WO1993024680A1 - PROCESS FOR PRODUCING α-ALUMINA - Google Patents

PROCESS FOR PRODUCING α-ALUMINA Download PDF

Info

Publication number
WO1993024680A1
WO1993024680A1 PCT/JP1993/000737 JP9300737W WO9324680A1 WO 1993024680 A1 WO1993024680 A1 WO 1993024680A1 JP 9300737 W JP9300737 W JP 9300737W WO 9324680 A1 WO9324680 A1 WO 9324680A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
producing
transition
raw material
gas
Prior art date
Application number
PCT/JP1993/000737
Other languages
English (en)
French (fr)
Inventor
Masahide Mohri
Yoshio Uchida
Yoshinari Sawabe
Hisashi Watanabe
Original Assignee
Sumitomo Chemical Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Company, Limited filed Critical Sumitomo Chemical Company, Limited
Priority to DE69326950T priority Critical patent/DE69326950T2/de
Priority to PL93306560A priority patent/PL174893B1/pl
Priority to KR1019940704363A priority patent/KR100292424B1/ko
Priority to AU40908/93A priority patent/AU676834B2/en
Priority to RU94046207A priority patent/RU2114059C1/ru
Priority to EP93910426A priority patent/EP0644277B1/en
Priority to SK1461-94A priority patent/SK146194A3/sk
Priority to BR9306466A priority patent/BR9306466A/pt
Publication of WO1993024680A1 publication Critical patent/WO1993024680A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B25/00Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/42(bi)pyramid-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity

