RU2126364C1 - Способ получения порошка альфа-окиси алюминия (варианты) - Google Patents

Способ получения порошка альфа-окиси алюминия (варианты) Download PDF

Info

Publication number
RU2126364C1
RU2126364C1 RU94022745A RU94022745A RU2126364C1 RU 2126364 C1 RU2126364 C1 RU 2126364C1 RU 94022745 A RU94022745 A RU 94022745A RU 94022745 A RU94022745 A RU 94022745A RU 2126364 C1 RU2126364 C1 RU 2126364C1
Authority
RU
Russia
Prior art keywords
alumina
alpha
gas
lattice
vol
Prior art date
Application number
RU94022745A
Other languages
English (en)
Other versions
RU94022745A (ru
Inventor
Мохри Масахиде
Утида Йосио
Савабе Йосинари
Original Assignee
Сумитомо Кемикал Компани, Лимитед
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Сумитомо Кемикал Компани, Лимитед filed Critical Сумитомо Кемикал Компани, Лимитед
Publication of RU94022745A publication Critical patent/RU94022745A/ru
Application granted granted Critical
Publication of RU2126364C1 publication Critical patent/RU2126364C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/41Particle morphology extending in three dimensions octahedron-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • C01P2004/52Particles with a specific particle size distribution highly monodisperse size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

Изобретение предназначено для получения порошка альфа-окиси алюминия. По первому варианту, по меньшей мере одну переходную окись алюминия и материал, предшествующий переходной окиси алюминия, способный превращаться в переходную окись алюминия при нагревании, обжигают в газовой атмосфере, содержащей по меньшей мере приблизительно 5 об. % от всей газовой атмосферы галогена, выбранного из группы, состоящей из фтора, хлора, брома и йода. По второму варианту, по меньшей мере одну переходную окись алюминия и материал, предшествующий переходной окиси алюминия, способный превращаться в переходную окись алюминия при нагревании, обжигают в газовой атмосфере, содержащей по меньшей мере приблизительно 1 об. % от всей газовой атмосферы галогенида водорода, выбранного из фтористого водорода, бромистого водорода и йодистого водорода. По третьему варианту, по меньшей мере одну переходную окись алюминия и материал, способный превращаться в переходную окись алюминия при нагревании, обжигают в газовой атмосфере, содержащей компонент, полученный из по меньшей мере приблизительно 1 об. % от всей газовой атмосферы газообразного галогена, выбранного из газообразного фтора, газообразного брома и газообразного йода и по меньшей мере приблизительно 0,1 об. % от всей газовой атмосферы пара. Изобретение позволяет получать порошок альфа-окиси алюминия, содержащий монокристаллические частицы, имеющий высокую частоту, гомогенность, узкий гранулометрический состав основных частиц и октаэдрическую и высшую полиэдрическую форму. 3 с. и 21 з.п.ф-лы, 5 ил., 2 табл.

