US20190247476A1 - Non-protein clostridial toxin compositions - Google Patents

Non-protein clostridial toxin compositions Download PDF

Info

Publication number
US20190247476A1
US20190247476A1 US16/332,923 US201716332923A US2019247476A1 US 20190247476 A1 US20190247476 A1 US 20190247476A1 US 201716332923 A US201716332923 A US 201716332923A US 2019247476 A1 US2019247476 A1 US 2019247476A1
Authority
US
United States
Prior art keywords
poloxamer
composition
methionine
trehalose
sucrose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US16/332,923
Other languages
English (en)
Inventor
Maurice Abiad
Bhas Dani
Evgenyi Shalaev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Allergan Inc
Original Assignee
Allergan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=59974865&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20190247476(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Allergan Inc filed Critical Allergan Inc
Priority to US16/332,923 priority Critical patent/US20190247476A1/en
Publication of US20190247476A1 publication Critical patent/US20190247476A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • A61K38/4886Metalloendopeptidases (3.4.24), e.g. collagenase
    • A61K38/4893Botulinum neurotoxin (3.4.24.69)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/08Solutions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/164Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/43Enzymes; Proenzymes; Derivatives thereof
    • A61K38/46Hydrolases (3)
    • A61K38/48Hydrolases (3) acting on peptide bonds (3.4)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/02Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/08Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing oxygen, e.g. ethers, acetals, ketones, quinones, aldehydes, peroxides
    • A61K47/10Alcohols; Phenols; Salts thereof, e.g. glycerol; Polyethylene glycols [PEG]; Poloxamers; PEG/POE alkyl ethers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/16Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing nitrogen, e.g. nitro-, nitroso-, azo-compounds, nitriles, cyanates
    • A61K47/18Amines; Amides; Ureas; Quaternary ammonium compounds; Amino acids; Oligopeptides having up to five amino acids
    • A61K47/183Amino acids, e.g. glycine, EDTA or aspartame
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/20Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite containing sulfur, e.g. dimethyl sulfoxide [DMSO], docusate, sodium lauryl sulfate or aminosulfonic acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/06Organic compounds, e.g. natural or synthetic hydrocarbons, polyolefins, mineral oil, petrolatum or ozokerite
    • A61K47/26Carbohydrates, e.g. sugar alcohols, amino sugars, nucleic acids, mono-, di- or oligo-saccharides; Derivatives thereof, e.g. polysorbates, sorbitan fatty acid esters or glycyrrhizin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, polyphosphazines, copolymers of polyalkylene glycol or poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/19Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles lyophilised, i.e. freeze-dried, solutions or dispersions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/24Antidepressants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/06Antiarrhythmics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention relates to solid and liquid pharmaceutical compositions comprising a clostridial toxin active ingredient and one or more non-protein excipient.
  • a pharmaceutical composition is a formulation which contains at least one active ingredient (such as a Clostridial toxin) as well as, for example, one or more excipients, buffers, carriers, stabilizers, preservatives and/or bulking agents, and is suitable for administration to a patient to achieve a desired diagnostic result or therapeutic effect.
  • active ingredient such as a Clostridial toxin
  • excipients such as a Clostridial toxin
  • a pharmaceutical composition can be formulated as a lyophilized (i.e. freeze dried) or vacuum dried powder which can be reconstituted with a suitable fluid, such as saline or water, prior to administration to a patient.
  • the pharmaceutical composition can be formulated as an aqueous solution or suspension.
  • a pharmaceutical composition can contain a proteinaceous active ingredient.
  • a protein active ingredient can be very difficult to stabilize (i.e. maintained in a state where loss of biological activity is minimized), thereby resulting in a loss of protein and/or loss of protein activity during the formulation, reconstitution (if required) and storage of the pharmaceutical composition prior to use.
  • Stability problems can arise due to surface adsorption of a protein active ingredient, physical instability, such as, e.g., denaturation or aggregation, or chemical instability, such as, e.g., cross-linking, deamidation, isomerization, oxidation, formation of acidic or basic species, Maillard reaction, and fragmentation.