Definitions

  • the present invention relates to a method for producing ⁇ -alumina.
  • ⁇ -Alumina powder is widely used as an abrasive, a raw material for a sintered body, a plasma spray material, a filler, and the like.
  • ⁇ -Alumina consisting of ⁇ -alumina single crystal particles having a narrow particle size distribution, instead of aggregated particles obtained by the production method of the present invention, is used for abrasives, raw materials for sintered bodies, plasma sprayed materials, fillers, Suitable for raw materials for crystals, raw materials for catalyst carriers, raw materials for phosphors, raw materials for sealing materials, raw materials for ceramic filters.
  • the ⁇ -alumina powder obtained by the conventional general manufacturing method is a polycrystalline material having an uneven shape, contains many agglomerated particles, has a wide particle size distribution, and has a problem such as low alumina purity depending on the application. there were.
  • ⁇ -alumina powder has been used for specific applications by a special production method described later.
  • the shape and the particle size of ⁇ -alumina cannot be arbitrarily controlled by such a method, and it has been difficult to produce L-a-alumina powder having a narrow particle size distribution.
  • hydrothermal treatment method As a special method for producing ⁇ -alumina powder, there are a method of hydrothermal treatment of aluminum hydroxide (hereinafter referred to as a hydrothermal treatment method), a method of adding a flux to aluminum hydroxide and melting and precipitating the same (hereinafter, referred to as “hydrothermal treatment method”). And a method of calcining aluminum hydroxide in the presence of a mineralizer.
  • Japanese Patent Publication No. 57-22886 discloses a method for controlling the particle size by adding corundum as a seed crystal. There was a problem that the obtained ⁇ -alumina powder was expensive.
  • a large strain exists at the boundary between the seed crystal and the grown crystal, and it is thought that it corresponds to the dislocation density in the grown crystal near the boundary.
  • the crack density is also confirmed to be high, and it is expected that cracks are related to such strains and defects.
  • ⁇ ⁇ groups and water are easily contained in the crystal, and It is said that it may cause defects.
  • the flux method has been proposed as a method of controlling the shape and particle size of ⁇ -alumina powder for the purpose of using the powder as an abrasive or filler.
  • Japanese Unexamined Patent Publication No. 3-131517 discloses that average particle size is obtained by calcining aluminum hydroxide in the presence of a fluorine-based flux having a melting point of 800 ° C. or lower.
  • the DZH ratio is 5
  • a method for producing hexagonal plate-like ⁇ -alumina particles of from 40 to 40 is disclosed. However, this method could not produce a fine ⁇ -alumina powder having a particle size of 2 m or less, and all the shapes were plate-like, and it was impossible to arbitrarily control the shape and the particle size. Further, the obtained ⁇ -alumina powder was not always sufficient for uses such as abrasives, fillers and raw materials for single crystals.
  • a common and least expensive method for producing ⁇ -alumina powder is the Bayer method.
  • aluminum hydroxide or transition alumina is obtained in an intermediate stage of producing ⁇ -alumina powder from bauxite as a raw material.
  • ⁇ -Alumina powder is produced by firing aluminum hydroxide or transition alumina in the air.
  • Aluminum hydroxide or transition alumina obtained at an intermediate stage at low cost is usually agglomerated particles having a particle size of more than 10 am, and these aluminum hydroxide or transition alumina are calcined in the air.
  • the conventional ⁇ -alumina powder obtained by the above method was an irregularly shaped powder containing agglomerated coarse particles.
  • the ⁇ -alumina powder containing the agglomerated coarse particles is converted into a product through a crushing process using a ball mill or a vibrating mill according to each application, but crushing is not always easy. Crushing costs are also high, and crushing is difficult. —Alumina powder is crushed over a long period of time, so fine powder is generated and foreign matter is mixed in. It had the disadvantage of becoming alumina powder.
  • Japanese Patent Application Laid-Open No. 59-97528 discloses a method for improving the shape of iron-alumina particles, in which aluminum hydroxide by the Bayer method is used as a raw material, and boron and boron containing ammonium are used.
  • a method for producing an ⁇ -alumina powder having an average particle diameter of 1 to 10 m and a DZH ratio close to 1 by calcining in the presence of a system mineralizer has the disadvantage that the boron or fluorine-containing substance added as a mineralizer remains in the monoalumina and generates aggregates during firing.
  • the former method involves mixing a mineralizer such as aluminum fluoride as a solid or supplying and sintering without adding water to chlorine and fluorine gas, so that the generated alumina particles have an irregular shape.
  • a mineralizer such as aluminum fluoride as a solid
  • supplying and sintering without adding water to chlorine and fluorine gas
  • boric acid added as a mineralizer remains in ⁇ -alumina as a boron-containing substance.
  • Na Bok Li ⁇ is N a C 1 and N a 2 S_ ⁇ 4, etc. produced by the reaction with removing Na Bok Li ⁇ beam agent in these methods
  • Datsuna Application Benefits um main purpose
  • There are inconveniences such as firing at a high temperature of 1200 ° C. or more in order to sublimate or decompose the sulfuric acid.
  • Japanese Patent Publication No. 43-989 / 29 discloses a method for producing alumina having a small average particle diameter of 10 m or less by calcining alumina hydrate together with ammonium chloride. I have. However, the alumina powder obtained by this method had a wide particle size distribution.
  • an object of the present invention is to solve the above-mentioned problems and to provide a method for producing powdery mono-alumina comprising ⁇ -alumina single crystal particles which are homogeneous and are not agglomerated particles, starting from various alumina raw materials. Is to do.
  • it has a polyhedral shape of octahedron or more, DZH of 0.5 or more and 3.0 or less, narrow particle size distribution, high alumina purity, uniform composition in particles, and uniform structure
  • An object of the present invention is to provide a method for producing powdery ⁇ -alumina comprising ⁇ -alumina single crystal particles. Disclosure of the invention
  • the present invention comprises the following inventions.
  • Firing transition alumina and / or alumina raw material that becomes transition alumina by heat treatment in an atmosphere gas containing 1% by volume or more of hydrogen chloride gas at 600 ° C or more and 140 ° C or less.
  • a method for producing ⁇ -alumina characterized by obtaining powdery ⁇ -alumina comprising ⁇ -alumina single crystal particles having a DZH of 0.5 or more and 3.0 or less.
  • the cumulative particle size of 10% and 90% from the fine particle side of the cumulative particle size distribution is D 1
  • FIG. 1 is a scanning electron microscope (S ⁇ ⁇ ) photograph at a magnification of 930 times showing the particle structure of ⁇ -alumina obtained in Example 1.
  • FIG. 2 is a scanning electron micrograph at a magnification of 930 showing the particle structure of ⁇ -alumina obtained in Example 2.
  • FIG. 3 shows the particle size distribution of ⁇ -alumina in Example 2.
  • FIG. 4 is a scanning electron micrograph (magnification: 1900) showing the particle structure of ⁇ -alumina obtained in Example 16.
  • FIG. 5 is a scanning electron micrograph at a magnification of 930 showing the particle structure of ⁇ -alumina obtained in Example 20.
  • FIG. 6 is a scanning electron micrograph at a magnification of 930 times showing the particle structure of ⁇ -alumina obtained in Comparative Example 1.
  • FIG. 7 is a scanning electron micrograph at a magnification of 1900 times showing the particle structure of ⁇ -alumina obtained in Comparative Example 5.
  • FIG. 8 shows the crystal habit of ⁇ -alumina single crystal particles.
  • transition alumina or an alumina raw material which becomes transition alumina by heat treatment is used as a raw material.
  • the transition alumina among alumina having a polymorph represented by the A 1 2 0 3, means all alumina other than ⁇ form. Specifically, 7-alumina, 5-alumina, and 0-alumina can be exemplified.
  • the alumina raw material that becomes transition alumina by heat treatment means a precursor of transition alumina that gives a desired powdery ⁇ -alumina via transition alumina in the firing step of the production method of the present invention. More specifically, aluminum hydroxide; sulphate (aluminum sulphate); so-called bright vans such as aluminum sulphate and aluminum sulphate; aluminum sulphate; Alumina gel by the underwater discharge method of aluminum Can be.
  • the method for synthesizing the transition alumina and the alumina raw material which becomes the transition alumina by the heat treatment is not particularly limited.
  • aluminum hydroxide can be obtained by a Bayer method, a method of hydrolyzing an organic aluminum compound, a method of synthesizing an aluminum compound obtained from an etching waste liquid such as a capacitor as a starting material, or the like.
  • an aluminum hydroxide transition alumina having a secondary particle diameter of 10 ⁇ m or more obtained by an industrially inexpensive method such as the Bayer method is used as a raw material, Powdered ⁇ -alumina can be obtained.
  • Transition alumina can be obtained by a method of heat-treating aluminum hydroxide, a method of decomposing aluminum sulfate, a method of decomposing aluminium, a method of vapor-phase decomposition of aluminum chloride, or a method of decomposing ammonium carbonate.
  • the above-mentioned transition alumina or the alumina raw material which becomes the transition alumina by the heat treatment is used in an amount of 1% by volume or more, preferably 5% by volume or more, more preferably 1% by volume or more based on the total volume of the atmosphere gas.
  • an atmosphere gas an inert gas such as nitrogen, hydrogen, or argon and air can be used.
  • the pressure of the atmospheric gas containing the hydrogen chloride gas is not particularly limited, and can be arbitrarily selected within the range of industrial use. By firing in such an atmosphere gas, the desired powdery ⁇ -alumina can be obtained at a relatively low firing temperature as described later.
  • a mixed gas of chlorine gas and water vapor can also be used.
  • a transition alumina or an alumina raw material which is to be converted into a transition alumina by heat treatment is contained in an atmosphere gas into which chlorine gas and water vapor are introduced, and chlorine gas is at least 1% by volume, preferably 5% by volume, more preferably Is fired by introducing at least 10% by volume and at least 0.1% by volume of water vapor, preferably at least 1% by volume, more preferably at least 5% by volume.
  • An inert gas such as nitrogen, hydrogen or argon and air can be used as the chlorine gas and the diluent gas for the steam.
  • the pressure of the atmospheric gas containing chlorine gas and water vapor is not particularly limited, and can be arbitrarily selected within a range used industrially. Firing in such an atmosphere gas As a result, the desired powdery ⁇ -alumina can be obtained at a relatively low firing temperature as described later.
  • the firing temperature is 600 ° C. or higher, preferably 600 ° C. or higher and 140 ° C. or lower, more preferably 700 ° C. or higher and 130 ° C. or lower, more preferably 800 ° C. or lower. Not less than 1200 ° C.
  • the generated ⁇ -alumina particles are less likely to agglomerate at a production rate that is industrially advantageous, and have a narrow grain size distribution even immediately after baking. It is possible to obtain a powdery alumina having the following composition.
  • the calcination temperature Is preferably relatively high, particularly preferably 800 ° C. or higher.
  • the appropriate firing time is not necessarily limited because it depends on the concentration of the atmosphere gas and the firing temperature, but is preferably 1 minute or more, and more preferably 10 minutes or more. It is sufficient to fire the alumina raw material until it grows into ⁇ -alumina. According to the production method of the present invention, the target powdery alumina can be obtained in a shorter time than the calcination time of the conventional method.
  • the supply source and supply method of the atmospheric gas are not particularly limited. It suffices if the above-mentioned atmospheric gas can be introduced into a reaction system in which a raw material such as transition alumina exists.
  • a cylinder gas can usually be used as a supply source, but a chlorine compound such as a hydrochloric acid solution or ammonium chloride or a chlorine-containing polymer compound or the like is used as a raw material such as a hydrogen chloride gas.
  • the gas can be used so that the above-mentioned predetermined gas composition is obtained by its vapor pressure or decomposition.
  • a decomposition gas such as ammonium chloride
  • the operation may be hindered due to the precipitation of solid substances in the firing furnace.
  • concentration of hydrogen chloride gas the lower the temperature and the shorter the firing time. Since it is possible to obtain high-purity alumina, it is preferable to supply hydrogen chloride or chlorine directly into the firing furnace from a cylinder or the like.
  • a gas supply method either a continuous method or a batch method can be used.
  • the firing apparatus is not necessarily limited, and a so-called firing furnace can be used.
  • the firing furnace is desirably made of a material that is not corroded by hydrogen chloride gas, chlorine gas, etc. It is desirable to have a mechanism that can adjust the atmosphere. Further, since an acidic gas such as a hydrogen chloride gas or a chlorine gas is used, the baking furnace is preferably airtight. Industrially, it is preferable to perform calcination by a continuous method. For example, a tunnel furnace, a rotary kiln, a pusher furnace, or the like can be used.
  • reaction proceeds in an acidic atmosphere, it is preferable to use alumina, quartz, acid-resistant brick, graphite crucible boat, or the like as the material of the apparatus used in the manufacturing process.
  • ⁇ -alumina which is not agglomerated particles can be obtained by the above production method. Depending on the raw materials and manufacturing conditions used, they may be aggregated particles or contain aggregated particles, but even in this case, the aggregation is mild and the particles are not easily aggregated by simple disintegration. ⁇ -alumina can be produced.
  • the mono-alumina single crystal particles constituting ⁇ -alumina obtained by the method of the present invention have a number average particle size of 0.1 to 30 m and a D / H ratio of 0.5 to 3.0.
  • the D90ZD10 ratio is preferably 10 or less. 9 below, particularly preferred properly narrow than completion, the alumina purity 9 9.9 0 wt% or more and a less than 0.0 5 wt% Na Application Benefits um content in terms of N a 2 0 It has an excellent feature of high purity.
  • the (D90 / D10) value was measured by using a master sizer (manufactured by Malvern) using the laser-scattering method as a measurement principle.
  • the shape of ⁇ -alumina refers to the DZH ratio when the maximum particle diameter parallel to the hexagonal lattice plane of ⁇ -alumina, which is the hexagonal close-packed lattice, is D, and the particle diameter perpendicular to the hexagonal lattice plane is H.
  • DZH is a photograph of ⁇ -alumina SEM (scanning electron microscope, manufactured by JEOL Co., Ltd .: ⁇ 300) photo, and selects 5 to 10 particles from the photo to analyze the image. The average value was obtained.
  • FIG. 8 shows the crystal habit (represented by ⁇ to I) of the ⁇ -alumina particles obtained by the present invention.
  • ⁇ -Alumina is hexagonal, and its habit consists of a-plane ⁇ 1 1 2 0 ⁇ , c-plane ⁇ 0 0 0 1 ⁇ , n-plane ⁇ 2 2 4 3 ⁇ and r-plane ⁇ 1 0 1 2 ⁇ It refers to the morphology of a crystal that is characterized by the appearance of the crystal plane.
  • Figure 8 shows the crystal planes a, c, n and r.
  • the amount of impurity ions mixed was measured by emission spectroscopy, and the impurity content was determined in terms of oxide.
  • the chlorine content was determined by potentiometric titration.
  • the total amount (% by weight) of the impurity contents thus determined was subtracted from 100% by weight to obtain the alumina purity.
  • the amount of sodium ions mixed was measured by emission spectrometry, and the amount was calculated in terms of oxide.
  • the raw materials such as transition alumina used in the examples are as follows. 1. Transition alumina A
  • Transition alumina (trade name: AKP-G15, manufactured by Sumitomo Chemical Co., Ltd.) obtained by calcining aluminum hydroxide obtained by the hydrolysis method of aluminum diisopropoxide. Particle size: about 4 ⁇ m)
  • Transition alumina by the Ming ban method (trade name: CR125, manufactured by Biko Pesky, particle size: about 4 m)
  • Transition aluminum obtained by firing aluminum hydroxide C at 800 ° C in air. Secondary particle size: approx. 30 m
  • Alumina raw material that becomes transitional aluminum by heat treatment Reagents manufactured by Wako Pure Chemical Industries, Ltd. were used.
  • the hydrogen chloride gas used was a cylinder hydrogen chloride gas (purity 99.9%) and a decomposition gas of ammonium chloride manufactured by Tsurumi Soda Co., Ltd.
  • a decomposition gas of ammonium chloride was used, the atmosphere was adjusted by heating the ammonium chloride to its sublimation temperature of 300 ° C. and introducing the hydrogen chloride gas into the core; At a holding temperature of 110 ° C., the salt was completely decomposed, resulting in an atmosphere of 33% by volume of hydrogen chloride gas, 17% by volume of nitrogen gas and 50% by volume of hydrogen gas, respectively.
  • the chlorine gas used was a cylinder chlorine gas (purity 99.4%) manufactured by Fujimoto Sangyo Co., Ltd.
  • the volume percentage of water vapor was controlled by the change in saturated water vapor pressure depending on the water temperature, and introduced into the furnace with nitrogen gas.
  • the aluminum boat was filled with an aluminum source such as transition anneamina or hydroxyaluminum.
  • the filling amount was 0.4 g and the filling depth was 5 mm.
  • Firing was performed in a tubular furnace (DSPSH-28, manufactured by Motoyama Co., Ltd.) using a quartz furnace core tube (diameter: 27 mm, length: 100 mm). While flowing nitrogen gas, the temperature was raised at a heating rate of 500 hours, and when the temperature reached the atmosphere introduction temperature, the atmosphere gas was introduced.
  • Atmospheric gas concentration was adjusted by adjusting the gas flow rate using a flow meter.
  • the flow rate of the atmosphere gas was adjusted at a spring flow rate of 20 mm / min. This method is referred to as the gas flow method.
  • the atmosphere gas was stopped after the introduction of the atmosphere gas instead of Kamikami's gas-in-one firing method. Was. All atmospheric gas pressures were at atmospheric pressure.
  • the holding temperature sining temperature
  • the holding time sining time
  • the partial pressure of steam was controlled by the change in saturated steam pressure depending on the temperature of the water, and the steam was introduced into the kiln using nitrogen gas.
  • Example 1 the holding temperature (sintering temperature) and the holding time (sintering time) were changed.
  • the experimental conditions and results are shown in Tables 1 and 2.
  • Example 1 the atmosphere gas introduction temperature and the holding time (firing time) were changed. Experiment The conditions and experimental results are shown in Tables 1 and 2.
  • FIG. 4 shows an S-photograph of the powdery ⁇ -alumina obtained in Example 16.
  • Example 19 shows an S-photograph of the powdery ⁇ -alumina obtained in Example 16.
  • transition alumina transition alumina C obtained by firing aluminum hydroxide powder (aluminum hydroxide C) having a large particle size by the Bayer method was used.
  • the experimental conditions and results are shown in Tables 3 and 4.
  • FIG. 5 shows an S-photograph of the powdery ⁇ -alumina obtained in Example 20. Comparative Examples 1 to 5
  • FIGS. 6 and 7 show S-photographs of the powdery ⁇ -alumina obtained in Comparative Examples 1 and 5, respectively.
  • ⁇ -alumina of the present invention from a variety of types, purity, shape, particle size and composition of alumina raw material, high-purity, fine and homogeneous ⁇ -alumina composed of ⁇ -alumina single crystal particles having a narrow particle size distribution and having an octahedral or more polyhedral shape that is not agglomerated particles can be obtained.
  • the ⁇ -alumina single crystal particles constituting the ⁇ _alumina obtained by the method of the present invention have a number average particle size of 0.1 m or more and 30 m or less, and a D / H ratio of
  • the particle size distribution is from 0.5 to 3.0 and the particle size distribution is 10% from the fine particle side of the cumulative particle size distribution and 90% of the cumulative particle size is D10 and D90, respectively, D90 / D90
  • the D10 ratio is as narrow as 10 or less
  • the alumina purity is 99.9% by weight or more
  • the sodium content is as high as less than 0.05% by weight in terms of Na20. It has an excellent feature of purity.
  • ⁇ -alumina which is composed of ⁇ -alumina single crystal particles having a narrow particle size distribution instead of agglomerated particles obtained by the method of the present invention, is used as an abrasive, a raw material for a sintered body, a plasma spray material, a filler, a raw material for a single crystal. It is suitable as a raw material for a catalyst alone, a raw material for a phosphor, a raw material for a sealing material, a raw material for a ceramic filter, etc., and is extremely useful industrially.
  • high-purity ⁇ -alumina can be obtained. It can be used as a raw material and a raw material for a high-purity sintered body.
  • the fine particles of ⁇ -alumina obtained by the method of the present invention are suitable as a raw material for precision abrasives and ceramic filters.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Description