Description

Настоящее изобретение относится к способу получения порошка альфа-окиси алюминия.
Порошок альфа-окиси алюминия нашел широкое применение в качестве исходного материала для абразивов, спеченных изделий, материалов для плазменного распыления, наполнителей и так далее. Порошок альфа-окиси алюминия, полученный с помощью обычных способов, с помощью которых получают, как правило порошки, включающие поликристаллические частицы неправильной формы, содержит много агломерированных частиц и имеет широкий гранулометрический состав частиц. Кроме того, чистота такого обычного порошка альфа-окиси алюминия является недостаточной для некоторых случаев применения. Чтобы преодолеть эти недостатки, для некоторых специальных случаев применения использовали порошок альфа-окиси алюминия, полученный, как описано ниже, с помощью специальных способов. Однако эти специальные способы еще включают в себя трудность получения порошка альфа-окиси алюминия с узким гранулометрическим составом частиц, который содержит однородные частицы альфа-окиси алюминия.
Среди известных способов получения порошка альфа-окиси алюминия самым экономичным способом является способ Байера. В способе Байера боксит преобразуют в гидроокись алюминия или переходную окись алюминия, которую затем обжигают на воздухе для получения порошка альфа- окиси алюминия.
Гидроокись алюминия или переходная окись алюминия, которую получают в качестве промежуточного продукта в промышленном масштабе, при низкой стоимости, как правило, содержит агломерированные частицы, имеющие диаметр более 10 микрон. Порошок альфа-окиси алюминия, полученный с помощью обжига такой гидроокиси алюминия или переходной окиси алюминия на воздухе, содержит главным образом частицы неправильной формы, содержащие много крупных сильно агломерированных частиц. Порошок альфа-окиси алюминия, содержащий крупные агломерированные частицы, для получения окончательного продукта подвергают помолу в шаровой мельнице, вибромельнице и так далее, но помол не всегда является простой операцией и увеличивает общую стоимость. Кроме того, порошок альфа-окиси алюминия, имеющий плохую размолоспособность, требует длительное время для размалывания. Следовательно, может быть образован слишком мелкий порошок, который непригоден особенно в качестве исходного материала абразивов.
Для решения этих проблем было сделано несколько предложений. Например, в JP-A-59- 97528 (используемый здесь термин "JP-A" означает "неизученная опубликованная заявка на патент Японии") описывается способ улучшения формы порошка альфа-окиси алюминия, который содержит для получения порошка альфа-окиси алюминия обжиг гидроокиси алюминия, полученной с помощью способа Байера, в присутствии бора, содержащего аммоний, или минерализатора семейства бора.
Чтобы одновременно удалить натрий и регулировать размер частиц, было предложено проводить обжиг содержащей натрий гидроокиси алюминия, полученной с помощью способа Байера, в присутствии (1) материала, содержащего хлор, и материала, содержащего фтор (как описывается в патенте Великобритании 990801), или (2) борной кислоты и хлорида, например, хлористого аммония или хлористого водорода (как описывается в патенте Западной Германии 176511).
В JP-В-43-8929 (используемый здесь термин "JP-В" означает "неизученная опубликованная заявка на патент Японии") описывается обжиг гидрата окиси алюминия в присутствии хлористого аммония.
Однако каждый из этих предложенных способов еще является неудовлетворительным для получения гомогенного порошка альфа-окиси алюминия высокой чистоты, имеющего однородную форму частиц и узкий гранулометрический состав частиц.
Известные специальные способы получения альфа-окиси алюминия включают в себя гидротермический способ, содержащий гидротермическую реакцию гидроокиси алюминия в присутствии корунда в качестве зародыша кристаллизации (как описывается в JP-В-57-22886), и способ флюсования, содержащий обжиг гидроокиси алюминия в присутствии флюса семейства фтора, имеющего температуру плавления 800oC или менее (как описывается в JP- А-3-131517).
Поскольку гидротермальный способ осуществляют при высокой температуре и высоком давлении, он вызывает проблему, которая заключается в том, что полученный порошок альфа-окиси алюминия становится дорогим. Поскольку введенный флюс остается в порошке альфа-окиси алюминия, полученного с помощью способа флюсования, он вызывает проблему, которая заключается в том, что оставшийся флюс должен быть извлечен путем промывания, чтобы получить альфа- окись алюминия высокой чистоты.
Целью настоящего изобретения является обеспечение способа получения порошка альфа-окиси алюминия, содержащего гомогенные монокристаллические частицы альфа-окиси алюминия из различных исходных материалов окиси алюминия.
Другой целью настоящего изобретения является обеспечение способа получения порошка альфа-окиси алюминия, содержащего монокристаллические частицы альфа-окиси алюминия, имеющие октаэдрическую или высшую полиэдрическую форму, отношение Д/Н от 0,5 до 30, узкий гранулометрический состав основных частиц и высокую чистоту окиси алюминия, отдельные частицы, имеющие однородный состав и структурную однородность.
Эти и другие объекты и эффекты настоящего изобретения станут очевидными из следующего описания.
Было обнаружено, что указанные выше цели настоящего изобретения выполняются путем обжига исходного материала окиси алюминия в газовой атмосфере, содержащей конкретное количество конкретного компонента. Настоящее изобретение было выполнено на основе этого открытия.
Настоящее изобретение относится к способу получения порошка альфа-окиси алюминия, содержащего монокристаллические частицы альфа-окиси алюминия, причем способ содержит этап обжига по меньшей мере одной переходной окиси алюминия и предшествующего материала переходной окиси алюминия, способного стать переходной окисью алюминия при нагревании в газовой атмосфере, содержащей (1) по меньшей мере приблизительно 5 об.% от всей газовой атмосферы, галоген, выбранный из группы, состоящей из фтора, хлора, брома и иода, (2) по меньшей мере приблизительно 1 об.% от всей газовой атмосферы, галогенид водорода, выбранный из группы, состоящей из фтористого водорода, бромистого водорода и иодистого водорода, или (3) компонент, полученный из по меньшей мере приблизительно 1 об.% от всей газовой атмосферы газа галогена, выбранного из газа фтора, газа брома и газа йода, и по меньшей мере приблизительно 0,1 об.% от всей газовой атмосферы, пара.
Фиг. 1 - фотография, выполненная с помощью растрового электронного микроскопа (увеличение: 4500), на которой показана структура частиц порошка альфа-окиси алюминия, полученного в Примере 1.
Фиг. 2 - фотография, выполненная с помощью растрового электронного микроскопа (увеличение: 900), на которой показана структура частиц порошка альфа-окиси алюминия, полученного в Примере 2.
Фиг. 3 - фотография, выполненная с помощью растрового электронного микроскопа (увеличение: 900), на которой показана структура частиц порошка альфа-окиси алюминия, полученного в Примере 3.
Фиг. 4 - фотография, выполненная с помощью растрового электронного микроскопа (увеличение: 4300), на которой показана структура частиц порошка альфа-окиси алюминия, полученного в Примере 4.