  • physical instability such as, e.g., denaturation or aggregation
  • chemical instability such as, e.g., cross-linking, deamidation, isomerization, oxidation, formation of acidic or basic species, Maillard reaction, and fragmentation.
  • albumin and gelatin have been used to stabilize a protein active ingredient present in a pharmaceutical composition.
  • protein excipients such as albumin or gelatin
  • albumin and gelatin are expensive and increasingly difficult to obtain.
  • blood products or animal derived products such as albumin and gelatin, when administered to a patient can subject the patient to a potential risk of receiving blood borne pathogens or infectious agents.
  • an animal-derived protein excipient in a pharmaceutical composition can result in inadvertent incorporation of infectious elements into the pharmaceutical composition.
  • human serum albumin may transmit prions into a pharmaceutical composition.
  • suitable non-protein excipients such as, e.g., stabilizers, cryo-protectants and lyo-protectants, which can be used to stabilize the protein active ingredient present in a pharmaceutical composition.
  • Clostridial toxins further constrain and hinder the selection of suitable non-protein excipients for a pharmaceutical composition comprising a Clostridial toxin active ingredient.
  • Clostridial toxins are large proteins having an average molecular weight of approximately 150 kDa, and are further complexed with non-toxin associated proteins that increase the size to approximately 300-900-kDa.
  • the size of a Clostridial toxin complex makes it much more fragile and labile than smaller, less complex proteins, thereby compounding the formulation and handling difficulties if Clostridial toxin stability is to be maintained.
  • non-protein excipients such as, e.g., stabilizers, cryo-protectants and lyo-protectants must be able to interact with the Clostridial toxin active ingredient in a manner which does not denature, fragment or otherwise inactivate the toxin or cause disassociation of the non-toxin associated proteins present in the toxin complex.
  • Clostridial toxin active ingredient Another problem associated with a Clostridial toxin active ingredient, is the exceptional safety, precision, and accuracy that is necessary for at all steps of the formulation process. Thus, a non-protein excipient should not itself be toxic or difficult to handle so as to not exacerbate the already extremely stringent requirements.
  • Clostridial toxin active ingredient is the enormous low amounts of Clostridial toxin that is used in a pharmaceutical composition.
  • the biological activities of the Clostridial toxins are dependant, at least in part, upon their three dimensional conformation.
  • a Clostridial toxin is detoxified by heat, various chemicals, surface stretching, and surface drying.
  • dilution of a Clostridial toxin complex obtained by the known culturing, fermentation and purification methods results in rapid inactivation of the toxin.
  • Clostridial toxin active ingredient that is used in a pharmaceutical composition, makes this active ingredient very susceptible to adsorption to, e.g., the surfaces of laboratory glassware, vessels, to the vial in which the pharmaceutical composition is reconstituted and to the inside surface of a syringe used to inject the pharmaceutical composition.
  • Such adsorption of a Clostridial toxin active ingredient to surfaces can lead to a loss of active ingredient and to denaturation of the remaining Clostridial toxin active ingredient, both of which reduce the total activity of the active ingredient present in the pharmaceutical composition.
  • non-protein excipients such as, e.g., stabilizers, cryo-protectants and lyo-protectants must be able to act as surface blockers to prevent the adsorption of a Clostridial toxin active ingredient to a surface.
  • the pH-sensitivity associates with complex formation is known to be soluble in dilute aqueous solutions at pH 3.5-6.8.
  • the non-toxic associated proteins dissociate from the 150-kDa neurotoxin, resulting in a loss of toxicity, particularly as the pH rises above pH 8.0.
  • Edward J. Schantz et al., pp. 44-45 Preparation and characterization of botulinum toxin type A for human treatment , in Jankovic, J., et al., Therapy with Botulinum Toxin (Marcel Dekker, Inc., 1994).
  • non-protein excipients useful to formulate a pharmaceutical composition comprising a Clostridial toxin active ingredient must be able to operate within the confines of a pH level necessary to maintain the activity a Clostridial toxin active ingredient.
  • Clostridial toxin pharmaceutical composition wherein a Clostridial toxin active ingredient (such as a botulinum toxin) is stabilized by a non-protein excipient.
