed rapid thermal annealing
JPH07258881A (ja) CuInSe2 膜の製造方法
JPH09312258A (ja) 多結晶シリコン薄膜積層体、その製造方法、シリコン薄膜太陽電池
CN105304736A (zh) 磁控溅射联合快速退火技术制备Ge/Si量子点
CN112103368A (zh) 一种用于多晶硅薄膜的激光掺杂方法
Peng et al. Polycrystalline silicon thin films prepared by Ni silicide induced crystallization and the dopant effects on the crystallization
JP2001326177A (ja) 結晶シリコン半導体装置およびその製造方法
Roth et al. Structural properties of polycrystalline silicon seed layers made on glass by solid-phase crystallisation
CN112376113B (zh) 一种硒化锑晶体、其制备方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170613