WO2017057322A1 - 板状アルミナ粉末の製法 - Google Patents

板状アルミナ粉末の製法 Download PDF

Info

Publication number
WO2017057322A1
WO2017057322A1 PCT/JP2016/078382 JP2016078382W WO2017057322A1 WO 2017057322 A1 WO2017057322 A1 WO 2017057322A1 JP 2016078382 W JP2016078382 W JP 2016078382W WO 2017057322 A1 WO2017057322 A1 WO 2017057322A1
Authority
WO
WIPO (PCT)
Prior art keywords
alumina
plate
powder
fluoride
mass
Prior art date
Application number
PCT/JP2016/078382
Other languages
English (en)
French (fr)
Inventor
福井 宏史
佐藤 圭
守道 渡邊
七瀧 努
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Priority to CN201680002585.8A priority Critical patent/CN107074574B/zh
Priority to JP2017511972A priority patent/JP6660943B2/ja
Priority to TW105131222A priority patent/TWI692443B/zh
Priority to US15/446,539 priority patent/US10221076B2/en
Publication of WO2017057322A1 publication Critical patent/WO2017057322A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/021After-treatment of oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/30Preparation of aluminium oxide or hydroxide by thermal decomposition or by hydrolysis or oxidation of aluminium compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/44Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water
    • C01F7/441Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination
    • C01F7/442Dehydration of aluminium oxide or hydroxide, i.e. all conversions of one form into another involving a loss of water by calcination in presence of a calcination additive
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • C04B35/111Fine ceramics
    • C04B35/115Translucent or transparent products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/026Solid phase epitaxial growth through a disordered intermediate layer
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/10Single-crystal growth directly from the solid state by solid state reactions or multi-phase diffusion
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • C30B29/20Aluminium oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/22Particle morphology extending in two dimensions, e.g. plate-like with a polygonal circumferential shape
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • C01P2004/24Nanoplates, i.e. plate-like particles with a thickness from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/80Compositional purity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/444Halide containing anions, e.g. bromide, iodate, chlorite
    • C04B2235/445Fluoride containing anions, e.g. fluosilicate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5292Flakes, platelets or plates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5296Constituents or additives characterised by their shapes with a defined aspect ratio, e.g. indicating sphericity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/787Oriented grains