  • the present invention relates to solid and liquid Clostridial toxin pharmaceutical compositions with one or more non-protein excipients which functions to stabilize the Clostridial toxin active ingredient present in the solid or liquid pharmaceutical composition.
  • a pharmaceutical composition comprising a Clostridial toxin active ingredient, a tonicity agent, a surfactant and an antioxidant.
  • the pharmaceutical compositions comprises a botulinum toxin.
  • the pharmaceutical composition comprises trehalose.
  • the pharmaceutical composition comprises sodium chloride.
  • the composition comprises a poloxamer and/or a polysorbate.
  • the composition comprises poloxamer 188 and/or polysorbate 20.
  • the antioxidant is selected from the group consisting of L-methionine, N-Acetyl-cystein (NAC), butylated hydroxytoluene (BHT), ethylene diamine tetraacetic acid sodium salt (EDTA), an EDTA analog, ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid (EGTA), an EGTA analog, diethylenetriaminepentaacetic acid (DTPA), a DTPA analog, ascorbic acid, and combinations thereof.
  • the antioxidant is methionine.
  • the antioxidant is NAC.
  • the antioxidant is NAC and EDTA.
  • the composition further comprises a buffering agent.
  • the buffering agent includes histidine buffer.
  • the composition has a pH of from 5 to 7.
  • the composition is a liquid formulation. In some embodiments, the composition is a solid formulation.
  • the present disclosure provides a liquid pharmaceutical composition
  • a liquid pharmaceutical composition comprising a Clostridial toxin active ingredient, trehalose, poloxamer 188 or polysorbate 20, and L-methionine or N-acetyl-cysteine (NAC).
  • the liquid pharmaceutical composition comprises a botulinum toxin.
  • the liquid pharmaceutical composition further comprises EDTA or an EDTA analog.
  • the liquid pharmaceutical composition comprises a histidine buffer.
  • the pH of the liquid pharmaceutical composition ranges from 5 to 7.
  • the relative weight amount of L-methionine ranges from about 0.1% to about 0.3%.
  • the relative weight amount of NAC ranges from about 0.1% to about 0.5%.
  • the relative weight amount of EDTA ranges from about 0.01% to about 0.05%. In some embodiments, the relative weight amount of trehalose ranges from about 1.0 to about 10%. In some embodiments, the relative weight amount of poloxamer 188 ranges from about 2% to about 5%. In some embodiments, the relative weight amount of polysorbate 20 ranges from about 0.02% to about 0.06%.
  • the present disclosure provides a solid pharmaceutical composition
  • a solid pharmaceutical composition comprising a botulinum toxin, trehalose, poloxamer 188 or polysorbate 20, NAC, and EDTA or an EDTA analog.
  • the solid pharmaceutical composition comprises a botulinum toxin, trehalose, poloxamer 188, and NAC.
  • the solid pharmaceutical composition comprises a botulinum toxin, trehalose, poloxamer 188 and L-methionine.
  • the solid pharmaceutical composition further comprises histidine buffer.
  • the relative weight amount of L-methionine ranges from about 0.1% to about 0.3%.
  • the relative weight amount of NAC ranges from about 0.01% to about 0.05%. In some embodiments, the relative weight amount of EDTA ranges from about 0.01% to about 0.05%. In some embodiments, the relative weight amount of trehalose ranges from about 1.0 to about 10%. In some embodiments, the relative weight amount of poloxamer 188 ranges from about 0.5% to about 5%. In some embodiments, the relative weight amount of polysorbate 20 ranges from about 0.02% to about 0.06%.
  • compositions of the present invention provide stable liquid or solid pharmaceutical composition comprising a clostridical toxin active ingredient, a disaccharide, a surfactant and an antioxidant.
  • the disaccharide is optional.
  • Certain embodiments also provide methods for the treatment of various diseases, disorders, and conditions, including, for example, depression (e.g. major depressive disorder), headache (e.g. migraine, tension headache, and the like), pain, atrial fibrillation, hyperhidrosis, muscle spasticity, cervical dystonia, blepherospasm, overactive bladder (e.g. neurogenic detrusor overactivity, and idiopathic overactive bladder), bladder pain (e.g. interstitial cystitis, bladder pain syndrome), skin conditions (e.g. wrinkles, fine wrinkles, excess sebum production, acne, rosacea), irregularities, and the like using the compositions provided according to aspect of the present invention.