明細書 α—アルミ ナの製造方法 技術分野
本発明は、 α—アルミナの製造方法に関する。 α—アルミナ粉末は、 研磨材、 焼結体用原料、 プラズマ溶射材、 充塡材等に広く用いられている。 本発明の製造 方法により得られる凝集粒子でなく、 粒度分布の狭い α—アルミナ単結晶粒子か らなる α—アルミナは、 研磨材、 焼結体用原料、 プラズマ溶射材、 充塡材、 単結 晶用原料、 触媒担体用原料、 蛍光体用原料、 封止材用原料、 セラ ミ ッ クフィルタ 一用原料等に適している。 背景技術
従来の一般的な製造方法により得られる α—アルミナ粉末は、 形状が不均一な 多結晶体で、 凝集粒子を多く含み、 粒度分布が広い、 また用途によってはアルミ ナ純度が低い等の問題があった。 これらの問題点を克服するために、 特定の用途 においては後述する特殊な製造方法による α—アルミナ粉末が用いられてきた。 しかしながら、 このような方法によっても α—アルミナの形状や粒径を任意に制 御することはできず、 これまで粒度分布の狭 L、 a—アルミナ粉末を製造すること は困難であった。
α—アルミナ粉末の特殊な製造方法としては、 水酸化アルミニウムの水熱処理 による方法 (以下、 水熱処理法という) 、 水酸化アルミニウムにフラ ッ クスを添 加して溶融して析出させる方法 (以下、 フラックス法という) および水酸化アル ミニゥムを鉱化剤の存在下で焼成する方法等が知られている。
まず、 水熱処理法としては、 特公昭 5 7— 2 2 8 8 6号公報にはコランダムを 種晶として添加し粒径を制御する方法が開示されているが、 高温、 高圧下での合 成であり、 得られる α—アルミナ粉末が高価になるという問題があった。
また、 松井らの研究 (ハイ ドロザーマル反応、 2卷、 7 1〜7 8頁:水熱法に よるアルミナ単結晶の育成) によれば、 水熱育成法 (水熱処理法) によりサファ ィァ ( α —アルミナ) 種晶上にクロムを含有するアルミナ単結晶を成長させて得 られる α —アルミナ単結晶にはひびが存在している。 その原因を明らかにするた めに結晶内部の均一性をしらべたところ、 種晶と成長結晶の境界部分に大きな歪 みが存在し、 境界近くの成長結晶内で転移密度に対応すると考えられるエツチピ ッ ト密度も大きいことが確認され、 ひびはこのような歪みや欠陥と関連があると 予想されるとともに、 水熱育成法の場合、 結晶内に Ο Η基や水が含有され易く、 歪みや欠陥の原因になることが考えられるとしている。
次に、 フラックス法は、 α —アルミナ粉末を研磨材、 充塡材等に用いる目的で その形状や粒径を制御する方法と して提案されてきた。 例えば、 特開平 3— 1 3 1 5 1 7号公報には、 融点が 8 0 0 °C以下のフッ素系フラッ クスの存在下に水酸 化アルミ二ゥムを仮焼することにより、 平均粒径が 2〜 2 0 mであり、 六方最 密格子であるひ -アルミナの六方格子面に平行な最大粒子径を D、 六方格子面に 垂直な粒子径を Hとしたとき、 D Z H比が 5〜 4 0の六角板状の α —アルミナ粒 子を製造する方法が開示されている。 しかし、 この方法では、 粒径が 2 ^ m以下 の微細な α—アルミナ粉末ができず、 また形状はすべて板状であり、 形状や粒径 を任意に制御することは不可能であった。 また、 得られた α—アルミナ粉末は、 研磨材、 充塡材および単結晶用原料等の用途には必ずしも十分なものではなかつ た。
α —アルミナ粉末の一般的でかつ最も安価な製造方法はバイヤー法である。 バ ィャ一法においては、 原料であるボーキサイ 卜から α—アルミナ粉末を製造する 中間段階で水酸化アルミニゥムまたは遷移アルミナが得られる。 水酸化アルミ二 ゥムまたは遷移アルミナを大気中で焼成することにより、 α -アルミナ粉末が製 造されている。
中間段階において工業的に安価に得られる水酸化アルミニゥムまたは遷移アル ミナは、 通常、 粒子径が 1 0 ;a mより大きな凝集粒子であり、 これらの水酸化ァ ルミニゥ厶または遷移アルミナを大気中で焼成して得られる従来の α —アルミナ 粉末は、 凝集した粗粒を含む、 形状が不定形の粉末であった。 この凝集した粗粒 を含む α —アルミナ粉末は、 それぞれの用途に応じてボールミルや振動ミルを使 用して解砕工程を経て製品とされるが、 解砕は必ずしも容易ではなく、 そのため に解砕コス トもかかり、 また、 解砕が困難な —アルミナ粉末は長時間にわたる 解砕のために微粉末の発生や異物の混入が生じ、 特に研磨材と しては不適当な α 一アルミナ粉末となる欠点を有していた。
このような問題を解決するために幾つかの提案がなされてきた。 例えば、 ひ — アルミナ粒子の形状を改良する方法と して、 特開昭 5 9— 9 7 5 2 8号公報には 、 原料にバイヤー法による水酸化アルミニウムを用い、 アンモニゥムを含むホウ 素およびホウ素系鉱化剤の存在下に仮焼することにより、 平均粒径が 1 〜 1 0 mであり、 前記した D Z H比が 1 に近い α —アルミナ粉末を製造する方法が開示 されている。 しかし、 この方法は鉱化剤として添加したホウ素あるいはフッ素含 有物質が 一アルミナ中に残存するとともに、 焼成時に凝集体を生成するという 欠点を有する。
さらに、 バイヤー法により得られるナ 卜 リ ゥム含有水酸化アルミ二ゥムを仮焼 する際、 効率よく脱ナ ト リ ウムを行うと同時に、 粒子径をコン トロールする方法 と して、 フッ化アルミニウム、 氷晶石等のフッ化物および塩素、 塩化水素等の塩 素含有化合物の存在下で仮焼する方法が英国特許第 9 9 0 8 0 1号に、 また、 ホ ゥ酸および塩化アンモニゥム、 塩酸または塩化アルミ二ゥムの存在下に仮焼する 方法が西ドイツ国特許第 1 7 6 7 5 1 1号にそれぞれ開示されている。
しかし、 前者の方法はフッ化アルミニゥ厶等の鉱化剤を固体で混合するかある いは塩素およびフッ素ガスに水を添加することなく供給し焼成するため、 生成し たアルミナ粒子は形状が不均一であり、 粉末の粒度分布が広い等の品質上の問題 があった。 また、 後者の方法は鉱化剤として添加したホウ酸がホウ素含有物質と して α —アルミナ中に残存する。 さらに、 これらの方法は脱ナ ト リ ウムが主目的 であるため、 ナ 卜 リ ゥ厶が脱ナ 卜 リ ゥム剤と反応して生成した N a C 1 や N a 2 S〇4 等の十 卜 リ ゥム塩を昇華ないしは分解させるために 1 2 0 0 °C以上の高温 で焼成しなければならない等の不都合がある。
アルミナと塩化水素ガスの反応については、 粒径 2 ~ 3 m mに焼結されたひ - アルミナと塩化水素と、 生成物の塩化アルミニウムとの反応平衡定数に関する研 究がツァイ トシュリフ ト ' フューレ ♦ アンオルガ二ッシェ · ゥン 卜 · ァルゲマイ ネ * ケミ— (Z e i t . f u r A n o r g . u n d A 1 1 . C h e m . ) 2 0 9頁、 2 1巻 ( 1 9 3 2年) に報告されている。 この報告では原料の置かれ た場所とは別の場所に α —アルミナが生成しているが、 六角板状のものしか得ら れていない。
特公昭 4 3— 8 9 2 9号公報には、 アルミナ水和物を塩化ァンモニゥムととも に仮焼することにより、 不純物の少ない平均粒径 1 0 m以下のアルミナを製造 する方法が開示されている。 しかし、 この方法で得られたアルミナ粉末は粒度分 布が広いものであつた。
したがって、 これまで α—アルミナの単結晶でその純度や粒子内での構造の均 質性において十分に満足できるものは未だ得られていなかった。
そこで、 本発明の目的は、 上記した問題を解決して、 様々なアルミナ原料から 出発して、 均質な、 凝集粒子でない α —アルミナ単結晶粒子からなる粉末状のひ 一アルミナの製造方法を提供することにある。 特に、 8面体以上の多面体の形状 を有し、 D Z Hが 0 . 5以上 3 . 0以下で、 粒度分布が狭く、 アルミナ純度が高 く、 粒子内の組成が均一で、 構造的にも均質な α -アルミナ単結晶粒子からなる 粉末状の α —アルミナの製造方法を提供することにある。 発明の開示
本発明はつぎの発明からなる。
( 1 ) 遷移アルミナおよびノまたは熱処理により遷移アルミナとなるアルミナ原 料を、 塩化水素ガスを 1体積%以上含有する雰囲気ガス中にて、 6 0 0て以上で 焼成することを特徴とする α —アルミナの製造方法。
( 2 ) 遷移アルミナおよび Ζまたは熱処理により遷移アルミナとなるアルミナ原 料を、 雰囲気ガス中に塩素ガスを 1体積%以上および水蒸気を 0 . 1体積%以上 を導入して、 6 0 0 °C以上で焼成することを特徴とする α —アルミナの製造方法
( 3 ) 焼成の温度が 6 0 0 °C以上 1 4 0 0 °C以下である項 ( 1 ) または ( 2 ) 記 載の α -アルミナの製造方法。
( 4 ) 焼成の温度が 8 0 0 °C以上 1 2 0 0て以下である項 ( 1 ) または ( 2 ) 記 載の α—アルミナの製造方法。 PC JP93/00737
( 5 ) 熱処理により遷移アルミナとなるアルミナ原料として水酸化アルミニゥム を用いることを特徴とする項 ( 1 ) 、 ( 2 ) または ( 3 ) 記載の α—アルミナの 製造方法。
( 6 ) 熱処理により遷移アルミナとなるアルミナ原料として明バンまたは硫バン を用いることを特徴とする項 ( 1 ) 、 ( 2 ) または ( 3 ) 記載の α—アルミナの 製造方法。
( 7 ) 遷移アルミナおよび/または熱処理により遷移アルミナとなるアルミナ原 料を、 塩化水素ガスを 1体積%以上含有する雰囲気ガス中にて、 6 0 0 °C以上 1 4 0 0 °C以下で焼成して、 均質で、 8面以上の多面体形状を有し、 六方最密格子 である α—アルミナの六方格子面に平行な最大粒子径を D、 六方格子面に垂直な 粒子径を Hと したとき、 DZHが 0. 5以上 3. 0以下である α -アルミナ単結 晶粒子からなる粉末状の α—アルミナを得ることを特徴とする α—アルミナの製 造方法。
( 8 ) 遷移アルミナおよび Ζまたは熱処理により遷移アルミナとなるアルミナ原 料を、 雰囲気ガス中に塩素ガスを 1体積%以上および水蒸気を 0. 1体積%以上 を導入して、 6 0 0 °C以上 1 4 0 0 °C以下で焼成して、 均質で、 8面以上の多面 体形状を有し、 六方最密格子である α—アルミナの六方格子面に平行な最大粒子 径を D、 六方格子面に垂直な粒子径を Ηと したとき、 DZHが 0. 5以上 3. 0 以下である α—アルミナ単結晶粒子からなる粉末状の α—アルミナを得ることを 特徴とするひ—アルミナの製造方法。
( 9 ) 1 0面以上の多面体形状を有することを特徴とする項 ( 7 ) または ( 8 ) 記載の α—アルミナ単結晶粒子からなる α -アルミナの製造方法。
( 1 0 ) α—アルミナ単結晶粒子の数平均粒径が 0. 1 m以上 3 0 u m以下で 、 累積粒度分布の微粒側から累積 1 0 %、 累積 9 0 %の粒径をそれぞれ D 1 0、 D 9 0 としたとき、 D 9 0/D 1 0力《 1 0以下である粒度分布を有する項 ( 7 ) または ( 8 ) 記載の α—アルミナの製造方法。