Definitions

  • the present invention relates to a method for producing a plate-like alumina powder.
  • Patent Document 1 discloses an oriented alumina sintered body produced by using a plate-like alumina powder as a part of raw materials, and shows that the corrosion resistance and heat resistance are improved by orienting the alumina sintered body. Has been. However, in order to obtain high corrosion resistance and heat resistance, it is necessary to reduce impurities in the sintered body, and a high-purity plate-like alumina powder is required for further improvement of characteristics.
  • Patent Document 2 discloses triclinic, monoclinic, orthorhombic, tetragonal, trigonal or hexagonal crystals.
  • the translucency of a ceramic polycrystalline body having the following crystal structure is disclosed. According to this, it is shown that an oriented alumina sintered body produced using a plate-like alumina powder as a part of the raw material can realize sufficient heat resistance and high linear transmittance.
  • an alumina sintered body must have a high purity in order to achieve high translucency with an alumina sintered body, and a high-purity plate-like alumina powder is required.
  • a method for producing the plate-like alumina powder for example, methods described in Patent Documents 3 to 6 and Non-Patent Document 1 are known.
  • Japanese Patent No. 2916664 JP 2002-293609 A Japanese Patent No. 3759208 Japanese Patent No. 4749326 Japanese Patent No. 5255059 Japanese Patent No. 3744010
  • Patent Document 3 impurities remain due to the influence of additives during the production of the plate-like alumina powder, so that a high-purity plate-like alumina powder could not be obtained.
  • Patent Documents 4 and 5 describe a method of removing additives and the like in a washing step after synthesizing a plate-like alumina powder. To achieve a high purity of 99.9% by mass or more. It was insufficient. In Patent Document 6, it is necessary to introduce a troublesome halogen gas or hydrogen halide gas into the atmosphere gas when firing transition alumina.
  • Non-Patent Document 1 discloses a method for producing plate-like alumina powder using ⁇ -alumina powder or boehmite powder and an HF solution, but it is necessary to use an HF solution that is difficult to handle.
  • the method of Non-Patent Document 1 includes a step of treating the surface of the ⁇ -alumina powder with an HF solution.
  • the amount of the powder is large, the treatment state of the ⁇ -alumina powder varies, and the plate-like alumina particles It may affect the diameter and shape.
  • it is necessary to perform HF treatment in a plurality of times which causes problems in workability and manufacturing cost.
  • the synthesized plate-like alumina powder may contain large agglomerates, and it was necessary to perform a crushing treatment for a long time in order to obtain a powder without agglomeration.
  • the present invention has been made to solve such a problem, and has as its main object to easily obtain a high-purity plate-like alumina powder without using a troublesome gas or solution.
  • the method for producing the plate-like alumina powder of the present invention is as follows. At least one transition alumina selected from the group consisting of gibbsite, boehmite and ⁇ -alumina and a fluoride are prepared, and the amount of fluoride used is such that the ratio of F in the fluoride to the transition alumina is 0 Set to be 17% by mass or more, and prepare a container in which the value obtained by dividing the mass of F in the fluoride by the volume of the container is 6.5 ⁇ 10 ⁇ 5 g / cm 3 or more. Then, the transition alumina and the fluoride are put in the container so as not to contact each other, and after the container is closed, a plate-like ⁇ -alumina powder is obtained by heat treatment at 750 to 1650 ° C. Is.
  • plate-like alumina powder which is plate-like ⁇ -alumina particles, can be easily produced with high purity without using a troublesome HF solution, halogen gas, or hydrogen halide gas. Can get to.
  • the reaction mechanism for obtaining plate-like ⁇ -alumina particles from the above-mentioned transition alumina is unknown, but it is considered that the reaction between transition alumina and fluoride is involved.
  • FIG. 2 is a schematic view of plate-like ⁇ -alumina particles, where (a) is a plan view and (b) is a front view.
  • FIG. 3 is an SEM photograph of the powder obtained in Experimental Example 1.
  • FIG. 18 is an SEM photograph of powder obtained in Experimental Example 15. The SEM photograph of another field of view of the powder obtained in Experimental Example 1.
  • the method for producing the plate-like alumina powder of the present invention comprises preparing at least one transition alumina selected from the group consisting of gibbsite, boehmite, and ⁇ -alumina and a fluoride, and the amount of the fluoride used is the transition alumina.
  • the ratio of F in the fluoride with respect to is set to be 0.17% by mass or more, and as a container, the value obtained by dividing the mass of F of the fluoride by the volume of the container is 6.5 ⁇ 10 ⁇ 5.
  • a plate-like ⁇ is prepared by preparing a material having a weight of g / cm 3 or more, placing the transition alumina and the fluoride in the container so as not to contact each other, and closing the container and heat-treating at 750 to 1650 ° C. -Obtain alumina powder.
  • the transition alumina is at least one selected from the group consisting of gibbsite, boehmite and ⁇ -alumina.
  • the transition alumina By using such transition alumina, plate-like ⁇ -alumina particles can be obtained after heat treatment.
  • bayerite is used instead of these, granular alumina particles or ⁇ -alumina is mixed after heat treatment.
  • the mass ratio of each element other than Al, O, F, H, C, and S is preferably 1000 ppm or less, more preferably 100 ppm or less, and still more preferably 10 ppm or less.
  • ⁇ -alumina particles may be added to the transition alumina as a seed crystal. This is because, in the initial stage of the heat treatment, the ⁇ -alumina particles become nuclei and the ⁇ -aluminization of the alumina particles easily proceeds, and the obtained plate-like alumina powder has a uniform particle size.
  • the thickness of the plate-like alumina particles tends to be determined depending on the particle diameter of the ⁇ -alumina particles.
  • the average particle diameter D50 of ⁇ -alumina particles may be 0.1 to 16 ⁇ m.
  • the aspect ratio of the plate-like alumina particles tends to increase as the average particle size of the ⁇ -alumina particles is smaller.
  • the average particle diameter of ⁇ -alumina particles is preferably 0.5 ⁇ m or less, more preferably about 0.1 ⁇ m.
  • the amount of ⁇ -alumina particles added externally to the total mass of transition alumina and fluoride is better, and is preferably 4.2% by mass or less. More preferably, it is 5 mass% or less.
  • the amount of ⁇ -alumina particles added is preferably large, preferably 0.01% by mass or more, and more preferably 0.1% by mass or more.
  • the amount of ⁇ -alumina particles added is preferably in the range of 0.01% to 4.2% by weight, and 0.1% to 1.5% by weight. The range of is more preferable.
  • the larger the amount of seed crystal added the smaller the particle size of the plate-like alumina particles. Therefore, from the viewpoint of reducing the particle size of the plate-like alumina particles, the amount of ⁇ -alumina particles added is preferably large, preferably 1% by mass or more, and more preferably 3% by mass or more.
  • the added amount of ⁇ -alumina particles is increased, the aspect ratio of the obtained plate-like alumina particles is reduced. From the viewpoint of increasing the aspect ratio of the plate-like alumina particles, the added amount of ⁇ -alumina particles is 30% by mass or less. It is preferable to make it.
  • plate-like alumina particles may be used as seed crystals.
  • the plate surface particle size (major axis length) of the plate-like alumina particles after synthesis is increased, and the aspect ratio can be increased.
  • the plate surface particle size and thickness of the plate-like alumina particles to be added it is preferable to use a high-aspect-ratio powder as the seed crystal to be added in order to obtain plate-like alumina particles having a high aspect ratio.
  • the plate-like alumina particles added as seed crystals are also less in impurity elements. In this regard, it is preferable to add the plate-like alumina particles produced by the method of the present invention as seed crystals.
  • the fluoride is not particularly limited as long as it is a compound containing fluorine.
  • fluorides include compounds of Group 2 elements such as MgF 2 and CaF 2 and F, compounds of rare earth elements such as YF 3 and F, compounds of transition metals such as FeF 3 and F, Al and Examples thereof include a compound with F and an ammonium salt of fluorine (NH 4 F).
  • a fluoride containing a metal element a higher melting point is better, and a compound having a melting point of 900 ° C. or higher is preferable.
  • fluoride is difficult to evaporate, so that it becomes difficult for a metal element as an impurity to be mixed into the synthesized plate-like alumina.
  • a fluoride not containing a metal element such as NH 4 F
  • the metal element is not mixed as an impurity in the plate-like alumina powder.
  • fluorides fluorides of rare earth elements, compounds of Al and F, and NH 4 F are preferable, among which compounds of Al and F are preferable, and AlF 3 is particularly preferable.
  • the form of the fluoride is not particularly limited, and may be fine particles, flakes, fibers, films, or bulk.
  • the amount of fluoride used is preferably set so that the ratio of F in the fluoride to transition alumina is 0.17% by mass or more. This is because if the proportion is less than 0.17% by mass, the alumina particles obtained after the heat treatment will not be plate-like.
  • the container has a value obtained by dividing the mass of F in the fluoride by the volume of the container (hereinafter referred to as “F mass / container volume”) of 6.5 ⁇ 10 ⁇ 5 g / cm 3 or more.
  • F mass / container volume 6.5 ⁇ 10 ⁇ 5 g / cm 3 or more.
  • a smaller one is preferable. 4 ⁇ 10 ⁇ 1 g / cm 3 or less is preferable, and 1.4 ⁇ 10 ⁇ 2 g / cm 3 or less is more preferable.
  • the container for example, a generally used crucible or sheath can be used.
  • the container contains a component that volatilizes at the heat treatment temperature or reacts with the alumina component or the F component.
  • the material constituting the container contains a substance that reacts with the F component (for example, AlF 3 gas) and sublimates, or contains an element having a low boiling point of fluoride.