Фиг. 5 - фотография, выполненная с помощью растрового электронного микроскопа (увеличение: 900), на которой показана структура частиц порошка альфа-окиси алюминия, полученного в Сравнительном примере 1.
Порошок альфа-окиси алюминия в соответствии с настоящим изобретением может быть получен из исходного материала окиси алюминия из переходной окиси алюминия, причем исходный материал способен превращаться в переходную окись алюминия при нагревании (ниже называется предшествующим материалом переходной окиси алюминия), и его смеси. Переходная окись алюминия означает все разновидности окиси алюминия, включенные в полиморфную окись алюминия, представленную формулой Al2O3, за исключением альфа-окиси алюминия. Конкретные примеры переходной окиси алюминия включают гамма-окись алюминия, бета-окись алюминия и тета-окись алюминия. Исходный (предшествующий) материал переходной окиси алюминия включает в себя те материалы, которые могут быть преобразованы в альфа-окись алюминия через переходную окись алюминия с помощью этапа обжига в соответствии со способом настоящего изобретения. Примеры исходного материала переходной окиси алюминия включают в себя гидроокись алюминия, сульфат алюминия, квасцы (например, алюминиевокалиевые квасцы или алюминиево-аммониевые квасцы), алюминиево-аммониевый карбонат, алюмогель (например, алюмогель, полученный с помощью электрического разряда алюминия в воде).
Переходная окись алюминия и исходные материалы переходной окиси алюминия, которые могут быть использованы в настоящем изобретении, особенно не ограничены в синтезе, Например, гидроокись алюминия может быть получена с помощью способа Байера, гидролизом органоалюминиевого соединения или с помощью способа, начинающегося с извлечения алюминия из отходов травления, используемых для конденсаторов и, так далее. Переходная окись алюминия может быть получена путем термической обработки гидроокиси алюминия, разложением сульфата алюминия, разложением квасцов, разложением газообразной фазы хлорида алюминия, или разложением алюминиево-аммониевого карбоната.
В соответствии со способом настоящего изобретения требуемый порошок альфа-окиси алюминия может быть получен даже из гидроокиси алюминия или переходной окиси алюминия, имеющей размер частиц 10 мкм или более, которую получают с помощью промышленного экономичного способа, например, способом Байера.
Переходная окись алюминия и/или ее исходный материал обжигают в (1) газовой атмосфере, содержащей галоген. Примеры галогена, которые могут быть использованы, включают в себя фтор, хлор, бром, и йод, причем фтор и хлор, являются предпочтительными, а хлор является более предпочтительным. Концентрация каждого галогена в газовой атмосфере составляет от всей газовой атмосферы приблизительно 5 об.% или более, предпочтительно приблизительно 10 об. % или более, более предпочтительно 20 об.% или более, а предпочтительнее всего 30 об.% или более. Хотя это и не является ограничивающим, но введение галогена в газовую атмосферу, как правило, выполняют путем введения газа галогена в реакционную систему. Компонент (компоненты), отличный от галогена в газовой атмосфере, так называемый газ-разбавитель, включает в себя инертные газы (например, азот и аргон), водород и воздух. Давление галоген-содержащей газовой атмосферы не является критичным и может быть выбрано произвольно из практического промышленного диапазона.
Обжиг в содержащей галоген газовой атмосфере предпочтительно проводят при температуре от 1150oC до 1500oC, а более предпочтительно при температуре от 1200oC до 1400oC. Если исходный материал, то есть переходная окись алюминия, и/или ее исходный материал, имеет большие размеры частиц, например, если используют агломерированные частицы, имеющие средний размер частиц, превышающий 10 мкм, предпочтительной является относительно высокая температура обжига в пределах указанного выше диапазона, конкретно температура 1250oC или выше.
Обжиг должен продолжаться в течение времени, достаточного для роста (превращения) исходного материала в альфа-окись алюминия. В зависимости от вида и концентрации газовой атмосферы, температура обжига и других параметров, время отжига, как правило, составляет 1 минуту или более, а предпочтительно 10 минут или более, но не ограничивается этими значениями. В соответствии с этим способом, порошок альфа- окиси алюминия, содержащей монокристаллические частицы альфа-окиси алюминия, может быть получен при меньшем времени обжига по сравнению с обычными способами.
Газовая атмосфера, содержащая галоген, (1) может быть заменена газовой атмосферой, содержащей (2) галогенид водорода. В этом случае переходная окись алюминия и/или ее исходный материал обжигают в атмосфере, содержащей галогенид водорода в концентрации приблизительно 1 об.% или более, предпочтительно 5 об. % или более, более предпочтительно 10 об.% или более, а предпочтительнее всего 20 об.% или более, от всей газовой атмосферы. Примеры галогенида водорода, который может быть использован, включает в себя фтористый водород, бромистый водород и йодистый водород, причем фтористый водород и бромистый водород являются предпочтительными, а бромистый водород является более предпочтительным. Хотя это и не является ограничивающим, но введение галогенида водорода в газовую атмосферу, как правило, выполняют введением в реакционную систему газа галогенида водорода. Компонент (компоненты), отличный от галогенида водорода в газовой атмосфере, так называемый газ-разбавитель, включает в себя инертные газы (например, азот и аргон), водород и воздух. Давление содержащей галоген газовой атмосферы не является критичным и может быть выбрано произвольно из практического промышленного диапазона.
Обжиг в содержащей галогенид водорода газовой атмосфере проводят при температуре от 600oC до 1400oC, более предпочтительно при температуре от 700oC до 1300oC, а предпочтительнее всего при температуре от 800oC до 1200oC. Если исходный материал, то есть переходная окись алюминия и/или ее исходный материал, имеет большие размеры частиц, например, если используют агломерированные частицы, имеющие средний размер частиц, превышающий 10 мкм, предпочтительной является относительно высокая температура обжига в пределах указанного выше диапазона, конкретно температура 800oC или выше.
Обжиг должен продолжаться в течение времени, достаточного для роста (превращения) исходного материала в альфа-окись алюминия. В зависимости от вида и концентрации газовой атмосферы, температуры обжига и других параметров, время обжига, как правило, составляет 1 минуту или более, а предпочтительно 10 минут или более, но не ограничивается этими значениями. В соответствии с этим способом, порошок альфа- окись алюминия, содержащий монокристаллические частицы альфа-окиси алюминия, может быть получен при меньшем времени обжига по сравнению с обычными способами.