( 1 1 ) アルミナ純度が 9 9. 9 0重量%以上であることを特徴とする項 ( 7 ) または ( 8 ) 記載の α—アルミナの製造方法。 図面の簡単な説明
図 1 は実施例 1で得られた α —アルミナの粒子構造を示す倍率 9 3 0倍の走査 型電子顕微鏡 (S Ε Μ ) 写真。
図 2は実施例 2で得られた α —アルミナの粒子構造を示す倍率 9 3 0倍の走査 型電子顕微鏡写真。
図 3は実施例 2の α —アルミナの粒度分布を示す。
図 4は実施例 1 6で得られた α —アルミナの粒子構造を示す倍率 1 9 0 0倍の 走査型電子顕微鏡写真。
図 5は実施例 2 0で得られた α —アルミナの粒子構造を示す倍率 9 3 0倍の走 査型電子顕微鏡写真。
図 6は比較例 1で得られた α —アルミナの粒子構造を示す倍率 9 3 0倍の走査 型電子顕微鏡写真。
図 7は比較例 5で得られた α -アルミナの粒子構造を示す倍率 1 9 0 0倍の走 査型電子顕微鏡写真。
図 8は α—アルミナ単結晶粒子の晶癖を示す。 発明を実施するための最良の形態
以下に本発明について詳しく説明する。
本発明の α —アルミナの製造においては、 原料として遷移アルミナまたは熱処 理により遷移アルミナとなるアルミナ原料が用いられる。 遷移アルミナとは、 A 1 2 0 3 と して表される多形を有するアルミナのうち、 α形以外の全てのアルミ ナを意味する。 具体的には、 7—アルミナ、 5 —アルミナ、 0—アルミナを例示 することができる。
熱処理により遷移アルミナとなるアルミナ原料とは、 本発明の製造方法の焼成 工程において、 遷移アルミナを経由して目的とする粉末状の α —アルミナを与え る遷移アルミナの前駆体を意味する。 具体的には、 水酸化アルミニウム ; 硫バン (硫酸アルミニゥム) ;硫酸アルミニゥムカリゥムおよび硫酸アルミニゥ厶アン モニゥム等のいわゆる明バン類; アンモニゥムアルミニゥム炭酸塩の他、 アルミ ナゲル、 例えば、 アルミニウムの水中放電法によるアルミナゲル等を挙げること ができる。
遷移アルミナおよび熱処理により遷移アルミナとなるアルミナ原料の合成方法 は特に限定されない。 例えば、 水酸化アルミニウムはバイヤー法、 有機アルミ二 ゥム化合物の加水分解法あるいはコンデンサ一等のエツチング廃液から得られる アルミニゥム化合物を出発原料と して合成する方法等により得ることができる。 本発明の方法によれば、 バイヤー法のような工業的に安価な方法で得られる 2 次粒子径が 1 0 ;u m以上の水酸化アルミニゥムゃ遷移アルミナを原料と して用い て、 目的とする粉末状の α—アルミ ナを得ることができる。
遷移アルミナは、 水酸化アルミニウムを熱処理する方法、 硫酸アルミ ニウムの 分解法、 明バン分解法、 塩化アルミニウムの気相分解法あるいはアンモニゥムァ ルミニゥム炭酸塩の分解法等により得られる。
本発明においては、 上記の遷移アルミナまたは熱処理により遷移アルミナとな るアルミナ原料を、 雰囲気ガスの全体積に対して塩化水素ガス 1体積%以上、 好 ましく は 5体積%以上、 より好ましく は 1 0体積%以上の雰囲気ガス中にて焼成 する。 雰囲気ガスである塩化水素ガスの希釈ガスと しては、 窒素、 水素あるいは アルゴン等の不活性ガスおよび空気を用いることができる。 塩化水素ガスを含む 雰囲気ガスの圧力は特に限定されず、 工業的に用いられる範囲において任意に選 ぶことができる。 このような雰囲気ガス中で焼成することにより、 後述するよう に比較的に低い焼成温度で、 目的とする粉末状の α —アルミナを得ることができ る。
塩化水素ガスの代わりに塩素ガスおよび水蒸気の混合ガスを用いることもでき る。 遷移アルミナまたは熱処理により遷移アルミナとなるアルミナ原料を塩素ガ スおよび水蒸気を導入した雰囲気ガス中、 雰囲気ガスの全体積に対して、 塩素ガ ス 1体積%以上、 好ましく は 5体積%以上、 より好ましく は 1 0体積%以上と水 蒸気 0 . 1体積%以上、 好ましく は 1体積%以上、 より好ましく は 5体積%以上 とを導入して焼成する。 導入する塩素ガスおよび水蒸気の希釈ガスと しては、 窒 素、 水素あるいはアルゴン等の不活性ガスおよび空気を用いることができる。 塩 素ガスおよび水蒸気を含む雰囲気ガスの圧力は特に限定されず、 工業的に用いら れる範囲において任意に選ぶことができる。 このような雰囲気ガス中で焼成する ことにより、 後述するように比較的に低い焼成温度で、 目的とする粉末状の α - アルミナを得ることができる。
焼成温度は 6 0 0 °C以上、 好ましく は 6 0 0 °C以上 1 4 0 0 °C以下、 より好ま しく は 7 0 0 °C以上 1 3 0 0 °C以下、 さらに好ましく は 8 0 0て以上 1 2 0 0 °C 以下である。 この温度範囲に制御して焼成することにより、 工業的に有利な生成 速度で、 生成する α —アルミナ粒子同士の凝集が起こりにく く、 焼成直後でも粒 度分布の狭いひ 一アルミナ単結晶粒子からなる粉末状のひ 一アルミ ナを得ること ができる。 原料と して用いる遷移アルミナまたは熱処理により遷移アルミナとな るアルミナ原料の粒子径が大きい場合、 例えば、 凝集粒子であってその平均粒子 径が 1 0 / mを越えるような場合には、 焼成温度は相対的に高い方が好ま しく 、 8 0 0 °C以上が特に好ま しい。
適切な焼成の時間は雰囲気ガスの濃度や焼成の温度にも依存するので必ずしも 限定されないが、 好ま しく は 1分以上、 より好ま しく は 1 0分以上である。 アル ミナ原料が α -アルミナに結晶成長するまで焼成すれば十分である。 本発明の製 造方法によれば、 従来の方法の焼成時間に比べて短い時間で目的とする粉末状の ひ —アルミナを得ることができる。
雰囲気ガスの供給源や供給方法は特に限定されない。 遷移アルミナ等の原料が 存在する反応系に上記の雰囲気ガスを導入することができればよい。 例えば、 供 袷源と しては通常はボンべガスを用いることができるが、 塩酸溶液や塩化アンモ ニゥム等の塩素化合物あるいは塩素含有高分子化合物等を塩化水素ガス等の原料 と して用いる場合には、 それらの蒸気圧または分解により上記した所定のガス組 成になるようにして用いることもできる。 塩化アンモニゥム等の分解ガスを用い る場合は、 焼成炉内に固体物質が析出することによる操業の障害が生じることが あり、 また、 塩化水素ガス濃度が高いほど低温度、 短時間の焼成、 さらには高純 度のアルミナを得ることが可能になるため、 塩化水素あるいは塩素は、 それらを ボンべ等から直接に焼成炉内に供給する方が好ましい。 ガスの供給方法としては 連続方式または回分方式のいずれでも用いることができる。
焼成装置は必ずしも限定さ.れず、 いわゆる焼成炉を用いることができる。 焼成 炉は塩化水素ガス、 塩素ガス等に腐食されない材質で構成されていることが望ま しく、 さらには雰囲気を調整できる機構を備えていることが望ましい。 また、 塩 化水素ガスや塩素ガス等の酸性ガスを用いるので、 焼成炉には気密性があること が好ましい。 工業的には連続方式で焼成することが好ましく、 例えば、 ト ンネル 炉、 ロータ リーキルンあるいはプッシャ一炉等を用いることができる。
製造工程の中で用いられる装置の材質としては、 酸性の雰囲気中で反応が進行 するので、 アルミナ製、 石英製、 耐酸レンガあるいはグラフアイ ト製のルツボゃ ボー ト等を用いることが望ましい。
上記の製造方法により凝集粒子でない α—アルミナを得ることができる。 用い る原料あるいは製造条件によっては凝集粒子であったり、 凝集粒子を含むことが あるが、 その場合においても凝集は軽度なものであり、 簡単な解砕を行うことに より、 容易に凝集粒子でない α—アルミナを製造することができる。
本発明の方法で得られる α—アルミナを構成するひ—アルミナ単結晶粒子は、 その数平均粒径が 0. 1 以上 3 0 m以下で、 D/H比が 0. 5以上 3. 0 以下で、 粒度分布が累積粒度分布の微粒側から累積 1 0 %、 累積 9 0 %の粒径を それぞれ D 1 0、 D 9 0と したときの D 9 0ZD 1 0比が 1 0以下、 好ま しく は 9以下、 特に好ま しく は了以下と狭く、 アルミナ純度が 9 9. 9 0重量%以上、 かつ、 ナ ト リ ウム含有量が N a 2 0に換算して 0. 0 5重量%未満と高純度であ るという優れた特徴を有している。 実施例
次に本発明を実施例によりさらに詳しく説明するが、 本発明はこれらの実施例 に限定されるものではない。
なお、 本発明における各種の測定はつぎのようにして行った。
1. α -アルミナの数平均粒径と粒度分布の測定
( 1 ) (D 9 0/D 1 0 ) 値は、 レーザ一散乱法を測定原理とするマスターサイ ザ一 (マルバーン社製) を用いて測定した。
( 2 ) α—アルミナの S ΕΜ (走査型電子顕微鏡、 日本電子株式会社製 : Τ一 3 0 0 ) 写真を写し、 その写真から 8 0ないし 1 0 0個の粒子を選び出して画像解 析を行い、 円相当径の平均値とその分布を求めた。 円相当径とは、 面積が等しい 真円の直径に換算した値をいう。 粒度分布は図 3で示される。
2. α _アルミナの結晶形状 (DZH) の測定
本発明において α—アルミナの形状とは、 六方最密格子である α—アルミナの 六方格子面に平行な最大粒子径を D、 六方格子面に垂直な粒子径を Hと したとき の DZH比をいう。 (DZH) は、 α—アルミナの S EM (走査型電子顕微鏡、 日本電子株式会社製 : Τ一 3 0 0 ) 写真を写し、 その写真から 5ないし 1 0個の 粒子を選び出して画像解析を行い、 その平均値として求めた。
3. 結晶面の数および晶癖の評価
( 1 ) 結晶面の数
α -アルミナの S EM (走査型電子顕微鏡、 日本電子株式会社製 : Τ- 3 0 0 ) 写真を写し、 その写真の画像解析により求めた。
( 2 ) 晶癖の評価
また、 本発明における α—アルミナの粒子の形状の評価と して、 結晶の晶癖を 観察した。 本発明により得られた α—アルミナ粒子の晶癖 (Αから Iで表す) を 図 8に表した。 α—アルミナは六方晶であり、 晶癖とは a面 { 1 1 2 0} 、 c面 { 0 0 0 1 } 、 n面 {2 2 4 3} および r面 { 1 0 1 2 } からなる結晶面の現れ 方で特徵づけられる結晶の形態をいう。 図 8に結晶面 a、 c、 nおよび rを記し た。
4. アルミナ純度の測定
発光分析により不純物イオンの混入量を測定し、 不純物含有量を酸化物換算し て求めた。 塩素含有量は電位差滴定法により求めた。 このようにして求められた 不純物含有量の合計量 (重量%) を 1 0 0重量%から差し引いてアルミナ純度と した。
5. N a 2 0の測定
発光分析によりナ ト リ ゥムイオンの混入量を測定し、 酸化物換算して求めた。 実施例において使用した遷移アルミナ等の原料はつぎに示すとおりである。 1. 遷移アルミナ A
アルミニゥムィソプロポキシ ドの加水分解法により得た水酸化アルミニゥム を焼成した遷移アルミナ (商品名 : AKP— G 1 5、 住友化学工業 (株) 製、 粒径 : 約 4 ^ m)
2. 遷移アルミ ナ B
明バン法による遷移アルミ ナ (商品名 : C R 1 2 5、 バイ コ ゥスキー社製、 粒径 : 約 4 m)