  • the material which comprises a container it is preferable that the sum total of elements other than Al, O, Mg, Ca, Sr, N, and Re (Re: rare earth elements) is 1 mass% or less.
  • the impurity element derived from the container is hardly mixed in the plate-like alumina powder obtained after the heat treatment, and a high-purity product is obtained.
  • the total of the above-described elements is preferably 0.5% by mass or less, and more preferably 0.1% by mass or less. Even if Mg, Ca, Sr, and Re react with the F component to produce fluoride, the boiling point is high and it is difficult to sublime. However, since Mg, Ca, Sr, and Re may react with the alumina component, it is necessary to devise measures such that the mixed powder is placed on an alumina setter so that the container and the raw material powder do not come into direct contact with each other. . Therefore, as the material of such containers, preferably 99 mass% or more Al 2 O 3, more preferably 99.5 mass% or more Al 2 O 3, 99.9 wt% or more of Al 2 O 3 is Further preferred.
  • the transition alumina and fluoride are put in a container so as not to contact each other.
  • the method of insertion at this time is not particularly limited as long as the two do not contact each other.
  • a small container containing transition alumina may be put in a large container, and fluoride may be put around the small container among the large containers.
  • a small container containing transition alumina and another small container containing fluoride may be placed in a large container. In that case, both small containers may be arranged on the bottom surface of a large container, or the other small container may be stacked on one small container. Or you may arrange
  • a plate-like powder with less aggregation By heat-treating the transition alumina and fluoride so as not to contact each other, a plate-like powder with less aggregation can be obtained. Further, a high-purity plate-like powder can be obtained also when a fluoride containing a large amount of impurities or a fluoride containing an element other than Al is used. The reason why aggregation is reduced is unknown, but it is thought that aggregation is likely to occur in the vicinity of fluoride when heat-treated by bringing transition alumina into contact with fluoride.
  • the container placed in the container is closed so that the transition alumina and fluoride are not brought into contact with each other, and then heat treatment is performed.
  • it is necessary to close the container.
  • closing the container it may be sealed or may not be sealed.
  • the sheath may be closed with a setter (lid).
  • the container is not sealed because it is closed so that the inside and outside of the container can be communicated.
  • transition alumina and fluoride may be confined in the container.
  • the container since the inside and outside of the container are connected through the wall made of the porous material of the container, the container is not sealed.
  • a dense container may be used to close the mouth of the container with a lid with packing, or a metal container may be used to seal the mouth by welding or the like. In these cases, the container is sealed.
  • the container When the container is hermetically sealed, the internal pressure of the container is increased by the gas generated during the heat treatment, so that the pressure resistance needs to be increased. For this reason, from the viewpoint of workability and manufacturing cost, it is preferable to close the container without sealing (that is, the inside and outside of the container can be communicated) rather than sealing the container.
  • the aspect ratio is the average particle size / average thickness
  • the average particle size is the average value of the major axis length of the particle plate surface
  • the average thickness is the average value of the minor axis length (thickness) of the particles.
  • the heat treatment temperature is set to 750 to 1650 ° C.
  • a heat treatment temperature of less than 750 ° C. is not preferable because ⁇ -alumina may remain after the heat treatment.
  • the heat treatment temperature exceeds 1650 ° C., the aspect ratio of the obtained powder is less than 3, which is not preferable.
  • the heat treatment temperature is preferably 850 to 1350 ° C., more preferably 850 to 1200 ° C., and most preferably 850 to 1100 ° C.
  • the plate-like alumina obtained by heat treatment may be crushed.
  • plate-like alumina powder having an appropriate shape can be provided.
  • the crushing method is not particularly limited.
  • a crusher etc. are mentioned.
  • the plate-like alumina powder obtained by the heat treatment may be annealed at 500 to 1350 ° C. in an atmosphere of air, inert or vacuum.
  • vacuum means a pressure reduced from atmospheric pressure. Air, inert gas, or the like may be flowed during the annealing process.
  • An annealing temperature of less than 500 ° C. is not preferable because the F concentration of the plate-like alumina particles hardly changes before and after the annealing process.
  • the annealing temperature is preferably 700 to 1250 ° C., more preferably 800 to 1200 ° C., and further preferably 900 to 1150 ° C. preferable.
  • the container used for annealing is preferably made of the same material as the container used for producing the plate-like alumina particles, and preferably has no lid so that impurity elements such as F can be easily volatilized.
  • Particularly preferably 99 mass% or more of Al 2 O 3 is from the viewpoint of the impurity element suppression, and more preferably 99.5 mass% or more Al 2 O 3.
  • the plate-like alumina may be crushed after such annealing treatment. By so doing, it is possible to crush the aggregated plate-like ⁇ -alumina particles into a lump.
  • a plate-like alumina powder having an appropriate shape can be provided as a raw material for producing oriented alumina.
  • the crushing method is not particularly limited. For example, a method of crushing by pressing against a mesh or screen having an opening diameter of 10 to 100 ⁇ m, a ball mill, a bead mill, a vibration mill, a jet mill, a hammer mill, a pin mill, or a valverizer. , Stone mill type pulverizer, wet atomizer, other airflow pulverizer, mechanical pulverizer and the like.
  • the following plate-like alumina powder can be obtained. That is, the plate-like ⁇ -alumina particles constituting the plate-like alumina powder have crystal planes perpendicular to the c-axis grown in a flat plate shape, an average particle size D50 of 0.3 to 50 ⁇ m, and a particle size of the plate surface / Plate-like alumina powder having an aspect ratio expressed by thickness of 3 to 500 can be produced.
  • a plate-like alumina powder is suitable for producing an oriented alumina sintered body and does not become an obstacle in, for example, tape molding, extrusion molding, or casting molding.
  • the plate-like alumina powder preferably has a mass ratio of each element other than Al, O, H, F, C, and S of 10 ppm or less.
  • Transparent alumina can be produced using the plate-like alumina powder obtained by the production method of the present invention.
  • the sintering behavior varies depending on the amount of F contained in the raw material, and the properties of the obtained sintered body, such as the degree of orientation, translucency, and density, also vary. For this reason, when producing a transparent alumina substrate, it is necessary to control the amount of F remaining in the plate-like alumina powder to an appropriate value in consideration of the charged composition and the like.
  • the amount of F in the plate-like alumina powder obtained by the production method of the present invention is controlled by controlling the ratio of F in the fluoride to transition alumina, controlling the heat treatment temperature, and annealing the obtained plate-like powder. It is possible to control by doing. For example, plate-like alumina containing a large amount of F can be obtained by increasing the proportion of F in the fluoride with respect to transition alumina and performing heat treatment, or by reducing the heat treatment temperature. On the other hand, the plate-like alumina containing a small amount of F is heat-treated by reducing the ratio of F in the fluoride to transition alumina, increasing the heat treatment temperature, or annealing the obtained plate-like alumina. Can be obtained.
  • the particle size, particle thickness, and agglomeration amount of the obtained plate-like alumina can be controlled. From the viewpoint of increasing the particle size, it is preferable to increase the ratio of F in the fluoride to the transition alumina. On the other hand, from the viewpoint of increasing the particle thickness and reducing the amount of aggregation, it is preferable to reduce the ratio of F in the fluoride to the transition alumina.
  • the ratio of F in the fluoride to the transition alumina is better from the viewpoint of increasing the particle size, preferably 0.7% by mass or more, and preferably 2.7% by mass or more. Further preferred.
  • the proportion of F in the fluoride with respect to transition alumina is preferably small, preferably 2.7% by mass or less, and more preferably 1.8% by mass or less. .
  • the ratio of F in the fluoride to transition alumina is preferably in the range of 0.7% by mass to 2.7% by mass as the range in which both large particle size and high aspect ratio are compatible and the amount of aggregation is reduced. A range of from% to 2.0% by mass is more preferred.
  • Evaluation method of alumina powder (1) Particle size / thickness / aspect ratio The average particle diameter, average thickness, and aspect ratio of the particles contained in the plate-like alumina powder obtained in each of the experimental examples were determined by observing 100 arbitrary particles in the plate-like alumina powder with a scanning electron microscope (SEM). Were determined.
  • the average particle diameter is the average value of the major axis length of the particle plate surface
  • the average thickness is the average value of the minor axis length (thickness) of the particle
  • the aspect ratio is the average particle diameter / average thickness.
  • a schematic diagram of the plate-like ⁇ -alumina particles is shown in FIG.
  • FIG. 1A is a plan view
  • FIG. 1B is a front view.
  • the plate-like ⁇ -alumina particles have a substantially hexagonal shape in plan view, the particle diameter is as shown in FIG. 1 (a), and the thickness is as shown in FIG. 1 (b). is there.
  • Impurity elements other than the above mainly Si, Fe, Ti, Na, Ca, Mg, K, P, V, Cr, Mn, Co, Ni, Cu, Zn, Y, Zr, Pb, Bi, Li, Be, B, Cl, Sc, Ga, Ge, As, Se, Br, Rb, Sr, Nb, Mo, Ru, Rh, Pd, Ag, Cd, In, Sn, Sb, Te, Cs, Ba, Hf, Ta, W, Ir, Pt, Au, Hg, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu): by a pressurized sulfuric acid decomposition method in accordance with JISR1649