Газовая атмосфера, содержащая галоген, (1) или галогенид водорода (2) может быть заменена газовой атмосферой, содержащей (3) компонент, полученный из газа галогена и пара. В этом случае, переходная окись алюминия и/или ее исходный материал обжигают в газовой атмосфере, содержащей компонент, получаемый приблизительно 1 об.% или более газа галогена и приблизительно 0,1 об. % или более пара; более предпочтительно приблизительно 10 об.% или более газа галогена и приблизительно 1 об.% или более пара; а предпочтительнее всего приблизительно 20 об.% или более газа галогена и предпочтительнее всего приблизительно 2 об. % или более пара, каждого от всего объема газовой атмосферы. Примеры используемого газа галогена включают в себя газ фтор, газ бром и газ йод, причем газ фтор и газ бром являются предпочтительными, а газ бром является более предпочтительным. Хотя это и не является ограничивающим, но введение компонента, получаемого из галогена и пара в газовую атмосферу может быть выполнено, как правило, введением в реакционную систему газа галогена и пара. Компонент (компонент), отличный от компонента, получаемого из галогена и пара в газовой атмосфере, так называемый газ- разбавитель, включает в себя инертные газы (например, азот и аргон), водород и воздух. Давление газовой атмосферы не является критичным и может быть выбрано произвольно из практического промышленного диапазона.
Обжиг в газовой атмосфере, содержащей компонент, полученный из газообразного галогена и пара, предпочтительно проводят при температуре от 600oC до 1400oC, более предпочтительно при температуре от 700oC до 1300oC, а предпочтительнее всего при температуре от 800oC до 1200oC. Если исходный материал, то есть переходная окись алюминия и/или ее исходный материал, имеет большие размеры частиц, например, если используют агломерированные частицы, имеющие средний размер частиц, превышающий 10 мкм, предпочтительной является относительно высокая температура обжига в пределах указанного выше диапазона, конкретно температура 800oC или выше.
Обжиг должен продолжаться в течение времени, достаточного для роста (превращения) исходного материала в альфа- окись алюминия. В зависимости от вида и концентрации газовой атмосферы, температура обжига и других параметров, время обжига, как правило, составляет 1 минуту или более, а предпочтительно 10 минут или более, но не ограничивается этими значениями. В соответствии с этим способом, порошок альфа-окиси алюминия, содержащий монокристаллические частицы альфа-окиси алюминия, может быть получен при меньшем времени обжига по сравнению с обычными способами.
Способ подачи газовой атмосферы в систему особенно не ограничивается, пока газовая атмосфера, содержащая (1) галоген, (2) галогенид водорода или (3) компонент, получаемый из газа галогена и пара, может быть введена в реакционную систему, содержащую исходный материал, например, переходную окись алюминия. Концентрация галогена, галогенида водорода или компонента, получаемого из газа галогена и пара, в газовой атмосфере в течение обжига должна регулироваться, Баллон газа, как правило, используют в качестве источника подачи галогена, галогенида водорода и газа галогена. Если в качестве источника галогена, галогенида водорода или газа галогена используют водный раствор галогенида водорода, соединение водорода, например, галогенид аммония, или высокомолекулярный полимер, содержащий галоген, то они могут подаваться при давлении их пара или разлагаться так, чтобы дать предписанную композицию газа. Подача газа может осуществляться непрерывно или периодически.
Устройство обжига особенно не ограничивается и может быть использована обычная печь для обжига. Печь для обжига предпочтительно изготавливают из материала, который способен сопротивляться коррозии в результате воздействия газа галогенида водорода, газа галогена и так далее. Печь предпочтительно оборудуют устройством для регулирования концентрации галогена, галогенида водорода или компонента, получаемого из газа галогена или пара в газовой атмосфере. Вследствие использования кислого газа, например, галогенида водорода или газа галогена, предпочтительно, чтобы печь была герметичной. Для промышленного применения обжиг предпочтительно выполнять в непрерывном режиме, с помощью, например, туннельной печи, вращающейся печи или толкательной печи.
Поскольку реакция протекает в кислой газовой атмосфере, тигель, лодочку или подобный инструмент используемый в этом процессе предпочтительно изготавливают из окиси алюминия, кварца, кислотоупорного кирпича или графита.
Порошок альфа- окиси алюминия, получаемый с помощью способа настоящего изобретения содержит монокристаллические частицы альфа-окиси алюминия, имеющие октаэдрическую или высшую полиэдрическую форму. Средний диаметр монокристаллических частиц альфа-окиси алюминия, как правило, составляет 4 мкм, или более, а предпочтительно от 4 мкм до 30 мкм. Монокристаллические частицы альфа-окиси алюминия, полученные в газовой атмосфере, содержащей хлор, бром, йод, бромистый водород, йодистый водород, компонент, получаемый из газа брома и пара, или компонент, получаемый из газа йода и пара, как правило, имеют отношение D/H, в котором D представляет максимальный диаметр частицы параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет максимальный диаметр частицы перпендикулярный этой решетки от 0,5 до 5, а предпочтительно от 0,5 до 3. Частицы, полученные в газовой атмосфере, содержащей фтор, фтористый водород или компонент, получаемый из газа фтора и пара, как правило, имеют отношение D/H от 1 до 30, а предпочтительно от 3 до 30.
Кроме того, порошок альфа-окиси алюминия, содержащий монокристаллические частицы альфа-окиси алюминия, предпочтительно имеет отношение максимального диаметра частицы к величине среднего диаметра частицы 3 или менее, а более предпочтительно 2,5 или менее, как получено в результате визуального анализа. Чистота порошка альфа-окиси алюминия, как правило составляет не менее 99,8%, а предпочтительно не менее 99,9%.
В соответствии со способом настоящего изобретения порошок альфа-окиси алюминия, содержащий монокристаллические частицы альфа-окиси алюминия, имеющие высокую чистоту, гомогенность, узкий гранулометрический состав основных частиц и октаэдрическую и высшую полиэдрическую форму, может быть получен из исходных материалов окиси алюминия множества видов, форм, размеров и составов, с выгодами промышленного производства.
Порошок альфа-окиси алюминия, получаемый с помощью способа настоящего изобретения, является пригодным в качестве исходного материала для абразивов, спекаемых изделий, материалов для распыления в плазме, наполнителей, монокристаллов, носителей для катализаторов, флуоресцентных веществ, герметиков, керамических фильтров и прокладок для жидкокристаллических ячеек и крайне полезен в промышленности.
Теперь настоящее изобретение будет более подробно проиллюстрировано со ссылкой на Примеры, но при этом не надо понимать, что настоящее изобретение ограничивается ими.
В Примерах и Сравнительных примерах были проведены следующие измерения.
1) Величина среднего диаметра частиц:
С помощью растрового электронного микроскопа (SEM) ("T-300" производства JEOL Ltd., в этом случае и далее использовали один микроскоп) получают микрофотографии порошка альфа-окиси алюминия и 80 - 100 выбранных частиц подвергают анализу изображения для получения среднего диаметра эквивалентного круга. Используемый здесь термин "диаметр эквивалентного круга" означает диаметр истинного круга, имеющего площадь подобную площади частицы.
2) Форма кристалла (отношение D/H):
Форму частиц альфа-окиси алюминия выражали в терминах отношения D/H, в котором D и H определены выше. Для получения среднего отношения D/H на указанной выше микрофотографии, выполненной с помощью растрового электронного микроскопа, и подвергнутой визуальному анализу выбирают от пяти до десяти частиц и подвергают анализу изображения.