3. 遷移アル ミ ナ C
水酸ィヒアル ミ ニウム Cを空気中 8 0 0 °Cで焼成して遷移アルミ ナと したもの 、 2次粒径 : 約 3 0 m
4. 水酸化ァノレミ ニゥム A
アルミ ニウムイ ソプロポキシ ドの加水分解により合成して得た粉末、 2次粒 径 : 約 8 〃 m
5. 水酸ィヒアル ミ ニウム Β ·
バイヤー法による粉末 (商品名 C 3 0 1 、 住友化学工業 (株) 製、 2次粒 径 : 約 2 ;« m)
6. 7K酸ィヒアルミ ニウム C
バイヤー法による粉末 (商品名 C 1 2、 住友化学工業 (株) 製、 2次粒径
: 約 4 7 〃 m)
7. 明バン 〔A 1 NH 4 ( S O 4 ) 1 2 H 0〕
熱処理により遷移アル ミ ナとなるアルミ ナ原料。 和光純薬 (株) 製の試薬を 用いた。
8. 硫バ 〔A 1 2 ( S 04 ) 3 · 1 6 Η2 0〕
熱処理により遷移アルミ ナとなるアル ミ ナ原料。 住友化学工業 (株) 製の硫 パ'ンを用いた。
塩化水素ガスは鶴見ソーダ (株) 製のボンべ塩化水素ガス (純度 9 9. 9 %) および塩化ァンモニゥムの分解ガスを用いた。 塩化ァンモニゥムの分解ガスを用 いる場合は塩化ア ンモニゥムをその昇華温度 3 0 0 °Cに加熱して得られた塩化水 素ガスを; ^芯、管内に導入することにより雰囲気を調整した。 塩ィヒアンモニゥ厶は 保持温度 1 1 0 0 °Cでは完全に分解し、 体積%でそれぞれ塩化水素ガス 3 3体積 %、 窒素ガス 1 7体積%、 水素ガス 5 0体積%の雰囲気となつた。
塩素ガスは藤本産業 (株) 製のボンべ塩素ガス (純度 9 9. 4 %) を用いた。 水蒸気の体積%は、 水の温度による飽和水蒸気圧変化により制御し、 窒素ガスに より '炉内に導入した。
遷移ァノレミ ナまたは水酸ィヒアルミ ニゥム等のアル ミ ナ原 斗をアル ミ ナボー ト に 充填した。 充塡量は 0 . 4 g、 充塡深さは 5 m mと した。 焼成は石英製炉芯管 ( 直径 2 7 m m、 長さ 1 0 0 0 m m ) を用いた管状炉 (株式会社モ トャマ製、 D S P S H - 2 8 ) で行つた。 窒素ガスを流通させつつ、 昇温速度 5 0 0 ノ時間に て昇温し、 雰囲気導入温度になつたと き雰囲気ガスを導入した。
雰囲気ガス濃度の調整は、 流量計によりガス流量の調整によ り行った。 雰囲気 ガスの流量は、 ί泉流速を 2 0 m m /分に調整した。 この方式をガスフ ロー方式と 称するこ とにする。 但し、 実施例 5 および比較例 1 については、 塩化水素ガス濃 度が低いため上君己のガスフ 口一方式の焼成ではな く 雰囲気ガスの導入の後、 雰囲 気ガスを停止して ί亍った。 雰囲気ガスの全圧はすべて大気圧であつた。
所定の温度に到つた後はその温度にて所定の時間保持した。 これをそれぞれ保 持温度 (焼成温度) および保持時間 (焼成時間) と称、する。 所定の保持時間の経 過後、 自然放冷して目的とする粉末状の α —アル ミ ナを得た。
水蒸気分圧は水の温度による飽和水蒸気圧変化によ り制御し、 水蒸気は窒素ガ スによ り焼成炉へ導入した。
実施例 1〜 5
アルミ ナ原料と して遷移アルミ ナ ( 7 —アル ミ ナ) を用いて、 雰囲気ガス中の 塩化水素ガス濃度を変化させた実施例である。 棼囲気ガスの導入温度は 2 0 °C:、 保持温度は 1 1 0 0 °Cであり、 塩化水素ガス濃度に対応させて保持時間を変化さ せた。 実験条件および実験結果を表 1 および表 2 に記した。 実施例 1 で得られた 粉末;)犬の α —アル ミ ナの S Ε Μ写真を図 1 に示した。 実施例 2 で得られた粉末;!犬 の α —アル ミ ナの S E Μ写真を図 2 に、 粒度分布を図 3 にそれぞれ示した。 実施例 6
実施例 1 で保持温度 (焼成温度) および保持時間 (焼成時間) を変更した。 実 験条件および実験結果を表 1 および表 2 に記した。
実施例 7、 8
実施例 1 で雰囲気ガス導入温度および保持時間 (焼成時間) を変更した。 実験 条件および実験結果を表 1および表 2に記した。
実施例 9 ~ 1 5
アルミナ原料として種々なものを用いて行った。 実施例 9〜 1 2は、 塩化水素 ガスと して塩化ァンモニゥムの分解ガスを雰囲気ガスと して反応系内に導入して 用いた。 実験条件および実験結果を表 1および表 2に記した。
アルミナ原料 雰囲気ガス (ί*¾%) ガス流速 雰囲翅ス
導入
粒径 HC^ C 2 H20 N2 H2
( ) (mn/分) CO CO (分) 遷移アルミナ A 4 1 00 20 20 1 1 00 30
" 2 〃 〃 30 70 20 20 1 1 00 30
" 3 〃 〃 20 80 20 20 1 1 00 1 20
" 〃 〃 5 95 20 20 1 1 00 1 80
" 5 〃 〃 1 99 0 20 1 1 00 600
" 6 〃 〃 1 00 20 20 800 1 20
" 7 〃 〃 1 00 20 1 1 00 1 1 00 40
" 8 〃 〃 1 00 20 1 1 00 1 1 00 1 0
" 9 〃 〃 33 1 7 50 20 800 1 1 00 30
〃 10 フ纖化了ルミニゥム A 8 33 1 7 50 20 800 1 1 00 30
〃 11 遷移アルミナ B 4 33 1 7 50 20 800 1 1 00 30
〃 12 灘化了ルミニゥム B 2 33 1 7 50 20 800 1 1 00 30
〃 13 " C 4 7 30 70 20 20 1 1 00 30
〃 14 明バン 30 70 20 20 1 1 00 30
〃 15 疏バン 30 70 20 20 1 1 00 30
結晶の形状 f娘分布 アルミナ
数平均粒径 結晶面の数 嫩 Na20 備 考
D/H 晶 癖 D90/D10
( ) (wt%) (ppm) 難例 1 卜 2 F ,Η 8 4 99.96 5
1 1
" 2 1 1.6 1 G 1 2〜1 8 3
" 3 0.5
1 1 〜1 20以上 3
" 4 1
1 1 離 20以上 3
" 5 1
1 1 驟 20以上 3
" 6
1 1 1 G 20以上 3
" 7 20以上 3
1 1 1
" 8 20以上 3
1 1 1
" 9 20以上 4
1 1 1
〃 10 1 F ,Η 20以上 3 >99.95 5
〃 11 9 G . H 20以上 3
〃 12 2 1〜2 1 4以上 9 >99.95 54
〃 13 4 2 2。以上 9
" 14 2 1離 F . H 20以上 9
〃 15 6 1 F , H 20以上 9
実施例 1 6〜 1 8
水酸化アルミニウムと して粒径の大きなバイヤー法による粉末 (水酸化アルミ ニゥム C ) を用いた。 実験条件および実験結果を表 3および表 4に記した。
実施例 1 6で得られた粉末状の α —アルミナの S Ε Μ写真を図 4に示した。 実施例 1 9
遷移アルミナとして粒径の大きなバイヤー法による水酸化アルミニゥム粉末 ( 水酸化アルミニウム C ) を焼成して得られる遷移アルミナ Cを用いた。 実験条件 および実験結果を表 3および表 4に記した。
実施例 2 0、 2 1
雰囲気ガスに塩素ガスと水蒸気を導入した実施例である。 実験条件および実験 結果を表 3および表 4に記した。
実施例 2 0で得られた粉末状の α -アルミナの S Ε Μ写真を図 5に示した。 比較例 1〜 5
雰囲気ガスおよび保持温度 (焼成温度) を本発明の範囲外にて行った。 実験条 件および実験結果を表 3および表 4に記した。 比較例 1および 5で得られた粉末 状の α —アルミナの S Ε Μ写真をそれぞれ図 6および図 7に示した。
アルミナ原料 雰固気ガス 漏%) 隶 分 Iffl VM
導入 勝
fe iヌ 11 ττ τ m
!"1し し £ 2 IN 2
m 類、 (fim) 分) (。C) (°C) (分) 靈例 16 纏匕了ルミニゥム C 47 1 00 35 20 1 1 00 1 80
〃 17 〃 47 30 70 35 500 1 1 00 30
〃 18 〃 47 1 00 35 20 900 30
〃 19 遷移アルミナ C 30 1 00 35 700 1 1 00 30
" 20 遷移アルミナ A 4 35 5 60 20 20 1 1 00 30
" 21 纖匕了ルミニゥム C 47 35 5 60 4 9 20 1 1 00 30 腿例 1 遷移アルミナ A 4 0.5 99.5 0 20 1 1 00 600
" 2 〃 4 1 00 20 20 500 600
" 3 〃 4 30 70 20 20 1 1 00 30
" 7贿匕了'レミニゥム C 47 c¾m中' 1 300 1 80
" 5 〃 47 1 1 00 1 80
結晶の職 マ
/ ノ ϊに:
レ; -ァϊ- 数平均粒径 結晶面の数 m Na20 備 考
DZH 晶 癖 uyu/uiu
(urn) (wt%) (ppm)
麵列 16 4 卜 2 F .H 8以上 7 >99.95
〃 17 4 卜 2 C 1 4以上
〃 18 4 1〜2 C , I 8以上
〃 19 4 卜 2 C , A 14以上
" 20 1 1 1 G 20以上 3
" 21 5 卜 2 C , A 8以上
臓列 1 c 日日粒子は械
" 2 (職晶粒子は械 ·¾τΤ) 7 B , VBB
" 3 (雜晶粒子は 7B曰 , ? B曰 , ひ曰 B
" 4 0.3 ( 日日粒子は越せず) Οί Β
" 5 ( 日日粒子は KBB ΘΒΒ
産業上の利用可能性
本発明の α—アルミナの製造方法によれば、 様々な種類、 純度、 形状、 粒子サ ィズおよび組成のアルミナ原料から、 一定の水準以上のアルミナ純度を有する高 純度で、 微細で均質な、 粒度分布が狭く、 かつ凝集粒子でない 8面体以上の多面 体形状を有する α—アルミナ単結晶粒子からなる α—アルミナを得ることができ る。
具体的に言えば、 本発明の方法で得られる α _アルミナを構成する α—アルミ ナ単結晶粒子は、 その数平均粒径が 0 . 1 m以上 3 0 m以下で、 D / H比が 0 . 5以上 3 . 0以下で、 粒度分布が累積粒度分布の微粒側から累積 1 0 %、 累 積 9 0 %の粒径をそれぞれ D 1 0、 D 9 0と したときの D 9 0 / D 1 0比が 1 0 以下と狭く、 アルミナ純度が 9 9 . 9 0重量%以上、 かつ、 ナ 卜 リ ゥム含有量が N a 2 0に換算して 0 . 0 5重量%未満と高純度であるという優れた特徵を有し ている。
本発明の方法で得られる凝集粒子でなく、 粒度分布の狭い α -アルミナ単結晶 粒子からなる α -アルミナは、 研磨材、 焼結体用原料、 プラズマ溶射材、 充塡材 、 単結晶用原料、 触媒単体用原料、 蛍光体用原料、 封止材用原料、 セラ ミ ックフ ィルター用原料等に適しており、 工業的に極めて有用である。 特に本発明の方法 によれば高純度の α—アルミナを得ることができるので、 低純度品では適用でき ないィッ ト リ ゥ厶アルミニゥムガーネッ ト (Y A G ) 、 サファイア、 ノレビー等の 単結晶用原料および高純度焼結体用原料等に用いることができる。 また、 本発明 の方法により得られる微粒子の α—アルミナは精密研磨材、 セラ ミ ックフィルタ 一用原料に適している。