  • the plate-like alumina powder was dissolved and analyzed with an ICP (inductively coupled plasma) emission spectrometer (PS3520UV-DD manufactured by Hitachi High-Tech Science).
  • Average particle diameter of seed crystal (D50) The average particle size (D50) of the seed crystal was measured using a particle size distribution measuring device (manufactured by Nikkiso, MT3300II).
  • Presence / absence of aggregation The presence / absence of aggregation is determined by the above-mentioned 1.
  • the particle size was determined by observing particles in the plate-like alumina powder with SEM. Aggregation is a state in which the plate-like particles are fixed to each other while the plate-like particles are kept in a plate-like shape, and refers to a state in which they are physically and chemically bonded. Necking etc. are also included.
  • Experimental Example 1 55 g of high-purity ⁇ -alumina powder (TM-300D, manufactured by Daimei Chemical Co., Ltd.) is placed in a sheath A (volume: 170 cm 3 ) made of high-purity alumina having a purity of 99.9% by mass. It arrange
  • the impurity elements other than Al, O, F, H, C, and S were 10 ppm or less in mass ratio.
  • High purity AlF 3 powder (manufactured by Kanto Chemical Co., Ltd., deer special grade) 2.2 g is put in sheath B, covered with a lid made of high purity alumina with a purity of 99.9% by mass in an electric furnace at 900 ° C. for 4 hours. Alumina powder was obtained by heat treatment. The air flow rate was 25000 cc / min. When the sheath B was closed with a lid, the sheath B was not sealed.
  • FIG. 2 shows a schematic diagram of the experimental apparatus at this time.
  • FIG. 3 shows an SEM photograph of the powder obtained in Experimental Example 1.
  • FIG. 7 shows an SEM photograph of another field of view of the powder obtained in Experimental Example 1.
  • Table 1 shows the synthesis conditions and the characteristics of the synthesized powder in Experimental Example 2 and later.
  • impurities refer to elements other than Al, O, H, F, C, and S.
  • F content shows the mass ratio of F with respect to the whole synthesize
  • Experimental example 3 The experiment was performed in the same manner as in Experimental Example 1 except that the heat treatment temperature was 750 ° C.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental example 4 The experiment was performed in the same manner as in Experimental Example 1 except that the heat treatment temperature was 1650 ° C.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental example 5 The experiment was performed in the same manner as in Experimental Example 1 except that the heat treatment temperature was 1700 ° C.
  • the particles constituting the obtained powder were ⁇ -alumina particles having an aspect ratio of only 2.5.
  • Experimental example 6 The experiment was conducted in the same manner as in Experimental Example 1 except that gibbsite powder (CL-303, manufactured by Sumitomo Chemical Co., Ltd.) was used instead of the high-purity ⁇ -alumina powder.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • the obtained plate-like alumina powder contained 120 ppm of Fe, 310 ppm of Na, and 40 ppm of Ca, and other impurity elements were 10 ppm or less.
  • Experimental example 7 The experiment was conducted in the same manner as in Experimental Example 1 except that boehmite powder (VK-BG613, manufactured by Akira Shinshiro Material Co., Ltd.) was used instead of the high-purity ⁇ -alumina powder.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • the obtained plate-like alumina powder contained 60 ppm Fe and 60 ppm Si, and other impurity elements were 10 ppm or less.
  • TM-DAR high-purity ⁇ -alumina powder
  • Experimental example 11 The experiment was performed in the same manner as in Experimental Example 1 except that the amount of high-purity AlF 3 powder used was 10 g. At this time, the F use ratio was 12.3% by mass, and the F mass / container volume was 0.008 g / cm 3 . The obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental Example 13 The experiment was conducted in the same manner as in Experimental Example 1 except that the amount of high-purity ⁇ -alumina powder used was 2.1 g and the amount of high-purity AlF 3 powder used was 0.084 g. The F mass / container volume at this time was 0.000068 g / cm 3 . The obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental Example 14 As shown in FIG. 4, the experiment was conducted in the same manner as in Experimental Example 1 except that the sheath A was not used and the high-purity ⁇ -alumina powder and the high-purity AlF 3 powder were placed in the sheath B without contacting each other. .
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental Example 15 High-purity ⁇ -alumina powder and high-purity AlF 3 powder were weighed in the same manner as in Experimental Example 1, and these were mixed by a pot mill for 5 hours using ⁇ 2 mm alumina balls using isopropyl alcohol as a solvent. The obtained mixture was put in the sheath B, covered, and heat treated at 900 ° C. for 3 hours in an air flow in an electric furnace to obtain alumina powder. The air flow rate was 25000 cc / min.
  • FIG. 5 shows a schematic diagram of the experimental apparatus at this time. F mass / container volume was 0.0018 g / cm 3 . The obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental Example 16 The experiment was conducted in the same manner as in Experimental Example 1 except that after heat treatment, it was placed in an alumina sheath having a purity of 99.9% by mass and annealed in air at 450 ° C. for 40 hours. The obtained powder was a plate-like alumina powder equivalent to Experimental Example 1.
  • Experimental Example 17 The experiment was performed in the same manner as in Experimental Example 16 except that the annealing condition was changed to 500 ° C. in the atmosphere for 200 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • it was a plate-like alumina powder having the same aspect ratio and the same impurity content and a small F content.
  • Experimental Example 18 The experiment was performed in the same manner as in Experimental Example 16 except that the annealing condition was 900 ° C. in the atmosphere for 3 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • it was a plate-like alumina powder having the same aspect ratio and the same impurity content and a small F content.
  • Experimental Example 19 The experiment was performed in the same manner as in Experimental Example 16 except that the annealing condition was changed to 1350 ° C. in air for 43 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • it was a plate-like alumina powder having the same amount of impurities, a small aspect ratio, and a very small F content.
  • Experimental Example 20 The experiment was performed in the same manner as in Experimental Example 16 except that the annealing condition was changed to 1400 ° C. in air for 43 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles. Specifically, it was ⁇ -alumina particles having the same amount of impurities and a very small F content as compared with Experimental Examples 1 and 16, but having an aspect ratio of only 2.9.
  • Experimental Example 23 The experiment was performed in the same manner as in Experimental Example 1 except that the amount of high-purity AlF 3 powder used was 1.21 g. At this time, the F use ratio was 1.5 mass%, and the F mass / container volume was 0.0010 g / cm 3 . The obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • Experimental Example 24 An experiment was conducted in the same manner as in Experimental Example 23, except that it was placed in an alumina sheath having a purity of 99.9% by mass after the heat treatment and annealed in the atmosphere at 900 ° C. for 3 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • the plate-like alumina powder had the same aspect ratio and the amount of impurities and a small F content.
  • Experimental Example 25 The experiment was performed in the same manner as in Experimental Example 16 except that the annealing condition was 1150 ° C. in air for 43 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • it was a plate-like alumina powder having a slightly smaller aspect ratio, an equivalent impurity amount, and an extremely small F content.
  • Experimental Example 26 An experiment was conducted in the same manner as in Experimental Example 8 except that after heat treatment, it was placed in an alumina sheath having a purity of 99.9% by mass and annealed in the atmosphere at 900 ° C. for 3 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles. Specifically, it was a plate-like alumina powder having an aspect ratio and an impurity amount equivalent to those of Experimental Example 8 and a small F content.
  • Experimental Example 27 The experiment was performed in the same manner as in Experimental Example 26, except that the annealing condition was 1150 ° C. in air for 43 hours.
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles. Specifically, it was a plate-like alumina powder having a slightly smaller aspect ratio, an equivalent amount of impurities, and an extremely small F content as compared with Experimental Example 8.
  • Experimental Example 28 Experiments were conducted in the same manner as in Experimental Example 15 except that AlF 3 powder (Morita Chemical Co., Ltd., MB-AlF 3 ) was used instead of high-purity AlF 3 powder (Kanto Chemical Co., Ltd., deer special grade).
  • the obtained powder was a plate-like alumina powder composed of plate-like ⁇ -alumina particles.
  • the obtained plate-like alumina powder contained 16 ppm Ca and 32 ppm Na, and other impurity elements were 10 ppm or less.
  • experimental examples 1 to 28 20 examples excluding the experimental examples 2, 5, 9, 12, 15, 20, 21, and 28 correspond to the examples of the present invention.
  • Experimental example 20 is an example in which an annealing process is performed after the heat treatment, and corresponds to the example of the present invention since it is the same as the experimental example 1 until the annealing process is performed, but the aspect after the annealing process is performed. Since the ratio is less than 3, it deviates from the embodiment of the present invention.
  • the present invention is not limited to these examples, and can be carried out in various modes as long as they belong to the technical scope of the present invention.
  • Transparent alumina can be produced using the plate-like alumina powder obtained by the production method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本発明の板状アルミナ粉末の製法は、遷移アルミナとフッ化物とを、互いに接触しないように容器に入れ、熱処理することにより板状のα-アルミナ粉末を得るものである。遷移アルミナは、ギブサイト、ベーマイト及びγ-アルミナからなる群より選ばれる少なくとも1種が好ましい。フッ化物の使用量は、遷移アルミナに対するフッ化物中のFの割合が0.17質量%以上となるように設定するのが好ましい。容器は、フッ化物中のFの質量を容器の容積で除した値が6.5×10-5g/cm3以上になるものが好ましい。熱処理は、750~1650℃で行うことが好ましい。熱処理は、容器の内外が通じるように容器を閉じたあと又は容器を密閉したあとに行うことが好ましい。