Ниже описываются исходные материалы, которые подвергают обжигу в примерах и сравнительных примерах.
1. Переходная окись алюминия:
Переходную окись алюминия, полученную обжигом гидроокиси алюминия, приготовленной путем гидролиза окиси органоалюминия ("АКР-G15", производимого Symitomo Chemical Co., Ltd., диаметр частиц: приблизительно 4 мкм) (сокращено как tr-al в таблицах).
2. Гидроокись алюминия:
Порошок, полученный гидролизом изопропоксида алюминия (диаметр вторичной частицы: приблизительно 8 мкм) (сокращено как al-hy в таблицах).
В качестве источника газа хлора использовали хлор в баллонах, производства Fujimoto Sandyo К.К.
Концентрацию галогена или галогенида водорода в газовой атмосфере регулировали путем регулирования расхода газа ( скорость газового потока) галогена, галогенида водорода, газа разбавителя и так далее с помощью расходомера (реометра). Линейную скорость потока устанавливали равной 20 - 49 мм/мин (система газового потока). Во всех Примерах и Сравнительных примерах обжиг проводили при атмосферном давлении.
Разложение газа фтористого аммония использовали в качестве источника газа фтористого водорода. Фтористый аммоний нагревали до температуры его сублимации (220oC) и полученный газ вводили в трубу трубчатой печи. Газовая атмосфера состояла из 33 об.% фтористого водорода, 17 об.% водорода, и 50 об.% азота при температуре выдержки (температура обжига) 1100oC.
Разложение газа бромистого аммония использовали в качестве источника газа бромистого водорода. Бромистый аммоний нагревали до температуры его сублимации (420oC) и полученный газ вводили в трубу трубчатой печи. Газовая атмосфера состояла из 33 об.% бромистого водорода, 17 об.% водорода, и 50 об.% азота при температуре выдержки (температура обжига) 1100oC.
Разложение газа йодистого аммония использовали в качестве источника газа йодистого водорода. Йодистый аммоний нагревали до температуры его сублимации (380oC) и полученный газ вводили в трубу трубчатой печи. Газовая атмосфера состояла из 33 об.% бромистого водорода, 17 об.% водорода, и 50 об.% азота при температуре выдержки (температура обжига) 1100oC.
Предписанное количество (0,4 г) исходного материала (переходная окись алюминия и/или ее исходный материал) помещали в лодочку из окиси алюминия высотой 5 мм. Обжиг выполняли в трубчатой печи ("DS PSH-28" производства Motoyama K. K. ) при использовании трубы из окиси алюминия (диаметр: 27 мм; длина: 1000 мм). Повышение температуры осуществляли со скоростью 500oC/час, в то время как подаваемый газообразный азот и газ, имеющий предписанный состав, вводили в трубчатую печь, когда температура достигала предписанной температуры (называемой ниже температурой подачи газа).
При достижении предписанной температуры, печь выдерживали при этой температуре (называемой ниже температурой выдержки (температура обжига) в течение предписанного времени (называемого ниже временем выдержки - (время обжига)). Если газовая атмосфера содержит газ разложения, реакцию проводили в закрытом состоянии без потока газовой атмосферы. Если газовая атмосфера содержит газ хлор, реакцию проводили в потоке газовой атмосферы при указанной выше линейной скорости потока. После истечения предписанного времени выдержки, печи давали остыть, чтобы получить порошок альфа-окиси алюминия.
ПРИМЕР 1
Переходную окись алюминия (гамма-окись алюминия) в качестве исходного материала окиси алюминия обжигали при температуре обжига 1280oC в течение времени обжига 30 минут в газовой атмосфере, содержащей газ хлор. Газ хлор подавали при комнатной температуре. Параметры обжига и результаты показаны в приведенных ниже Таблицах 1 и 2. На фиг.1 показана фотография, полученная с помощью растрового электронного микроскопа, полученного порошка альфа-окиси алюминия.
ПРИМЕР 2
Переходную окись алюминия (гамма-окись алюминия), в качестве исходного материала окиси алюминия, обжигали при температуре обжига 1100oC в течение времени обжига 30 минут в газовой атмосфере, содержащей газ разложения фтористого аммония (то есть фтористый водород). Газ подавали при температуре 800oC. Параметры обжига и результаты показаны в приведенных ниже Таблицах 1 и 2. На фиг.2 показана фотография, полученная с помощью растрового электронного микроскопа, полученного порошка альфа-окиси алюминия.
ПРИМЕР 3
Обжиг выполняли таким же образом, как и в Примере 2 за исключением того, что заменили газ разложения фтористого аммония газом разложения бромистого аммония (то есть бромистым водородом). На фиг.3 показана фотография, полученная с помощью растрового электронного микроскопа, полученного порошка альфа-окиси алюминия. Параметры обжига и полученные результаты приведены в Таблицах 1 и 2.
ПРИМЕР 4
Обжиг выполняли таким же образом, как и в Примере 2 за исключением того, что заменили газ разложения фтористого аммония газом разложения йодистого аммония (то есть йодистым водородом). На фиг.4 показана фотография, полученная с помощью растрового электронного микроскопа, полученного порошка альфа-окиси алюминия. Параметры обжига и полученные результаты приведены в Таблицах 1 и 2.
ПРИМЕР 5
Обжиг выполняли таким же образом, как и в Примере 2 за исключением того, что использовали газовую атмосферу в которую вводили газ фтор и пар. В результате получали порошок альфа-окиси алюминия эквивалентный порошку, полученному в Примере 2.
ПРИМЕР 6
Обжиг выполняли таким же образом, как и в Примере 2 за исключением того, что использовали гидроокись алюминия в качестве исходного материала окиси алюминия. В результате получали порошок альфа-окиси алюминия эквивалентный порошку, полученному в Примере 2.
ПРИМЕР 7
Обжиг выполняли таким же образом, как и в Примере 3 за исключением того, что использовали газовую атмосферу, в которую вводили газ бром и пар. В результате получали порошок альфа-окиси алюминия, эквивалентный порошку, полученному в Примере 3.
ПРИМЕР 8
Обжиг выполняли таким же образом, как и в Примере 3 за исключением того, что использовали гидроокись алюминия в качестве исходного материала окиси алюминия. В результате получали порошок альфа-окиси алюминия эквивалентный порошку, полученному в Примере 3.
ПРИМЕР 9
Обжиг выполняли таким же образом, как и в Примере 4 за исключением того, что использовали газовую атмосферу в которую вводили газ йод и пар. В результате получали порошок альфа-окиси алюминия эквивалентный порошку, полученному в Примере 4.
ПРИМЕР 10
Обжиг выполняли таким же образом, как и в Примере 4 за исключением того, что использовали гидроокись алюминия в качестве исходного материала окиси алюминия. В результате получали порошок альфа-окиси алюминия эквивалентный порошку, полученному в Примере 4.
СРАВНИТЕЛЬНЫЙ ПРИМЕР 1
Гидроокись алюминия обжигали при температуре обжига 1350oC на воздухе в течение времени обжига 180 минут. На фиг.5 показана фотография, полученная с помощью растрового электронного микроскопа, полученного порошка альфа-окиси алюминия. Параметры обжига и полученные результаты приведены в Таблицах 1 и 2.
Хотя настоящее изобретение было подробно описано со ссылкой на его конкретные примеры, квалифицированному специалисту будет очевидно, что могут быть сделаны различные изменения и модификации без отклонения от его духа и объема.