Claims

請求の範囲
1 . 遷移アルミナおよび zまたは熱処理により遷移アルミナとなるアルミナ原料 を、 塩化水素ガスを 1体積%以上含有する雰囲気ガス中にて、 6 0 0 °C以上で焼 成することを特徴とする α —アルミナの製造方法。
2 . 遷移アルミナおよび または熱処理により遷移アルミナとなるアルミナ原料 を、 雰囲気ガス中に塩素ガスを 1体積%以上および水蒸気を 0 . 1体積%以上を 導入して、 6 0 0 °C以上で焼成することを特徴とする α —アルミナの製造方法。
3 . 焼成の温度が 6 0 0。C以上 1 4 0 0 °C以下である請求の範囲 1 または 2記載 の α —アルミナの製造方法。
4 . 焼成の温度が 8 0 0 °C以上 1 2 0 0 以下である請求の範囲 1 または 2記載 の α -アルミナの製造方法。
5 . 熱処理により遷移アルミナとなるアルミナ原料として水酸化アルミニゥムを 用いることを特徵とする請求の範囲 1、 2または 3記載の α —アルミナの製造方 法。
6 . 熱処理により遷移アルミナとなるアルミナ原料と して明バンまたは硫バンを 用いることを特徵とする請求の範囲 1、 2または 3記載の α—アルミナの製造方 法。
7 . 遷移アルミナおよびノまたは熱処理により遷移アルミナとなるアルミ ナ原料 を、 塩化水素ガスを 1体積%以上含有する雰囲気ガス中にて、 6 0 0て以上 1 4
0 0 °C以下で焼成して、 均質で、 8面以上の多面体形状を有し、 六方最密格子で ある α —アルミナの六方格子面に平行な最大粒子径を D、 六方格子面に垂直な粒 子径を Hと したとき、 D Z Hが 0 . 5以上 3 . 0以下である α —アルミナ単結晶 粒子からなる粉末状の α —アルミナを得ることを特徴とする α —アルミナの製造 方法。
8 . 遷移アルミナおよびノまたは熱処理により遷移アルミナとなるアルミナ原料 を、 雰囲気ガス中に塩素ガスを 1体積%以上および水蒸気を 0 . 1体積%以上を 導入して、 6 0 0 °C以上 1 4 0 0 °C以下で焼成して、 均質で、 8面以上の多面体 形状を有し、 六方最密格子である α -アルミナの六方格子面に平行な最大粒子径 を D、 六方格子面に垂直な粒子径を Hとしたとき、 DZHが 0. 5以上 3. 0以 下である α—アルミナ単結晶粒子からなる粉末状の α—アルミナを得ることを特 徴とする α—アルミナの製造方法。 -
9. 1 0面以上の多面体形状を有することを特徴とする請求の範囲 7または 8記 載の α—アルミナ単結晶粒子からなる α—アルミナの製造方法。
1 0. α—アルミナ単結晶粒子の数平均粒径が 0. 1 m以上 3 0 m以下で、 累積粒度分布の微粒側から累積 1 0 %、 累積 9 0 %の粒径をそれぞれ D 1 0、 D 9 0としたとき、 D 9 0/D 1 0が 1 0以下である粒度分布を有する請求の範囲 7または 8記載の cr一アルミナの製造方法。
1 1. アルミナ純度が 9 9. 9 0重量%以上であることを特徴とする請求の範囲 7または 8記載の —アルミナの製造方法。
PCT/JP1993/000737 1992-06-02 1993-06-01 PROCESS FOR PRODUCING α-ALUMINA WO1993024680A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE69326950T DE69326950T2 (de) 1992-06-02 1993-06-01 Verfahren zur herstellung von alpha-aluminiumoxid
PL93306560A PL174893B1 (pl) 1993-06-01 1993-06-01 Sposób wytwarzania alfa-tlenku glinowego
KR1019940704363A KR100292424B1 (ko) 1992-06-02 1993-06-01 알파-알루미나의제조방법
AU40908/93A AU676834B2 (en) 1992-06-02 1993-06-01 Process for producing alpha-alumina
RU94046207A RU2114059C1 (ru) 1992-06-02 1993-06-01 СПОСОБ ПОЛУЧЕНИЯ αОКСИДА АЛЮМИНИЯ (ВАРИАНТЫ)
EP93910426A EP0644277B1 (en) 1992-06-02 1993-06-01 Process for producing alpha-alumina
SK1461-94A SK146194A3 (en) 1992-06-02 1993-06-01 Process for producing alpha-alumina
BR9306466A BR9306466A (pt) 1992-06-02 1993-06-01 Processo para a produção de alfa alumina