Description

板状アルミナ粉末の製法
 本発明は、板状アルミナ粉末の製法に関する。
 特許文献1には、板状アルミナ粉末を原料の一部に用いて作製した配向アルミナ焼結体が開示されており、アルミナ焼結体を配向させることで耐食性、耐熱性が向上することが示されている。しかし、高い耐食性、耐熱性を得るには焼結体中の不純物を低減することが必要とされており、更なる特性向上には高純度な板状アルミナ粉末が求められている。
 一方、高純度、且つ緻密なアルミナ焼結体は透光性を有することが知られており、特許文献2には三斜晶、単斜晶、斜方晶、正方晶、三方晶又は六方晶の結晶構造を有するセラミックス多結晶体の透光性について開示されている。これによると、板状アルミナ粉末を原料の一部に用いて作製した配向アルミナ焼結体では、十分な耐熱性と高い直線透過率を実現できることが示されている。しかし、一般的にアルミナ焼結体で高い透光性を実現するにはアルミナ焼結体を高純度としなければならないことが知られており、高純度な板状アルミナ粉末が必要となる。板状アルミナ粉末の製法としては、例えば特許文献3~6や非特許文献1に記載された方法が知られている。
特許第2916664号公報 特開2002-293609号公報 特許第3759208号公報 特許第4749326号公報 特許第5255059号公報 特許第3744010号公報
J. Am. Ceram. Soc., 77[11]2977-84(1994)
 しかしながら、特許文献3では、板状アルミナ粉末の製造時に添加物の影響等で不純物が残留するため、高純度な板状アルミナ粉末を得ることができなかった。また、特許文献4、5では、板状アルミナ粉末を合成した後、洗浄工程などで添加剤などを除去する手法が記載されているが、99.9質量%以上の高純度を達成するには不十分であった。特許文献6では、遷移アルミナを焼成する際の雰囲気ガスに、取り扱いの厄介なハロゲンガスやハロゲン化水素ガスを導入する必要があった。一方、非特許文献1にはγ-アルミナ粉末又はベーマイト粉末とHF溶液とを用いて板状アルミナ粉末を作製する手法が開示されているが、取り扱いの厄介なHF溶液を用いる必要があった。また、非特許文献1の方法はγ-アルミナ粉末表面をHF溶液で処理する工程を含んでおり、粉末処理量が多い場合はγ-アルミナ粉末の処理状態にばらつきを生じ、板状アルミナの粒径や形状に影響する可能性がある。このため、大量に板状アルミナ粉末を作製するには複数回に分けてHF処理する必要があり、作業性や製造コスト的に問題があった。また、合成した板状アルミナ粉末には大きな凝集が含まれていることがあり、凝集のない粉末を得るには解砕処理を長時間行う必要があった。
 本発明はこのような課題を解決するためになされたものであり、取り扱いの厄介なガスや溶液を用いることなく、高純度の板状アルミナ粉末を簡便に得ることを主目的とする。
 本発明の板状アルミナ粉末の製法は、
 ギブサイト、ベーマイト及びγ-アルミナからなる群より選ばれる少なくとも1種の遷移アルミナと、フッ化物とを用意し、前記フッ化物の使用量は、前記遷移アルミナに対する前記フッ化物中のFの割合が0.17質量%以上となるように設定し、容器として、前記フッ化物中のFの質量を前記容器の容積で除した値が6.5×10-5g/cm3以上になるものを用意し、前記遷移アルミナと前記フッ化物とを互いに接触しないように前記容器に入れ、前記容器を閉じたあと750~1650℃で熱処理することにより板状のα-アルミナ粉末を得る、
 ものである。
 本発明の板状アルミナ粉末の製法によれば、取り扱いの厄介なHF溶液やハロゲンガス、ハロゲン化水素ガスを用いることなく、板状のα-アルミナ粒子である板状アルミナ粉末を高純度で簡便に得ることができる。
 この製法において、上述の遷移アルミナから板状のα-アルミナ粒子が得られる反応機構は不明だが、遷移アルミナとフッ化物との反応が関係していると考えられる。また、板状化、α化を進めるには、容器を閉じることにより、ある程度ガス成分を閉じ込められる状態で熱処理を行うことが必要であり、ガス成分が反応に寄与しているとも考えられる。このため、雰囲気中の水分や遷移アルミナに含まれる水分などから発生した水蒸気も反応に寄与した可能性も考えられる。これらの点から、熱処理雰囲気は大気中、あるいは不活性雰囲気中が好ましく、大気中が特に好ましい。
板状のα-アルミナ粒子の模式図で、(a)は平面図、(b)は正面図。 実験例1で使用した実験装置の模式図。 実験例1で得られた粉末のSEM写真。 実験例14で使用した実験装置の模式図。 実験例15で使用した実験装置の模式図。 実験例15で得られた粉末のSEM写真。 実験例1で得られた粉末の別視野のSEM写真。
 本発明の板状アルミナ粉末の製法は、ギブサイト、ベーマイト及びγ-アルミナからなる群より選ばれる少なくとも1種の遷移アルミナと、フッ化物とを用意し、前記フッ化物の使用量は、前記遷移アルミナに対する前記フッ化物中のFの割合が0.17質量%以上となるように設定し、容器として、前記フッ化物のFの質量を前記容器の容積で除した値が6.5×10-5g/cm3以上になるものを用意し、前記遷移アルミナと前記フッ化物とを互いに接触しないように前記容器に入れ、前記容器を閉じたあと750~1650℃で熱処理することにより板状のα-アルミナ粉末を得るものである。
 本発明の製法において、遷移アルミナは、ギブサイト、ベーマイト及びγ-アルミナからなる群より選ばれる少なくとも1種である。こうした遷移アルミナを用いることで、熱処理後に板状のα-アルミナ粒子が得られる。これらの代わりにバイヤライトを用いると、熱処理後に粒状のアルミナ粒子が混入したりδ-アルミナが混入したりする。遷移アルミナは、高純度なものを用いることが好ましい。こうすれば、熱処理後に高純度の板状アルミナ粉末が得られるからである。例えば、Al,O,F,H,C,S以外の各元素の質量割合は、1000ppm以下が好ましく、100ppm以下がより好ましく、10ppm以下が更に好ましい。
 本発明の製法において、遷移アルミナは、種結晶としてα-アルミナ粒子が添加されていてもよい。こうすれば、熱処理の初期においてα-アルミナ粒子が核となってアルミナ粒子のα化が進行しやすくなり、得られる板状アルミナ粉末の粒径が均一になるからである。α-アルミナ粒子の粒径に依存して板状アルミナ粒子の厚みが決まる傾向にある。例えば、α-アルミナ粒子の平均粒径D50を0.1~16μmとしてもよい。また、α-アルミナ粒子の平均粒径が小さい方が板状アルミナ粒子のアスペクト比が大きくなる傾向にある。そのため、高アスペクト比の原料を合成するには、α-アルミナ粒子の平均粒径は0.5μm以下が好ましく、0.1μm程度がより好ましい。大きな粒径を持つ板状アルミナを得る観点では、遷移アルミナとフッ化物との合計質量に外配で加えるα-アルミナ粒子の添加量は少ない方が良く、4.2質量%以下が好ましく、1.5質量%以下がさらに好ましい。均一な粒径を持つ板状アルミナを得る観点ではα-アルミナ粒子の添加量は多い方が良く、0.01質量%以上が好ましく、0.1質量%以上がさらに好ましい。大粒径と粒径の均一性を両立する範囲として、α-アルミナ粒子の添加量は0.01質量%から4.2質量%の範囲が好ましく、0.1質量%から1.5質量%の範囲がさらに好ましい。また、種結晶の添加量が多いほど板状アルミナ粒子の粒径が小さくなる傾向にある。そのため、板状アルミナ粒子の粒径を小さくする観点ではα-アルミナ粒子の添加量は多い方が良く、1質量%以上が好ましく、3質量%以上が好ましい。α-アルミナ粒子の添加量が多くなると、得られる板状アルミナ粒子のアスペクト比が小さくなるため、板状アルミナ粒子のアスペクト比を高くする観点では、α-アルミナ粒子の添加量は30質量%以下にすることが好ましい。
 なお、種結晶として板状アルミナ粒子を用いてもよい。予め板状化したα-アルミナを種結晶として用いることで、合成後の板状アルミナ粒子の板面粒径(長軸長)が大きくなり、アスペクト比を高めることができる。添加する板状アルミナ粒子の板面粒径、厚みに特に限定はないが、高アスペクト比の板状アルミナ粒子を得るには添加する種結晶も高アスペクト比の粉末を用いる方が好ましい。また、高純度な板状アルミナ粒子を得る観点では、種結晶として添加する板状アルミナ粒子も不純物元素が少ない方が好ましい。この点、本発明の方法で作製した板状アルミナ粒子を種結晶として添加することが好ましい。
 本発明の製法において、フッ化物は、フッ素を含む化合物であれば特に限定されない。フッ化物としては、例えば、MgF2やCaF2などの第2族元素とFとの化合物、YF3などの希土類元素とFとの化合物、FeF3等の遷移金属とFとの化合物、AlとFとの化合物、フッ素のアンモニウム塩(NH4F)などが挙げられる。金属元素を含むフッ化物を用いる場合は融点が高い方が良く、融点が900℃以上の化合物が好ましい。このようなフッ化物は蒸発しにくいため、合成される板状アルミナ中に不純物となる金属元素が混入しにくくなるからである。NH4Fのように金属元素を含まないフッ化物を用いる場合は、板状アルミナ粉末中に金属元素が不純物として混入しないため好ましい。これらの観点から、フッ化物のうち、希土類元素のフッ化物、AlとFとの化合物、NH4Fが好ましく、中でもAlとFとの化合物が好ましく、AlF3が特に好ましい。フッ化物の形態は、特に限定するものではなく、微粒でもよいし、フレーク状でもよいし、ファイバー状でもよいし、膜状でもよいし、バルク形態でもよい。
 本発明の製法において、フッ化物の使用量は、遷移アルミナに対するフッ化物中のFの割合が0.17質量%以上となるように設定するのが好ましい。この割合が0.17質量%未満では熱処理後に得られるアルミナ粒子が板状化しないからである。
 本発明の製法において、容器としては、フッ化物中のFの質量を容器の容積で除した値(以下、「F質量/容器容積」という)が6.5×10-5g/cm3以上になるものを用意する。F質量/容器容積が6.5×10-5g/cm3未満だと、熱処理したとしてもα-アルミナが得られないからである。F質量/容器容積は大きい方が板状のα-アルミナ粉末の粒子形状やアスペクト比等が均一となるため好ましい。F質量/容器容積の上限は特にないが、大きすぎるとFを含有するガス成分の発生量が多くなり装置の腐食が進む可能性があり、装置寿命の観点では小さい方が好ましく、例えば1.4×10-1g/cm3以下が好ましく、1.4×10-2g/cm3以下がより好ましい。容器としては、例えば、一般的に使用されるるつぼやさやなどを使用可能である。
 本発明の製法において、容器は、熱処理温度で揮発したりアルミナ成分やF成分と反応したりする成分が含まれていることは好ましくない。また、容器を構成する材料中に、F成分(例えばAlF3ガス)と反応して昇華するものが含まれていたり、フッ化物の沸点が低い元素が含まれていたりすることも好ましくない。このため、容器を構成する材料は、Al,O,Mg,Ca,Sr,N,Re(Re:希土類元素)以外の元素の合計が1質量%以下であることが好ましい。こうすれば、熱処理後に得られる板状アルミナ粉末に容器由来の不純物元素が混入しにくく、高純度品が得られるからである。純度を一層高くするには、上述した元素の合計が0.5質量%以下であることが好ましく、0.1質量%以下であることがより好ましい。Mg,Ca,Sr、ReはF成分と反応してフッ化物が生じたとしても、沸点が高く昇華しづらい。しかし、Mg,Ca,Sr,Reはアルミナ成分と反応する可能性があるため、混合粉末をアルミナ製のセッター上に設置するなど、容器と原料粉末とが直接接触しないように工夫する必要がある。このため、こうした容器の材質としては、純度99質量%以上のAl23が好ましく、99.5質量%以上のAl23がより好ましく、99.9質量%以上のAl23が更に好ましい。