Claims (24)

1. Способ получения порошка альфа-окиси алюминия, содержащего монокристаллические частицы альфа-окиси алюминия, включающий обжиг по меньшей мере одной переходной окиси алюминия и материала, предшествующего переходной окиси алюминия, способного превращаться в переходную окись алюминия при нагревании, отличающийся тем, что обжиг проводят в газовой атмосфере, содержащей по меньшей мере приблизительно 5 об.% от всей газовой атмосферы галогена, выбранного из группы, состоящей из фтора, хлора, брома и йода.
2. Способ по п. 1, отличающийся тем, что газовая атмосфера содержит указанный галоген, по меньшей мере приблизительно 10 об.% от всей газовой атмосферы.
3. Способ по п. 1, отличающийся тем, что газовая атмосфера содержит указанный галоген, по меньшей мере приблизительно 20 об.% от всей газовой атмосферы.
4. Способ по п.1, отличающийся тем, что обжиг проводят при температуре 1150 - 1500oС.
5. Способ по п.1, отличающийся тем, что материал, предшествующий переходной окиси алюминия, выбирают из группы, состоящей из гидроокиси алюминия, квасцов и сульфата алюминия.
6. Способ по п.1, отличающийся тем, что галоген выбирают из группы, состоящей из хлора, брома и йода, а указанный порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия октаэдрической или высшей полиэдрической формы и отношением D : H, равным 0,5 - 5, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет собой максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
7. Способ по п.1, отличающийся тем, что галогеном является фтор, а порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия октаэдрической или высшей полиэдрической формы с отношением D : H, равным - 30, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет собой максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
8. Способ по п.7, отличающийся тем, что указанный порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия, имеющие отношение D : H, равное 3 - 30, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки альфа-окиси алюминия, а H представляет собой максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
9. Способ получения порошка альфа-окиси алюминия, содержащего монокристаллические частицы альфа-окиси алюминия, включающий обжиг по меньшей мере одной переходной окиси алюминия, и материала предшествующего переходной окиси алюминия, способного превращаться в переходную окись алюминия при нагревании, отличающийся тем, что обжиг проводят в газовой атмосфере, содержащей по меньшей мере приблизительно 1 об.% от всей газовой атмосферы галогенида водорода, выбранного из фтористого водорода, бромистого водорода и йодистого водорода.
10. Способ по п.9, отличающийся тем, что газовая атмосфера содержит галогенид водорода, по меньшей мере приблизительно 5 об.% от всей газовой атмосферы.
11. Способ по п.9, отличающийся тем, что газовая атмосфера содержит галогенид водорода, по меньшей мере приблизительно 10 об.% от всей газовой атмосферы.
12. Способ по п.9, отличающийся тем, что обжиг проводят при температуре 600 - 1400oС.
13. Способ по п.9, отличающийся тем, что материал, предшествующий переходной окиси алюминия, выбирают из группы, состоящей из гидроокиси алюминия, квасцов и сульфата алюминия.
14. Способ по п.9, отличающийся тем, что галогенид водорода выбирают из группы, состоящей из бромистого водорода и йодистого водорода, а указанный порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия октаэдрической или высшей полиэдрической формы с отношением D : H, равным 0,5 - 5, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет собой максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
15. Способ по п.9, отличающийся тем, что галогенидом водорода является фтористый водород, а порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия октаэдрической или высшей полиэдрической формы с отношением D : H, равным 1 - 30, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет собой максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
16. Способ по п.15, отличающийся тем, что порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия, имеющие отношение D : H, равное 1 - 30, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
17. Способ получения порошка альфа-окиси алюминия, содержащего монокристаллические частицы альфа-окиси алюминия, включающий обжиг по меньшей мере одной переходной окиси алюминия и материала, предшествующего переходной окиси алюминия, способного превращаться в переходную окись алюминия при нагревании, отличающийся тем, что обжиг проводят в газовой атмосфере, содержащей компонент, полученный из по меньшей мере приблизительно 1 об.% от всей газовой атмосферы газообразного галогена, выбранного из газообразного фтора, газообразного брома и газообразного йода и по меньшей мере приблизительно 0,1 об.% от всей газовой атмосферы пара.
18. Способ по п.17, отличающийся тем, что газовая атмосфера содержит компонент, полученный из по меньшей мере приблизительно 10 об.% от всей газовой атмосферы газообразного галогена, выбранного из газообразного фтора, газообразного брома и газообразного йода и по меньшей мере приблизительно 1 об.% от всей газовой атмосферы пара.
19. Способ по п.17, отличающийся тем, что газовая атмосфера содержит компонент, полученный из по меньшей мере приблизительно 20 об.% от всей газовой атмосферы газообразного галогена, выбранного из газообразного фтора, газообразного брома и газообразного йода и по меньшей мере приблизительно 2 об.% от всей газовой атмосферы пара.
20. Способ по п.17, отличающийся тем, что обжиг проводят при температуре 600 - 1400oС.
21. Способ по п.17, отличающийся тем, что материал, предшествующий переходной окиси алюминия, выбирают из гидроокиси алюминия, квасцов и сульфата алюминия.
22. Способ по п.17, отличающийся тем, что газообразный галоген выбирают из газообразного брома и газообразного йода, а указанный порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия октаэдрической или высшей полиэдрической формы с отношением D : H, равным 0,5 - 5, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет максимальный диаметр частиц, перпендикулярный плоскости решетки.
23. Способ по п.17, отличающийся тем, что газообразный галоген является газообразным фтором, а указанный порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия октаэдрической или высшей полиэдрической формы и отношением D : H, равным 1 - 30, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
24. Способ по п.17, отличающийся тем, что порошок альфа-окиси алюминия содержит однородные монокристаллические частицы альфа-окиси алюминия, имеющие отношение D : H, равное 0,5 - 5, в котором D представляет максимальный диаметр частиц, параллельный гексагональной плоскости решетки гексагональной плотноупакованной кристаллической решетки альфа-окиси алюминия, а H представляет максимальный диаметр частиц, перпендикулярный этой плоскости решетки.
RU94022745A 1993-06-30 1994-06-29 Способ получения порошка альфа-окиси алюминия (варианты) RU2126364C1 (ru)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP18891393 1993-06-30
JP18891593 1993-06-30
JP18891193 1993-06-30
JP31413093 1993-11-19
JP5-314130 1993-11-19
JP5-188913 1993-11-19
JP5-188911 1993-11-19
JP5-188915 1993-11-19