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP16838592 1992-06-02
JP4/168385 1992-06-02
JP4/314052 1992-10-28
JP31405292 1992-10-28

Publications (1)

Publication Number Publication Date
WO1993024680A1 true WO1993024680A1 (en) 1993-12-09

Family

ID=26492108

Family Applications (3)

Application Number Title Priority Date Filing Date
PCT/JP1993/000739 WO1993024682A1 (en) 1992-06-02 1993-06-01 α-ALUMINA
PCT/JP1993/000737 WO1993024680A1 (en) 1992-06-02 1993-06-01 PROCESS FOR PRODUCING α-ALUMINA
PCT/JP1993/000738 WO1993024681A1 (en) 1992-06-02 1993-06-01 α-ALUMINA

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000739 WO1993024682A1 (en) 1992-06-02 1993-06-01 α-ALUMINA

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP1993/000738 WO1993024681A1 (en) 1992-06-02 1993-06-01 α-ALUMINA

Country Status (14)

Country Link
US (1) US6165437A (ja)
EP (3) EP0644279B1 (ja)
KR (3) KR100258786B1 (ja)
CN (3) CN1034010C (ja)
AU (3) AU676834B2 (ja)
BR (3) BR9306463A (ja)
CA (3) CA2137249A1 (ja)
CZ (3) CZ284790B6 (ja)
DE (3) DE69326950T2 (ja)
HU (3) HU216721B (ja)
PL (1) PL175036B1 (ja)
RU (3) RU2107662C1 (ja)
SK (3) SK281471B6 (ja)
WO (3) WO1993024682A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679611A1 (en) * 1994-04-28 1995-11-02 Sumitomo Chemical Company, Limited Method for producing alpha-alumina powder
US6162413A (en) * 1995-02-21 2000-12-19 Sumitomo Chemical Company, Limited Alpha-alumina and method for producing same
WO2002014018A2 (en) * 2000-08-14 2002-02-21 3M Innovative Properties Company Abrasive pad for cmp

Families Citing this family (59)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9306463A (pt) * 1992-06-02 1998-06-30 Sumitomo Chemical Co Alfa alumina
IL109236A (en) * 1993-04-13 1998-01-04 Sumitomo Chemical Co A-alumina powder and its production
RU2138461C1 (ru) * 1993-07-27 1999-09-27 Сумитомо Кемикал Компани, Лимитед Алюмооксидная композиция (варианты) и способ получения алюмооксидной керамики
US5549746A (en) * 1993-09-24 1996-08-27 General Electric Company Solid state thermal conversion of polycrystalline alumina to sapphire using a seed crystal
FR2722492B1 (fr) * 1994-07-12 1997-03-14 Sumitomo Chemical Co Poudre de nitrure d'aluminium et corps fritte et composition de resine la contenant
AU699266B2 (en) * 1995-02-28 1998-11-26 Sumitomo Chemical Company, Limited Metal matrix composite and process for producing the same
JPH09157060A (ja) * 1995-12-06 1997-06-17 Sumitomo Chem Co Ltd 無機焼結多孔体およびフィルタ
CN1169555A (zh) * 1996-07-02 1998-01-07 刘莎 不同自然语言语义受限统一编码的计算机输入法
US6203773B1 (en) * 1999-07-12 2001-03-20 Alcoa Inc. Low temperature mineralization of alumina
TW504497B (en) 2000-05-23 2002-10-01 Sumitomo Chemical Co Alpha-alumina powder and heat-conductive sheet containing the same
US6776699B2 (en) * 2000-08-14 2004-08-17 3M Innovative Properties Company Abrasive pad for CMP
JP4122746B2 (ja) 2001-05-21 2008-07-23 住友化学株式会社 微粒αアルミナ粉末の製造方法
TWI291936B (ja) * 2001-05-31 2008-01-01 Tdk Corp
US20030140657A1 (en) * 2001-10-30 2003-07-31 Monika Oswald Method of producing glass of optical quality
AU2002358998A1 (en) * 2001-12-27 2003-07-15 Showa Denko K.K. Particulate alumina, method for producing particulate alumina and composition containing particulate alumina
EP1546061A2 (en) * 2002-07-01 2005-06-29 Coorstek Inc. Aluminum oxide ceramic components and methods
JP2004123445A (ja) * 2002-10-02 2004-04-22 Sumitomo Chem Co Ltd αアルミナ粉末およびその製造方法
US20060104895A1 (en) * 2004-11-18 2006-05-18 Saint-Gobain Ceramics & Plastics, Inc. Transitional alumina particulate materials having controlled morphology and processing for forming same
KR100812105B1 (ko) * 2006-08-28 2008-03-12 한국과학기술연구원 파괴저항성이 높은 평판형 고체산화물 연료전지 스택용복합 밀봉재 및 그 제조방법
CN100390330C (zh) * 2006-09-21 2008-05-28 中国铝业股份有限公司 低温制备片状α-Al2O3单晶颗粒的方法
US20100056816A1 (en) * 2006-11-01 2010-03-04 Wallin Sten A Shaped porous bodies of alpha-alumina and methods for the preparation thereof
US20080106010A1 (en) * 2006-11-07 2008-05-08 Gratson Gregory M Transparent Ceramic Material and Method of Manufacturing the Same
WO2008134418A1 (en) * 2007-04-24 2008-11-06 Nanocerox, Inc. Sintered polycrystalline yttrium aluminum garnet and use thereof in optical devices
JP5109789B2 (ja) * 2007-05-14 2012-12-26 住友化学株式会社 多孔質フィルムの製造方法
JP2008311221A (ja) * 2007-05-14 2008-12-25 Sumitomo Chemical Co Ltd 積層多孔質フィルム
US10137556B2 (en) * 2009-06-22 2018-11-27 3M Innovative Properties Company Shaped abrasive particles with low roundness factor
JP2010150090A (ja) * 2008-12-25 2010-07-08 Sumitomo Chemical Co Ltd αアルミナ粉末
FR2956111B1 (fr) * 2010-02-11 2012-04-20 Baikowski Alumine alpha, utilisation, procede de synthese et dispositif associes
RU2554196C2 (ru) * 2010-03-09 2015-06-27 Сумитомо Кемикал Компани, Лимитед α-ОКСИД АЛЮМИНИЯ ДЛЯ ПОЛУЧЕНИЯ МОНОКРИСТАЛЛА САПФИРА И СПОСОБ ЕГО ПОЛУЧЕНИЯ
CN102267710B (zh) * 2010-06-03 2014-05-28 中国石油化工股份有限公司 一种含硼拟薄水铝石及由其制备的氧化铝
CN101942698B (zh) * 2010-09-28 2012-07-04 四川鑫通新材料有限责任公司 α-三氧化二铝单晶体的制备方法
JP2014508863A (ja) 2011-03-18 2014-04-10 オーバイト アルミナ インコーポレイテッド アルミニウム含有材料から希土類元素を回収する方法
US9410227B2 (en) 2011-05-04 2016-08-09 Orbite Technologies Inc. Processes for recovering rare earth elements from various ores
EP2714594A4 (en) 2011-06-03 2015-05-20 Orbite Aluminae Inc PROCESS FOR PRODUCING HEMATITE
DE102011111224A1 (de) 2011-08-20 2013-02-21 Evonik Degussa Gmbh Verfahren zur Herstellung von alpha-Aluminiumoxid
US9382600B2 (en) 2011-09-16 2016-07-05 Orbite Technologies Inc. Processes for preparing alumina and various other products
JP6025868B2 (ja) 2012-01-10 2016-11-16 オーバイト アルミナ インコーポレイテッドOrbite Aluminae Inc. 赤泥を処理するプロセス
AU2013203808B2 (en) 2012-03-29 2016-07-28 Aem Technologies Inc. Processes for treating fly ashes
US10191017B2 (en) * 2012-07-06 2019-01-29 Jtekt Corporation Dynamic characteristic calculation apparatus and its method for machine tool
RU2597096C2 (ru) 2012-07-12 2016-09-10 Орбит Алюминэ Инк. Способы получения оксида титана и различных других продуктов
KR101739211B1 (ko) 2012-07-27 2017-05-23 스미또모 가가꾸 가부시끼가이샤 알루미나 슬러리 및 그 제조 방법 그리고 도공액
BR112015006536A2 (pt) 2012-09-26 2017-08-08 Orbite Aluminae Inc processos para preparar alumina e cloreto de magnésio por lixiviação com hcl de vários materiais.
CN104718162B (zh) * 2012-09-28 2017-11-21 Dic株式会社 α‑氧化铝微粒以及其制造方法
BR112015011049A2 (pt) 2012-11-14 2017-07-11 Orbite Aluminae Inc métodos para purificação de íons de alumínio
CN104903241A (zh) * 2012-12-17 2015-09-09 波拉尔蓝宝石有限公司 制造高纯度氧化铝的方法
DE102013112129A1 (de) * 2013-11-05 2015-05-07 Aesculap Ag Dauerfilter für einen Sterilisationsbehälter, Sterilisationsbehälter und Verfahren zum Herstellen eines Dauerfilters
CN103643290B (zh) * 2013-12-02 2016-03-30 昆明理工大学 一种蓝宝石晶体用高纯氧化铝的提纯方法
CN104628023B (zh) * 2015-02-13 2016-05-25 山东长基化工新材料有限公司 超低钠高温α相氧化铝的制备方法
JP6635340B2 (ja) * 2016-08-24 2020-01-22 住友電工ハードメタル株式会社 表面被覆切削工具およびその製造方法
JP6866877B2 (ja) * 2018-05-31 2021-04-28 信越化学工業株式会社 低熱抵抗シリコーン組成物
US11674065B2 (en) 2018-08-10 2023-06-13 Saint-Gobain Ceramics & Plastics, Inc. Composition including a plurality of abrasive particles and method of using same
CN112978772B (zh) * 2019-12-02 2023-01-10 中国石油化工股份有限公司 一种多晶γ-氧化铝八面体颗粒及其制备方法
JPWO2021200490A1 (ja) * 2020-03-31 2021-10-07
CN115867381A (zh) 2020-06-26 2023-03-28 巴斯夫欧洲公司 多孔催化剂载体成型体
WO2021260140A1 (en) 2020-06-26 2021-12-30 Basf Se Production of porous alpha-alumina supports from boehmitic derived aluminas
KR102612361B1 (ko) * 2020-10-07 2023-12-08 주식회사 티세라 α-알루미나 입자를 포함하는 연마재 및 그 제조 방법
CN113233488B (zh) * 2021-05-08 2023-03-21 中铝山东有限公司 一种原晶粒度分布窄的α-氧化铝的制备方法
KR102517803B1 (ko) * 2022-02-03 2023-04-05 주식회사 씨아이에스케미칼 고순도 알루미나, 이의 제조방법 및 이를 포함하는 이차전지 분리막 코팅용 슬러리
KR102555516B1 (ko) * 2022-10-05 2023-07-13 대가파우더시스템 주식회사 다공성 세라믹 필터 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997528A (ja) * 1982-08-24 1984-06-05 スイス・アルミニウム・リミテツド 結晶アルミナの製造方法
JPS60131825A (ja) * 1983-12-21 1985-07-13 Sumitomo Alum Smelt Co Ltd 低ソ−ダアルミナの製造方法
JPS63303809A (ja) * 1987-01-29 1988-12-12 Sumitomo Chem Co Ltd 粒度分布の狭いアルミナ粉末の製造方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175883A (en) * 1961-06-05 1965-03-30 Aluminium Lab Ltd Process for reducing the soda content of alumina
US3262754A (en) * 1964-12-07 1966-07-26 Aluminium Lab Ltd Method of making low soda alumina of small crystal size
JPS5215498A (en) * 1975-07-28 1977-02-05 Showa Denko Kk Process for production of granular corrundum
CH654819A5 (de) * 1980-09-23 1986-03-14 Alusuisse Verfahren zur herstellung von grobkristallinem alpha-aluminiumoxid und dessen verwendung.
US4847064A (en) * 1987-12-23 1989-07-11 Aluminum Company Of America Economical process for alpha alumina production
US5302368A (en) * 1987-01-29 1994-04-12 Sumitomo Chemical Company, Limited Process for preparation of alumina
US4822592A (en) * 1987-02-05 1989-04-18 Aluminum Company Of America Producing alpha alumina particles with pressurized acidic steam
EP0281265B1 (en) * 1987-02-26 1992-08-05 Sumitomo Chemical Company, Limited Process for preparing easily mono-dispersible alumina
FR2652075B1 (fr) * 1989-09-21 1991-12-06 Atochem Macrocristaux d'alumine alpha sous forme de plaquettes et procede d'obtention.
BR9306463A (pt) * 1992-06-02 1998-06-30 Sumitomo Chemical Co Alfa alumina
JP3744010B2 (ja) * 1993-06-30 2006-02-08 住友化学株式会社 α−アルミナ粉末の製造方法
RU2138461C1 (ru) * 1993-07-27 1999-09-27 Сумитомо Кемикал Компани, Лимитед Алюмооксидная композиция (варианты) и способ получения алюмооксидной керамики