 本発明の製法において、遷移アルミナとフッ化物とは互いに接触しないように容器に入れる。このときの入れ方は、両者が接触しなければよく、特に限定されない。例えば、大型容器の中に遷移アルミナを入れた小型容器を入れ、大型容器のうち小型容器の周囲にフッ化物を入れてもよい。あるいは、大型容器の中に遷移アルミナを入れた小型容器とフッ化物を入れた別の小型容器を入れてもよい。その場合、両方の小型容器を大型の容器の底面に並べてもよいし、一方の小型容器の上に他方の小型容器を積み上げてもよい。あるいは、一つの容器の中に遷移アルミナとフッ化物とを接触しないように配置してもよい。遷移アルミナとフッ化物を互いに接触しないようにして熱処理することで、凝集が少ない板状粉末を得ることができる。また、不純物が多いフッ化物やAl以外の元素を含むフッ化物を用いる場合にも高純度な板状粉末を得ることができる。凝集が少なくなる理由は不明だが、遷移アルミナとフッ化物を接触させて熱処理するとフッ化物の周辺に凝集が生じやすいと考えられる。
 本発明の製法において、遷移アルミナとフッ化物とを接触しないように容器に入れた容器を閉じたあと熱処理する。板状化及びα化を進めるには、容器を閉じることが必要である。容器を閉じる際には、密閉してもよいし、密閉しなくてもよい。例えば、容器としてさやを用いる場合には、さやにセッター(蓋)を被せて閉じてもよい。この場合、容器の内外が通じるように閉じられるため、容器は密閉されない。あるいは、容器として多孔質材料製のものを用いる場合には、遷移アルミナとフッ化物とをその容器に閉じ込めてもよい。この場合、容器の多孔質材料製の壁を介して容器の内外は通じた状態となるため、容器は密閉されない。あるいは、緻密質の容器を用いてその容器の口をパッキン付きの蓋で塞いだり、金属製容器を用いてその口を溶接等で封止してもよい。これらの場合、容器は密閉される。容器が密閉されると、熱処理時に発生するガスにより容器の内圧が高まるため、耐圧性を高める必要がある。このため、作業性や製造コスト上の観点では、容器を密閉するよりも、容器を密閉せずに(つまり容器の内外が通じるように)閉じるのが好ましい。
 本発明の製法において、熱処理によって得られたα-アルミナ粒子が板状か否かは、そのアルミナ粒子のアスペクト比によって判定した。すなわち、アスペクト比が3以上の場合に板状であると判定し、3未満の場合に板状でないと判定した。ここで、アスペクト比とは平均粒径/平均厚み、平均粒径とは粒子板面の長軸長の平均値、平均厚みとは粒子の短軸長(厚み)の平均値である。
 本発明の製法において、熱処理温度は750~1650℃に設定する。熱処理温度が750℃未満では、熱処理後にγ-アルミナが残存することがあるため好ましくない。熱処理温度が1650℃を超えると、得られる粉末のアスペクト比が3未満となるため好ましくない。熱処理温度は850~1350℃が好ましく、850~1200℃が更に好ましく、850~1100℃が最も好ましい。
 本発明の製法において、熱処理により得られた板状アルミナの解砕処理を行ってもよい。こうすれば、板状のα-アルミナ粒子が凝集して塊状体になったものを解砕することができる。例えば板状アルミナ粉末を配向アルミナを作製する原料として用いる場合、適切な形状の板状アルミナ粉末を提供することができる。解砕方法は、特に限定されるものではなく、例えば、ボールミルやビーズミル、振動ミル、ジェットミル、ハンマーミル、ピンミル、バルベライザー、石臼式粉砕機、湿式微粒化装置、その他気流粉砕機や機械式粉砕機等が挙げられる。
 本発明の製法において、熱処理により得られた板状アルミナ粉末を大気、不活性又は真空の雰囲気下で500~1350℃でアニール処理してもよい。ここで「真空」とは、大気圧より減圧された圧力を意味する。アニール処理時に大気、不活性ガス等を流してもよい。このようなアニール処理を行うことにより、熱処理により得られた板状アルミナ粉末に残留した不純物元素、特にFの濃度を更に低くしたりゼロにしたりすることができる。アニール処理の温度が500℃未満では、アニール処理の前後で板状アルミナ粒子のF濃度がほとんど変わらないため好ましくない。アニール処理の温度が1350℃を超えると、板状アルミナ粒子の周囲が溶融したり、板状アルミナ粒子同士が焼結してアスペクト比が低くなりすぎるため、好ましくない。Fの濃度を効率的に低下させ、且つ板状アルミナ粒子の形状を維持するには、アニール処理の温度は、700~1250℃が好ましく、800~1200℃がより好ましく、900~1150℃が更に好ましい。なお、アニール時に用いる容器は、板状アルミナ粒子の作製時に用いる容器と同様の材質からなるものが好ましく、Fなどの不純物元素が揮発しやすいように蓋がないものが好ましい。特に不純物元素抑制の観点からは純度99質量%以上のAl23が好ましく、99.5質量%以上のAl23がより好ましい。
 こうしたアニール処理の後に板状アルミナの解砕処理を行ってもよい。こうすれば、板状のα-アルミナ粒子が凝集して塊状体になったものを解砕することができる。例えば板状アルミナ粉末を配向アルミナを作製する原料として用いる場合、配向アルミナを作製する原料として適切な形状の板状アルミナ粉末を提供することができる。解砕方法は、特に限定されるものではなく、例えば、開口径10~100μmのメッシュやスクリーンに押し当てて解砕する方法やボールミル、ビーズミル、振動ミル、ジェットミル、ハンマーミル、ピンミル、バルベライザー、石臼式粉砕機、湿式微粒化装置、その他気流粉砕機や機械式粉砕機等が挙げられる。
 本発明の製法によれば、以下のような板状アルミナ粉末を得ることができる。すなわち、板状アルミナ粉末を構成する板状のα-アルミナ粒子が、c軸に直交する結晶面が平板状に成長しており、平均粒径D50が0.3~50μm、板面の粒径/厚みで表されるアスペクト比が3~500の板状アルミナ粉末を作製することができる。こうした板状アルミナ粉末は、配向アルミナ焼結体を作製するのに適しており、例えばテープ成形や押出成形、鋳込み成形で障害になることはない。また、板状アルミナ粉末は、Al,O,H,F,C,S以外の各元素の質量割合が10ppm以下であることが好ましい。
 本発明の製法で得られる板状アルミナ粉末を用いて透明アルミナを作製することができる。透明アルミナ基板の作製において、原料中に含まれるFの仕込量によって焼結挙動が異なり、得られる焼結体の配向度や透光性、緻密度などの特性も異なる。このため、透明アルミナ基板を作製する場合は仕込み組成等を勘案し、板状アルミナ粉末に残留するF量を適正値に制御する必要がある。
 本発明の製法で得られる板状アルミナ粉末中のF量は、遷移アルミナに対するフッ化物中のFの割合を制御することや、熱処理温度を制御することや、得られた板状粉末をアニール処理することで制御可能である。例えば、F量を多く含有する板状アルミナは、遷移アルミナに対するフッ化物中のFの割合を大きくして熱処理することや、熱処理温度を低くすることで得られる。一方、含有するF量の少ない板状アルミナは、遷移アルミナに対するフッ化物中のFの割合を小さくして熱処理することや、熱処理温度を高くすることや、得られた板状アルミナをアニール処理することで得られる。
 遷移アルミナに対するフッ化物中のFの割合を制御することで、得られる板状アルミナの粒径、粒子厚さ、凝集量を制御できる。粒径を大きくするという観点では、遷移アルミナに対するフッ化物中のFの割合を大きくすることが好ましい。一方、粒子厚さを厚くし、凝集量を少なくするという観点では、遷移アルミナに対するフッ化物中のFの割合を小さくすることが好ましい。フッ化物としてAlF3を用いる場合、粒径を大きくするという観点では、遷移アルミナに対するフッ化物中のFの割合は大きい方が良く、0.7質量%以上が好ましく、2.7質量%以上がさらに好ましい。ただし、遷移アルミナに対するフッ化物中のFの割合を2.7質量%以上に増やしても、粒径を大きくする効果が小さくなる場合がある。粒子厚さを厚くし、凝集量を少なくするという観点では、遷移アルミナに対するフッ化物中のFの割合は小さい方が良く、2.7質量%以下が好ましく、1.8質量%以下がさらに好ましい。ただし、板状アルミナのアスペクト比を3以上に保つには、0.17質量%以上が必要である。大粒径、高アスペクト比を両立し、凝集量を少なくする範囲として、遷移アルミナに対するフッ化物中のFの割合は0.7質量%から2.7質量%の範囲が好ましく、1.0質量%から2.0質量%の範囲がさらに好ましい。
1.アルミナ粉末の評価方法
(1)粒径・厚み・アスペクト比
 下記2.の各実験例で得た板状アルミナ粉末に含まれる粒子の平均粒径、平均厚み、アスペクト比は、走査型電子顕微鏡(SEM)で板状アルミナ粉末中の任意の粒子100個を観察して決定した。平均粒径は、粒子板面の長軸長の平均値、平均厚みは、粒子の短軸長(厚み)の平均値、アスペクト比は平均粒径/平均厚みを算出したものである。板状のα-アルミナ粒子の模式図を図1に示す。図1(a)は平面図、図1(b)は正面図である。板状のα-アルミナ粒子は、平面視したときの形状が略六角形状であり、その粒径は図1(a)に示したとおりであり、厚みは図1(b)に示したとおりである。
(2)純度
 各実験例で得た板状アルミナ粉末に含まれる元素を下記の方法にて定量分析した。
 C,S:炭素・硫黄分析装置(LECO製 CS844)を用いて燃焼(高周波加熱)-赤外線吸収法にて分析した。
 N:酸素・窒素分析装置(堀場製作所製 EMGA-650W)を用いて、不活性ガス融解-熱伝導度法にて分析した。
 H:水素分析装置(堀場製作所製 EMGA-921)にて不活性ガス融解-非分散型赤外線吸収法にて分析した。
 F:アルカリ融解-イオンクロマトグラフ法にて分析した。白金るつぼ中で板状アルミナ粉末0.1~1重量部に対し、無水炭酸ナトリウム1~3重量部を加えて均一になるようによくかき混ぜた後、加熱、融解した。放冷後、融成物をるつぼごと温水の入ったビーカーに入れて加温し、可溶性塩を完全に溶解した。得られた水溶液をイオンクロマトグラフィー(サーモフィッシャーサイエンス製IC-5000)にて分析した。
 上記以外の不純物元素(主にSi,Fe,Ti,Na,Ca,Mg,K,P,V,Cr,Mn,Co,Ni,Cu,Zn,Y,Zr,Pb,Bi,Li,Be,B,Cl,Sc,Ga,Ge,As,Se,Br,Rb,Sr,Nb,Mo,Ru,Rh,Pd,Ag,Cd,In,Sn,Sb,Te,Cs,Ba,Hf,Ta,W,Ir,Pt,Au,Hg,La,Ce,Pr,Nd,Sm,Eu,Gd,Tb,Dy,Ho,Er,Tm,Yb,Lu):JISR1649に準拠した加圧硫酸分解法にて板状アルミナ粉末を溶解し、ICP(誘導結合プラズマ)発光分析装置(日立ハイテクサイエンス製 PS3520UV-DD)にて分析した。
(3)結晶相
 各実験例で得た板状アルミナ粉末の結晶相は、X線回折装置(BRUKER製、D8 ADVANCE)を用いて2θ/θ測定によって得たX線回折スペクトルから同定した。ここでは、CuKα線を用いて、管電流40mA、管電圧40kVという条件で、2θ/θ=20°~70°で測定した。
(4)種結晶の平均粒径(D50)
 種結晶の平均粒径(D50)は粒度分布測定装置(日機装製、MT3300II)を用いて測定した。
(5)凝集の有無
 凝集の有無は、上記1.(1)と同様、SEMで板状アルミナ粉末中の粒子を観察して決定した。凝集とは、板状粒子が板状形状を保ったまま、板状粒子同士が固着する状態であり、物理的、化学的に結合した状態を指す。ネッキングなども含まれる。
2.実験例
(1)実験例1
 高純度γ-アルミナ粉末(TM-300D、大明化学製)55gを、純度99.9質量%の高純度アルミナ製のさやA(容積170cm3)に入れ、さやAを純度99.9質量%の高純度アルミナ製のさやB(容積840cm3)内に配置した。使用した高純度γ-アルミナの純度を評価したところ、Al,O,F,H,C,S以外の各不純物元素は質量割合で10ppm以下であった。高純度AlF3粉末(関東化学製、鹿特級)2.2gをさやBに入れ、純度99.9質量%の高純度アルミナ製の蓋をして電気炉内でエアフロー中、900℃、4時間熱処理してアルミナ粉末を得た。エアの流量は25000cc/minとした。さやBを蓋で閉じた際、さやBは密閉されていない状態であった。図2にこのときの実験装置の模式図を示す。遷移アルミナであるγ-アルミナに対するフッ化物であるAlF3中のFの質量割合(=F使用割合)は2.7質量%であった。また、AlF3中のFの質量をさやBの容積(容器容積)で除した値(=F質量/容器容積)は0.0018g/cm3であった。