Publications (2)

Publication Number Publication Date
RU94022745A RU94022745A (ru) 1996-04-27
RU2126364C1 true RU2126364C1 (ru) 1999-02-20

Family

ID=27475413

Family Applications (1)

Application Number Title Priority Date Filing Date
RU94022745A RU2126364C1 (ru) 1993-06-30 1994-06-29 Способ получения порошка альфа-окиси алюминия (варианты)

Country Status (10)

Country Link
US (1) US5538709A (ru)
EP (1) EP0631986B1 (ru)
JP (1) JP3744010B2 (ru)
KR (1) KR950000616A (ru)
CN (1) CN1100066A (ru)
AU (1) AU679059B2 (ru)
CA (1) CA2127070A1 (ru)
DE (1) DE69405485T2 (ru)
IL (1) IL110090A (ru)
RU (1) RU2126364C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568710C2 (ru) * 2010-02-11 2015-11-20 Баиковски Альфа-оксид алюминия, его использование, а также соответствующий способ синтеза и устройство

Families Citing this family (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9306463A (pt) * 1992-06-02 1998-06-30 Sumitomo Chemical Co Alfa alumina
IL109236A (en) * 1993-04-13 1998-01-04 Sumitomo Chemical Co A-alumina powder and its production
EP0656319B1 (en) * 1993-11-25 2003-04-09 Sumitomo Chemical Company, Limited Method for producing alpha-alumina powder
JP3713758B2 (ja) * 1995-07-31 2005-11-09 住友化学株式会社 鉄含有複合酸化物粉末の製造方法
FR2755435A1 (fr) * 1996-11-04 1998-05-07 Pechiney Aluminium Fabrication d'alumine calcinee a taille de cristallite reglee a la demande avec une faible dispersion
CN1072606C (zh) * 1996-11-04 2001-10-10 化学工业部天津化工研究院 一种异形γ-A12O3载体的制备方法
TW504497B (en) 2000-05-23 2002-10-01 Sumitomo Chemical Co Alpha-alumina powder and heat-conductive sheet containing the same
JP2002068739A (ja) * 2000-08-30 2002-03-08 Sumitomo Chem Co Ltd 研磨材用α−アルミナ粉末およびその製造方法
WO2005023417A1 (en) * 2003-08-22 2005-03-17 Union Carbide Chemicals & Plastics Technology Corporation Modified alumina carriers and silver-based catalysts for the production of alkylene oxides
US20060258532A1 (en) * 2003-08-22 2006-11-16 Thorsteinson Erlind M Improved alumina carriers and silver-based catalysts for the production of alkylene oxides
EP2277622B1 (en) 2003-10-16 2013-01-09 Dow Technology Investments LLC Method for the preparation of catalysts having enhanced stability, efficiency and/or activity for alkylene oxide production
MY140566A (en) * 2004-06-18 2009-12-31 Shell Int Research A process for the production of an olefin oxide, a 1,2-diol, a 1,2-diol ether, or an alkanolamine
EP1765800B1 (en) 2004-06-18 2012-04-18 Shell Internationale Research Maatschappij B.V. A process for the production of an olefin oxide, a 1,2-diol, a 1.2-diol ether, or an alkanolamine
US8536083B2 (en) 2004-09-01 2013-09-17 Shell Oil Company Olefin epoxidation process, a catalyst for use in the process, a carrier for use in preparing the catalyst, and a process for preparing the carrier
KR20070058576A (ko) * 2004-09-01 2007-06-08 셀 인터나쵸나아레 레사아치 마아츠샤피 비이부이 올레핀 에폭시화 방법, 이 방법에 사용되는 촉매, 이촉매의 제조에 사용되는 담체, 및 이 담체의 제조방법
MX2007009904A (es) * 2005-02-21 2007-09-26 Shell Int Research Proceso de epoxidacion de olefinas, catalizador para su uso en el proceso, portador para su uso en la fabricacion del catalizador, y proceso para fabricar el portador.
AU2005237179B2 (en) * 2005-11-25 2011-03-17 Outotec Oyj Process and plant for producing metal oxide from metal compounds
CN101489950B (zh) 2006-07-21 2013-05-08 陶氏环球技术有限责任公司 改进的柴油机颗粒过滤器
CA2925267A1 (en) 2006-11-01 2008-05-08 Sten Wallin Shaped porous bodies of alpha-alumina and methods for the preparation thereof
JP5211467B2 (ja) * 2006-11-22 2013-06-12 日本軽金属株式会社 多面体形状α−アルミナの製造方法
CZ304274B6 (cs) * 2008-10-02 2014-02-12 Výzkumný ústav anorganické chemie, a.s. Způsob výroby alfa-oxidu hlinitého pro progresivní keramické materiály
JP4774445B2 (ja) * 2009-03-16 2011-09-14 日本碍子株式会社 アルミニウムチタネートセラミックスの製造方法
JP5720848B2 (ja) * 2012-09-28 2015-05-20 Dic株式会社 多面体形状のα−アルミナ微粒子の製造方法
CN102910659B (zh) * 2012-10-29 2014-07-30 上海飞凯光电材料股份有限公司 一种高纯氧化铝的制备方法及其应用
CN107074573B (zh) 2014-11-28 2018-12-11 日本碍子株式会社 板状氧化铝粉末的制法及板状氧化铝粉末
FR3038623B1 (fr) * 2015-07-10 2017-06-30 Fives Procede permettant de retirer les oxydes presents a la surface des nodules d'une poudre metallique avant l'utilisation de celle-ci dans un procede industriel
JP6121074B1 (ja) 2015-09-16 2017-04-26 大日精化工業株式会社 アルミナ系熱伝導性酸化物及びその製造方法
WO2017057322A1 (ja) 2015-09-30 2017-04-06 日本碍子株式会社 板状アルミナ粉末の製法
JP6209695B1 (ja) * 2017-03-02 2017-10-04 大日精化工業株式会社 アルミナ系熱伝導性酸化物及びその製造方法
US11220437B2 (en) * 2018-12-24 2022-01-11 Ecometales Limited Procedure for obtaining scorodite with a high arsenic content from acidic solutions with high content of sulfuric acid
CN112708928B (zh) * 2019-10-25 2021-10-08 中国石油化工股份有限公司 一种氧化铝晶粒及其制备方法
CN112978776B (zh) * 2019-12-02 2023-01-10 中国石油化工股份有限公司 一种γ-氧化铝八面体颗粒及其制备方法
CN112978772B (zh) * 2019-12-02 2023-01-10 中国石油化工股份有限公司 一种多晶γ-氧化铝八面体颗粒及其制备方法
CN112978771B (zh) * 2019-12-02 2023-01-10 中国石油化工股份有限公司 一种高比表面γ-氧化铝八面体颗粒及其制备方法
KR20220160018A (ko) 2020-03-31 2022-12-05 덴카 주식회사 알루미나 분말, 수지 조성물, 및 방열 부품
JP7546044B2 (ja) 2020-03-31 2024-09-05 デンカ株式会社 アルミナ粉末、樹脂組成物、及び放熱部品