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997528A (ja) * 1982-08-24 1984-06-05 スイス・アルミニウム・リミテツド 結晶アルミナの製造方法
JPS60131825A (ja) * 1983-12-21 1985-07-13 Sumitomo Alum Smelt Co Ltd 低ソ−ダアルミナの製造方法
JPS63303809A (ja) * 1987-01-29 1988-12-12 Sumitomo Chem Co Ltd 粒度分布の狭いアルミナ粉末の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP0644277A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0679611A1 (en) * 1994-04-28 1995-11-02 Sumitomo Chemical Company, Limited Method for producing alpha-alumina powder
US6162413A (en) * 1995-02-21 2000-12-19 Sumitomo Chemical Company, Limited Alpha-alumina and method for producing same
WO2002014018A2 (en) * 2000-08-14 2002-02-21 3M Innovative Properties Company Abrasive pad for cmp
WO2002014018A3 (en) * 2000-08-14 2002-05-23 3M Innovative Properties Co Abrasive pad for cmp

Also Published As

Publication number Publication date
BR9306466A (pt) 1998-06-30
CA2137247A1 (en) 1993-12-09
CN1079717A (zh) 1993-12-22
EP0644279B1 (en) 1999-04-21
KR100292424B1 (ko) 2001-09-17
AU4090893A (en) 1993-12-30
KR950701986A (ko) 1995-05-17
CA2137248A1 (en) 1993-12-09
DE69324582D1 (de) 1999-05-27
HU9403449D0 (en) 1995-05-29
CZ283469B6 (cs) 1998-04-15
EP0644277B1 (en) 1999-11-03
BR9306465A (pt) 1998-06-30
KR950701988A (ko) 1995-05-17
HU9403450D0 (en) 1995-05-29
WO1993024682A1 (en) 1993-12-09
EP0644279A1 (en) 1995-03-22
RU2114059C1 (ru) 1998-06-27
CZ299794A3 (en) 1995-10-18
HU9403448D0 (en) 1995-05-29
RU94046207A (ru) 1996-10-20
SK281471B6 (sk) 2001-04-09
AU677583B2 (en) 1997-05-01
CN1079715A (zh) 1993-12-22
AU678355B2 (en) 1997-05-29
CN1034010C (zh) 1997-02-12
EP0644277A4 (en) 1995-09-20
HU216730B (hu) 1999-08-30
SK146094A3 (en) 1995-07-11
CZ299694A3 (en) 1995-08-16
EP0644277A1 (en) 1995-03-22
EP0644278A4 (en) 1995-09-27
AU676834B2 (en) 1997-03-27
CN1034011C (zh) 1997-02-12
AU4091093A (en) 1993-12-30
SK145994A3 (en) 1995-07-11
HUT70897A (en) 1995-11-28
HU216721B (hu) 1999-08-30
EP0644278A1 (en) 1995-03-22
SK146194A3 (en) 1995-07-11
CZ283394B6 (cs) 1998-04-15
EP0644278B1 (en) 1999-04-21
DE69324582T2 (de) 1999-09-09
RU94046211A (ru) 1996-10-20
PL175036B1 (pl) 1998-10-30
DE69324581T2 (de) 1999-11-18
DE69324581D1 (de) 1999-05-27
HUT70875A (en) 1995-11-28
WO1993024681A1 (en) 1993-12-09
CA2137249A1 (en) 1993-12-09
AU4090993A (en) 1993-12-30
HUT70895A (en) 1995-11-28
KR950701987A (ko) 1995-05-17
SK281673B6 (sk) 2001-06-11
RU2107662C1 (ru) 1998-03-27
RU94046206A (ru) 1996-10-20
US6165437A (en) 2000-12-26
DE69326950D1 (de) 1999-12-09
KR100258786B1 (ko) 2000-06-15
BR9306463A (pt) 1998-06-30
CZ299894A3 (en) 1995-09-13
CN1034012C (zh) 1997-02-12
HU216722B (hu) 1999-08-30
DE69326950T2 (de) 2000-04-20
CN1079716A (zh) 1993-12-22
EP0644279A4 (en) 1995-09-27
CZ284790B6 (cs) 1999-03-17
RU2107661C1 (ru) 1998-03-27

Similar Documents

Publication Publication Date Title
WO1993024680A1 (en) PROCESS FOR PRODUCING α-ALUMINA
EP0656319B1 (en) Method for producing alpha-alumina powder
RU2126364C1 (ru) Способ получения порошка альфа-окиси алюминия (варианты)
JP3440498B2 (ja) α−アルミナ
JPH07206430A (ja) α−アルミナ粉末およびその製造方法
EP0680929B1 (en) Process for producing alpha-alumina powder
JPH07206432A (ja) α−アルミナ粉末及びその製造方法
JPH06191835A (ja) α−アルミナの製造方法
US6521203B1 (en) Process for producing α-alumina
JPH06191833A (ja) α−アルミナ
JP3743012B2 (ja) α−アルミナ粉末の製造方法
JP3743020B2 (ja) α−アルミナ粉末の製造方法
JPH07206434A (ja) 焼結体用α−アルミナ粉末およびその焼結体

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AU BR CA CZ HU KR PL RU SK US

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IE IT LU MC NL PT SE

DFPE Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed before 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 146194

Country of ref document: SK

WWE Wipo information: entry into national phase

Ref document number: 1993910426

Country of ref document: EP

Ref document number: PV1994-2996

Country of ref document: CZ

Ref document number: 1019940704363

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2137247

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 1995 347451

Country of ref document: US

Date of ref document: 19950203

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 1993910426

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: PV1994-2996

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: PV1994-2996

Country of ref document: CZ

WWG Wipo information: grant in national office

Ref document number: 1993910426

Country of ref document: EP