 得られた粉末に含まれる粒子をSEMにて観察したところ、板面の平均粒径は5.5μm、平均厚さは0.2μm、アスペクト比は27.5であった。この粉末中のAl,O,F,H,C,S以外の不純物元素を評価したところ、各不純物元素は質量割合で10ppm以下であり、Fは14500ppm、Cは<100ppm、Sは200ppmであった。なお、ppmは質量割合を示す。結晶相は、α-アルミナであった。図3に実験例1で得られた粉末のSEM写真を示す。また、図7に実験例1で得られた粉末の別視野のSEM写真を示す。
 実験例1の合成条件及び合成した粉末の特性を表1に示した。また、以下の実験例2以降の合成条件及び合成した粉末の特性も表1に合わせて示した。表1において、「不純物」とは、Al,O,H,F,C,S以外の元素を指す。「F含有量」は、合成した粉末全体に対するFの質量割合を示す。
(2)実験例2
 熱処理温度を700℃にした以外は実験例1と同様にして実験を行った。得られた粉末の結晶相は、γ-アルミナとα-アルミナが混在していた。
(3)実験例3
 熱処理温度を750℃にした以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(4)実験例4
 熱処理温度を1650℃にした以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(5)実験例5
 熱処理温度を1700℃にした以外は実験例1と同様にして実験を行った。得られた粉末を構成する粒子は、アスペクト比が2.5しかないα-アルミナ粒子であった。
(6)実験例6
 高純度γ-アルミナ粉末に代えて、ギブサイト粉末(CL-303、住友化学製)を用いたこと以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。得られた板状アルミナ粉末にはFeが120ppm、Naが310ppm、Caが40ppm含まれており、それ以外の各不純物元素は10ppm以下であった。
(7)実験例7
 高純度γ-アルミナ粉末に代えて、ベーマイト粉末(VK-BG613、宣城晶瑞新材料有限公司製)を用いたこと以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。得られた板状アルミナ粉末にはFeが60ppm、Siが60ppm含まれており、それ以外の各不純物元素は10ppm以下であった。
(8)実験例8
 高純度γ-アルミナ粉末100質量部と、種結晶として高純度α-アルミナ粉末(TM-DAR、大明化学製、D50=0.1μm)0.17質量部とを、株式会社カワタ製の混合機SMP-2を用いて、3000rpmで1.5分間乾式混合したものを用いたこと以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(9)実験例9
 高純度AlF3粉末の使用量を0.1gにしたこと以外は実験例1と同様にして実験を行った。このときのF使用割合は0.12質量%、F質量/容器容積は0.00008g/cm3であった。得られた粉末は結晶相がγ-アルミナのままであった。
(10)実験例10
 高純度AlF3粉末の使用量を0.14gにしたこと以外は実験例1と同様にして実験を行った。このときのF使用割合は0.17質量%、F質量/容器容積は0.0001g/cm3であった。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(11)実験例11
 高純度AlF3粉末の使用量を10gにしたこと以外は実験例1と同様にして実験を行った。このときのF使用割合は12.3質量%、F質量/容器容積は0.008g/cm3であった。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(12)実験例12
 高純度γ-アルミナ粉末の使用量を1.7g、高純度AlF3粉末の使用量を0.067gにしたこと以外は実験例1と同様にして実験を行った。このときのF質量/容器容積は0.000054g/cm3であった。得られた粉末は結晶相がγ-アルミナのままであった。
(13)実験例13
 高純度γ-アルミナ粉末の使用量を2.1g、高純度AlF3粉末の使用量を0.084gにしたこと以外は実験例1と同様にして実験を行った。このときのF質量/容器容積は0.000068g/cm3であった。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(14)実験例14
 図4に示すように、さやAを用いず、高純度γ-アルミナ粉末と高純度AlF3粉末をさやB内に互いに接触しないに配置したこと以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(15)実験例15
 高純度γ-アルミナ粉末と高純度AlF3粉末とを実験例1と同様に秤量し、これらをイソプロピルアルコールを溶媒としてφ2mmのアルミナボールを用いて5時間ポットミルで混合した。得られた混合物をさやBに入れて蓋をして、電気炉内でエアフロー中、900℃、3時間熱処理してアルミナ粉末を得た。エアの流量は25000cc/minとした。図5にこのときの実験装置の模式図を示す。F質量/容器容積は0.0018g/cm3であった。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。そのSEM写真を図6に示す。このように、遷移アルミナ粉末とフッ化物粉末とを混合した混合粉末を用いた場合でも、板状アルミナ粉末が得られた。なお、実験例15の粉末(図6参照)と実験例1の粉末(図7参照)とを比べると、実験例15の粉末の方が多く凝集していた。このことから、遷移アルミナ粉末とフッ化物粉末とを混合した混合粉末を熱処理した場合に比べて、遷移アルミナとフッ化物を互いに接触しないようにして熱処理した方が凝集の少ない板状粉末を得ることができることがわかった。
(16)実験例16
 熱処理後に純度99.9質量%のアルミナ製さやに入れ、大気中、450℃で40時間アニール処理をしたこと以外は実験例1と同様にして実験を行った。得られた粉末は、実験例1と同等の板状アルミナ粉末であった。
(17)実験例17
 アニール条件を大気中500℃で200時間とした以外は実験例16と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例1,16と比べて、アスペクト比及び不純物量が同等でF含有量が少ない板状アルミナ粉末であった。
(18)実験例18
 アニール条件を大気中900℃で3時間とした以外は実験例16と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例1,16と比べて、アスペクト比及び不純物量が同等でF含有量が少ない板状アルミナ粉末であった。
(19)実験例19
 アニール条件を大気中1350℃で43時間とした以外は実験例16と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例1,16と比べて、不純物量が同等でアスペクト比が小さくF含有量が極めて少ない板状アルミナ粉末であった。
(20)実験例20
 アニール条件を大気中1400℃で43時間とした以外は実験例16と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例1,16と比べて、不純物量が同等でF含有量が極めて少なかったが、アスペクト比が2.9しかないα-アルミナ粒子であった。
(21)実験例21
 熱処理時に蓋をしなかったこと以外は実験例1と同様にして実験を行った。得られた粉末は、結晶相がγ-アルミナのままであった。
(22)実験例22
 高純度AlF3粉末(関東化学製、鹿特級)の代わりにAlF3粉末(森田化学製、MB-AlF3)を用いたこと以外は実験例1と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。使用したAlF3粉末の純度を評価したところ、Caが400ppm、Naが800ppm含まれており、それ以外の各不純物元素は10ppm以下であった。得られた粉末のAl,O,H,F,C,S以外の各元素の質量割合は10ppm以下であった。このように低純度のAlF3粉末を用いた場合でも、高純度の板状アルミナ粉末が得られた。
(23)実験例23
 高純度AlF3粉末の使用量を1.21gにしたこと以外は実験例1と同様にして実験を行った。このときのF使用割合は1.5質量%、F質量/容器容積は0.0010g/cm3であった。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。
(24)実験例24
 熱処理後に純度99.9質量%のアルミナ製さやに入れ、大気中、900℃で3時間アニール処理をしたこと以外は実験例23と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例23と比べて、アスペクト比及び不純物量が同等でF含有量が少ない板状アルミナ粉末であった。
(25)実験例25
 アニール条件を大気中1150℃で43時間とした以外は実験例16と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例1,16と比べて、アスペクト比がやや小さく、不純物量が同等でF含有量が極めて少ない板状アルミナ粉末であった。
(26)実験例26
 熱処理後に純度99.9質量%のアルミナ製さやに入れ、大気中、900℃で3時間アニール処理をしたこと以外は実験例8と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例8と比べて、アスペクト比及び不純物量が同等でF含有量が少ない板状アルミナ粉末であった。
(27)実験例27
 アニール条件を大気中1150℃で43時間とした以外は実験例26と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。具体的には、実験例8と比べて、アスペクト比がやや小さく、不純物量が同等でF含有量が極めて少ない板状アルミナ粉末であった。
(28)実験例28
 高純度AlF3粉末(関東化学製、鹿特級)の代わりにAlF3粉末(森田化学製、MB-AlF3)を用いたこと以外は実験例15と同様にして実験を行った。得られた粉末は、板状のα-アルミナ粒子で構成された板状アルミナ粉末であった。得られた板状アルミナ粉末にはCaが16ppm、Naが32ppm含まれており、それ以外の各不純物元素は10ppm以下であった。
Figure JPOXMLDOC01-appb-T000001
 上述した実験例2,9,12,15,21,28を除く全ての板状アルミナ粉末をポットミルで解砕したところ、粉末の凝集がなくなった。実験例15,28は凝集が残留した。実験例15,28の板状粉末の凝集を取り除くには、ポットミルの解砕条件を強化し、且つ長時間解砕する必要があった。
 なお、実験例1~28のうち、本発明の実施例に相当するのは、実験例2,5,9,12,15,20,21,28を除く20例である。実験例20は、熱処理後にアニール処理を実施した例であり、アニール処理を実施する前までは実験例1と同じであるため本発明の実施例に相当するが、アニール処理を実施した後はアスペクト比が3未満になるため本発明の実施例から外れる。本発明は、これらの実施例に何ら限定されるものではなく、本発明の技術的範囲に属する限り、種々の態様で実施することができる。
 本出願は、2015年9月30日に出願された日本国特許出願第2015-193942号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
 本発明の製法で得られる板状アルミナ粉末を用いて透明アルミナを作製することができる。