  • Embodiments can include various administration techniques, including, for example, injection, such as intramusclular, intracutaneous, subcutaneous, or the like, instillation, intravenous, transdermal, and topical.
  • an element means one element or more than one element.
  • “About” or “approximately” as used herein means within an acceptable error range for the particular value as determined by one of ordinary skill in the art, which will depend in part on how the value is measured or determined, (i.e., the limitations of the measurement system). For example, “about” can mean within 1 or more than 1 standard deviations, per practice in the art. Where particular values are described in the application and claims, unless otherwise stated, the term “about” means within an acceptable error range for the particular value.
  • administering means the step of giving (i.e. administering) a pharmaceutical composition to a subject, or alternatively a subject receiving a pharmaceutical composition.
  • the pharmaceutical compositions disclosed herein can be locally administered by various methods. For example, intramuscular, intradermal, subcutaneous administration, intrathecal administration, intraperitoneal administration, topical (transdermal), instillation, and implantation (for example, of a slow-release device such as polymeric implant or miniosmotic pump) can all be appropriate routes of administration.
  • “Alleviating” means a reduction in the occurrence of a pain, of a headache, or of any symptom or cause of a condition or disorder. Thus, alleviating includes some reduction, significant reduction, near total reduction, and total reduction.
  • an animal protein free pharmaceutical composition can include a botulinum neurotoxin.
  • an “animal protein free” pharmaceutical composition means a pharmaceutical composition which is either substantially free or essentially free or entirely free of a serum derived albumin, gelatin and other animal derived proteins, such as immunoglobulins.
  • An example of an animal protein free pharmaceutical composition is a pharmaceutical composition which comprises or which consists of a botulinum toxin (as the active ingredient) and a suitable polysaccharide as a stabilizer or excipient.
  • Antioxidant refers to any compound which protects an active ingredient from reaction with oxygen.
  • Antioxidants can be broadly divided into three categories: (i) sacrificial antioxidants, which react with oxygen more readily than a particular active ingredient and therefore can scavenge oxygen, e.g., ascorbic acid and sulfites; (ii) chain terminators, which are molecules that form stable radicals due to weak bonds to hydrogen atoms that are attacked in a propagation of radical chains by consumption of oxygen, e.g., methionine, NAC, glutathionine, lipoic acid, butylated hydroxytoluene (BHT), and cysteine, (iii) chelating agents, which reduce catalytic activity of transition metals by forming complexes with the metals, e.g., EDTA, EGTA and DTPA and analogs thereof.
  • sacrificial antioxidants which react with oxygen more readily than a particular active ingredient and therefore can scavenge oxygen, e
  • Bio activity describes the beneficial or adverse effects of a drug on living matter. When a drug is a complex chemical mixture, this activity is exerted by the substance's active ingredient but can be modified by the other constituents. Biological activity can be assessed as potency or as toxicity by an in vivo LD 50 or ED 50 assay, or through an in vitro assay such as, for example, cell-based potency assays (CBPAs) as described in U.S. 20100203559 and U.S. 20100233802. The activities of the compositions of the invention may be measured using any sutiable assay and are not limited to activities measured by CBPA. The potency described in the examples also encompasses potency when measured using LD50.
  • CBPAs cell-based potency assays
  • Botulinum toxin means a neurotoxin produced by Clostridium botulinum , as well as a botulinum toxin (or the light chain or the heavy chain thereof) made recombinantly by a non-Clostridial species.
  • botulinum toxin encompasses the botulinum toxin serotypes A, B, C, D, E, F and G, and their subtypes and any other types of subtypes thereof, or any re-engineered proteins, analogs, derivatives, homologs, parts, sub-parts, variants, or versions, in each case, of any of the foregoing.