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3175883A (en) * 1961-06-05 1965-03-30 Aluminium Lab Ltd Process for reducing the soda content of alumina
US3262754A (en) * 1964-12-07 1966-07-26 Aluminium Lab Ltd Method of making low soda alumina of small crystal size
AT266780B (de) * 1967-05-19 1968-11-25 Giulini Gmbh Geb Verfahren zur Herstellung von natriumoxydarmem α-Aluminiumoxyd
DE2850064B1 (de) * 1978-11-18 1980-05-08 Giulini Chemie Hexagonale tafelfoermige alpha-Aluminiumoxid-Einkristalle und Verfahren zu ihrer Herstellung
HU185474B (en) * 1981-11-10 1985-02-28 Almasfuezitoei Timfoeldgyar Process for preparing alpha-aluminium oxyde poor in alkali for ceramic purposes
ATE26819T1 (de) * 1982-08-24 1987-05-15 Alusuisse Verfahren zur herstellung von kristalliner tonerde.
US4847064A (en) * 1987-12-23 1989-07-11 Aluminum Company Of America Economical process for alpha alumina production
EP0277730B1 (en) * 1987-01-29 1992-05-06 Sumitomo Chemical Company, Limited Process for the preparation of alumina
US5302368A (en) * 1987-01-29 1994-04-12 Sumitomo Chemical Company, Limited Process for preparation of alumina
US4822592A (en) * 1987-02-05 1989-04-18 Aluminum Company Of America Producing alpha alumina particles with pressurized acidic steam
EP0281265B1 (en) * 1987-02-26 1992-08-05 Sumitomo Chemical Company, Limited Process for preparing easily mono-dispersible alumina
US5149520A (en) * 1987-12-23 1992-09-22 Aluminum Company Of America Small sized alpha alumina particles and platelets

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2568710C2 (ru) * 2010-02-11 2015-11-20 Баиковски Альфа-оксид алюминия, его использование, а также соответствующий способ синтеза и устройство

Also Published As

Publication number Publication date
DE69405485T2 (de) 1998-04-16
US5538709A (en) 1996-07-23
EP0631986B1 (en) 1997-09-10
CN1100066A (zh) 1995-03-15
IL110090A0 (en) 1994-10-07
EP0631986A1 (en) 1995-01-04
CA2127070A1 (en) 1994-12-31
AU6606194A (en) 1995-01-12
RU94022745A (ru) 1996-04-27
AU679059B2 (en) 1997-06-19
KR950000616A (ko) 1995-01-03
JPH07187663A (ja) 1995-07-25
IL110090A (en) 1998-01-04
DE69405485D1 (de) 1997-10-16
JP3744010B2 (ja) 2006-02-08

Similar Documents

Publication Publication Date Title
RU2126364C1 (ru) Способ получения порошка альфа-окиси алюминия (варианты)
RU2107661C1 (ru) α ОКСИД АЛЮМИНИЯ
US6524549B1 (en) Method for producing α-alumina powder
JP3440498B2 (ja) α−アルミナ
US6106800A (en) Method for producing alpha-alumina powder
EP0679611A1 (en) Method for producing alpha-alumina powder
US6521203B1 (en) Process for producing α-alumina
JPH06191835A (ja) α−アルミナの製造方法
JPH06191833A (ja) α−アルミナ
JP3743012B2 (ja) α−アルミナ粉末の製造方法
JPH0812322A (ja) α−アルミナ粉末およびその製造方法
JPH07206431A (ja) α−アルミナ粉末の製造方法