Claims (8)

  1.  ギブサイト、ベーマイト及びγ-アルミナからなる群より選ばれる少なくとも1種の遷移アルミナと、フッ化物とを用意し、前記フッ化物の使用量は、前記遷移アルミナに対する前記フッ化物中のFの割合が0.17質量%以上となるように設定し、容器として、前記フッ化物中のFの質量を前記容器の容積で除した値が6.5×10-5g/cm3以上になるものを用意し、前記遷移アルミナと前記フッ化物とを互いに接触しないように前記容器に入れ、前記容器を閉じたあと750~1650℃で熱処理することにより板状のα-アルミナ粉末を得る、
     板状アルミナ粉末の製法。
  2.  前記フッ化物としてAlとFとの化合物を用いる、
     請求項1に記載の板状アルミナ粉末の製法。
  3.  前記遷移アルミナに含まれるAl,O,F,H,C,S以外の各元素の質量割合が10ppm以下である、
     請求項1又は2に記載の板状アルミナ粉末の製法。
  4.  前記遷移アルミナに種結晶としてα-アルミナ粒子を添加する、
     請求項1~3のいずれか1項に記載の板状アルミナ粉末の製法。
  5.  前記容器は99.5質量%以上がアルミナである、
     請求項1~4のいずれか1項に記載の板状アルミナ粉末の製法。
  6.  前記熱処理の後に前記板状アルミナの解砕処理を行う、
     請求項1~5のいずれか1項に記載の板状アルミナ粉末の製法。
  7.  前記熱処理することにより得られた前記板状アルミナを大気、不活性又は真空の雰囲気下で500~1350℃でアニール処理する、
     請求項1~6のいずれか1項に記載の板状アルミナ粉末の製法。
  8.  前記アニール処理の後に前記板状アルミナの解砕処理を行う、
     請求項7に記載の板状アルミナ粉末の製法。
PCT/JP2016/078382 2015-09-30 2016-09-27 板状アルミナ粉末の製法 WO2017057322A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201680002585.8A CN107074574B (zh) 2015-09-30 2016-09-27 板状氧化铝粉末的制法
JP2017511972A JP6660943B2 (ja) 2015-09-30 2016-09-27 板状アルミナ粉末の製法
TW105131222A TWI692443B (zh) 2015-09-30 2016-09-29 板狀氧化鋁粉末的製法
US15/446,539 US10221076B2 (en) 2015-09-30 2017-03-01 Method for producing a plate-like alumina power

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015193942 2015-09-30
JP2015-193942 2015-09-30

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/446,539 Continuation US10221076B2 (en) 2015-09-30 2017-03-01 Method for producing a plate-like alumina power

Publications (1)

Publication Number Publication Date
WO2017057322A1 true WO2017057322A1 (ja) 2017-04-06

Family

ID=58423836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/078382 WO2017057322A1 (ja) 2015-09-30 2016-09-27 板状アルミナ粉末の製法

Country Status (5)

Country Link
US (1) US10221076B2 (ja)
JP (1) JP6660943B2 (ja)
CN (1) CN107074574B (ja)
TW (1) TWI692443B (ja)
WO (1) WO2017057322A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194160A1 (ja) * 2018-04-03 2019-10-10 Dic株式会社 板状アルミナを含有する樹脂組成物及び放熱部材

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110938862A (zh) * 2019-12-23 2020-03-31 苏州纳迪微电子有限公司 高纯度单晶刚玉粉体及其制备方法
CN115536369B (zh) * 2022-10-18 2023-09-26 湖北晶耐新材料有限公司 一种自增韧氧化铝陶瓷材料的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500947A (ja) * 1987-12-23 1992-02-20 アルミナム カンパニー オブ アメリカ 小さなα―アルミナ粒子及び板状子
JPH06329412A (ja) * 1993-05-20 1994-11-29 Sumitomo Chem Co Ltd α−アルミナの製造方法
WO2009028887A2 (en) * 2007-08-31 2009-03-05 Jps Micro-Tech Co., Ltd. Method of manufacturing flake aluminum oxide
WO2014102249A1 (en) * 2012-12-28 2014-07-03 Albemarle Europe Sprl Production method of a novel polishing alumina

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5149520A (en) * 1987-12-23 1992-09-22 Aluminum Company Of America Small sized alpha alumina particles and platelets
JP3744010B2 (ja) 1993-06-30 2006-02-08 住友化学株式会社 α−アルミナ粉末の製造方法
JP2916664B2 (ja) 1994-05-24 1999-07-05 株式会社ニッカトー 配向性アルミナ質焼結体
AUPN053395A0 (en) * 1995-01-12 1995-02-09 Alcoa Of Australia Limited Production of alpha alumina
DE69634164T2 (de) 1995-08-24 2005-12-22 Kinsei Matec Co., Ltd., Osaka Aluminiumoxydteilchen mit erhöhter Dispergierbarkeit und Plastizität und Verfahren zu ihrer Herstellung
JP3758920B2 (ja) 1999-12-02 2006-03-22 三菱重工業株式会社 石炭粉砕性自動推定装置
JP2002293609A (ja) 2001-03-29 2002-10-09 Ngk Insulators Ltd セラミックス多結晶体及びその製造方法
CN1193958C (zh) * 2002-06-03 2005-03-23 江都市新晶辉特种耐火材料有限公司 以γ-Al2O3为原料生产烧结板状刚玉的工艺方法
AU2003900030A0 (en) 2003-01-07 2003-01-23 Advanced Nano Technologies Pty Ltd Process for the production of ultrafine plate-like alumina particles
KR100803049B1 (ko) 2007-08-31 2008-02-22 (주)제이피에스 마이크로텍 마이크로파를 이용한 박편상의 산화알루미늄 제조방법
CN100594181C (zh) * 2007-12-17 2010-03-17 中国铝业股份有限公司 一种片状氧化铝粉体制备方法
CN101607726A (zh) * 2008-06-20 2009-12-23 大连交通大学 原级颗粒为近六边形板片状或鼓状的α-氧化铝粉体的制造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04500947A (ja) * 1987-12-23 1992-02-20 アルミナム カンパニー オブ アメリカ 小さなα―アルミナ粒子及び板状子
JPH06329412A (ja) * 1993-05-20 1994-11-29 Sumitomo Chem Co Ltd α−アルミナの製造方法
WO2009028887A2 (en) * 2007-08-31 2009-03-05 Jps Micro-Tech Co., Ltd. Method of manufacturing flake aluminum oxide
WO2014102249A1 (en) * 2012-12-28 2014-07-03 Albemarle Europe Sprl Production method of a novel polishing alumina

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MITSUO SHIMBO ET AL.: "Influence of Addition of AlF3 on Thermal Decomposition of Gibbsite and Phase Transition of the Intermediate Alumina to alpha-Al2O3", JOURNAL OF THE CERAMIC SOCIETY OF JAPAN, vol. 115, no. 9, 2007, pages 536 - 540, XP055240620 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019194160A1 (ja) * 2018-04-03 2019-10-10 Dic株式会社 板状アルミナを含有する樹脂組成物及び放熱部材
JPWO2019194160A1 (ja) * 2018-04-03 2021-04-22 Dic株式会社 板状アルミナを含有する樹脂組成物及び放熱部材

Also Published As

Publication number Publication date
JPWO2017057322A1 (ja) 2018-07-26
US10221076B2 (en) 2019-03-05
JP6660943B2 (ja) 2020-03-11
CN107074574A (zh) 2017-08-18
US20170174524A1 (en) 2017-06-22
TW201730109A (zh) 2017-09-01
TWI692443B (zh) 2020-05-01
CN107074574B (zh) 2020-09-22

Similar Documents

Publication Publication Date Title
JP6615116B2 (ja) 板状アルミナ粉末の製法
JP3738454B2 (ja) 複合金属酸化物粉末およびその製造方法
KR102154947B1 (ko) MXene 입자 재료, 그들 입자 재료의 제조 방법 및 이차 전지
Won et al. Efficient solid-state route for the preparation of spherical YAG: Ce phosphor particles
TWI415980B (zh) Α Aluminum oxide powder
WO2017057322A1 (ja) 板状アルミナ粉末の製法
WO2022071245A1 (ja) 六方晶窒化ホウ素粉末、及び焼結体の製造方法
TW201829299A (zh) 高純度氮化矽粉末之製造方法
Ohyama et al. Combustion synthesis of YAG: Ce phosphors via the thermite reaction of aluminum
CN113348148B (zh) 磷酸钛锂的制造方法
Serivalsatit et al. Synthesis of Er-doped Lu2O3 nanoparticles and transparent ceramics
TW201238929A (en) Process for producing sintered magnesium oxide material
WO2014050899A1 (ja) 高電子密度の導電性マイエナイト化合物の製造方法
Mendoza-Mendoza et al. Synthesis and characterization of Ce-doped HfO2 nanoparticles in molten chlorides
Jemmali et al. Polycrystalline powder synthesis methods
Wan et al. Formation and characterization of lead magnesium niobate synthesized from the molten salt of potassium chlorate
WO2021125344A1 (ja) 非晶質リチウムイオン伝導酸化物粉末およびその製造方法、並びに、nasicon型結晶構造を有するリチウムイオン伝導酸化物粉末の製造方法
JP7165287B2 (ja) 窒化ホウ素粉末、及び窒化ホウ素粉末の製造方法
Mamonova et al. Synthesis and study of Y 2 O 3: Eu 3+ nanoparticles
Yuan et al. Titanium nitride nanopowders produced via sodium reductionin liquid ammonia
JP7458576B2 (ja) 酸化タンタル粒子、及び酸化タンタル粒子の製造方法
JP2005263546A (ja) 希土類三二カルコゲナイド焼結体およびその製造方法ならびに希土類三二カルコゲナイド粉末およびその製造方法
Li et al. Infrared transmission of Na+-doped γ-La2S3 ceramics densified by hot pressing
WO2022262417A1 (zh) 一种纳米氧化锆/铪及金属纳米颗粒的制备方法
RU2679244C1 (ru) Способ получения поликристаллов четверных соединений ALnAgS3 (A = Sr, Eu; Ln = Dy, Ho)

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017511972

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16851493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16851493

Country of ref document: EP

Kind code of ref document: A1