  • botulinum toxin also encompasses a “modified botulinum toxin”. Further “botulinum toxin” as used herein also encompasses a botulinum toxin complex, (for example, the 300, 600 and 900 kDa complexes), as well as the neurotoxic component of the botulinum toxin (150 kDa) that is unassociated with the complex proteins.
  • Clostridial toxin refers to any toxin produced by a Clostridial toxin strain that can execute the overall cellular mechanism whereby a Clostridial toxin intoxicates a cell and encompasses the binding of a Clostridial toxin to a low or high affinity Clostridial toxin receptor, the internalization of the toxin/receptor complex, the translocation of the Clostridial toxin light chain into the cytoplasm and the enzymatic modification of a Clostridial toxin substrate.
  • Clostridial toxins include a Botulinum toxin like BoNT/A, a BoNT/B, a BoNT/C 1 , a BoNT/D, a BoNT/E, a BoNT/F, a BoNT/G, a Tetanus toxin (TeNT), a Baratii toxin (BaNT), and a Butyricum toxin (BuNT).
  • Clostridial toxin includes, without limitation, naturally occurring Clostridial toxin variants, such as, e.g., Clostridial toxin isoforms and Clostridial toxin subtypes; non-naturally occurring Clostridial toxin variants, such as, e.g., conservative Clostridial toxin variants, non-conservative Clostridial toxin variants, Clostridial toxin chimeric variants and active Clostridial toxin fragments thereof, or any combination thereof.
  • naturally occurring Clostridial toxin variants such as, e.g., Clostridial toxin isoforms and Clostridial toxin subtypes
  • non-naturally occurring Clostridial toxin variants such as, e.g., conservative Clostridial toxin variants, non-conservative Clostridial toxin variants, Clostridial toxin chimeric variants and active Clostridial toxin fragments
  • a Clostridial toxin disclosed herein also includes a Clostridial toxin complex.
  • Clostridial toxin complex refers to a complex comprising a Clostridial toxin and non-toxin associated proteins (NAPs), such as, e.g., a Botulinum toxin complex, a Tetanus toxin complex, a Baratii toxin complex, and a Butyricum toxin complex.
  • NAPs non-toxin associated proteins
  • Non-limiting examples of Clostridial toxin complexes include those produced by a Clostridium botulinum , such as, e.g., a 900-kDa BoNT/A complex, a 500-kDa BoNT/A complex, a 300-kDa BoNT/A complex, a 500-kDa BoNT/B complex, a 500-kDa BoNT/C 1 complex, a 500-kDa BoNT/D complex, a 300-kDa BoNT/D complex, a 300-kDa BoNT/E complex, and a 300-kDa BoNT/F complex.
  • a Clostridium botulinum such as, e.g., a 900-kDa BoNT/A complex, a 500-kDa BoNT/A complex, a 300-kDa BoNT/A complex, a 500-kDa BoNT/B complex, a 500-kDa BoNT/C 1 complex, a 500-kD
  • Clostridial toxin active ingredient refers to a molecule which contains any part of a clostridial toxin that exerts an effect upon or after administration to a subject or patient.
  • the term “clostridial toxin active ingredient” encompasses a Clostridial toxin complex comprising the approximately 150-kDa Clostridial toxin and other proteins collectively called non-toxin associated proteins (NAPs), the approximately 150-kDa Clostridial toxin alone, or a modified Clostridial toxin, such as, e.g., a re-targeted Clostridial toxins.
  • NAPs non-toxin associated proteins
  • “Deformity” means a cosmetic, physical or functional irregularity, defect, abnormality, imperfection, malformation, depression, or distortion.
  • Effective amount as applied to the biologically active ingredient means that amount of the ingredient which is generally sufficient to effect a desired change in the subject. For example, where the desired effect is a reduction in an autoimmune disorder symptom, an effective amount of the ingredient is that amount which causes at least a substantial reduction of the autoimmune disorder symptom, and without resulting in significant toxicity.
  • Effective amount when used in reference to the amount of an excipient or specific combination of excipients added to a Clostridial toxin composition, refers to the amount of each excipient that is necessary to achieve the desired initial recovered potency of a Clostridial toxin active ingredient.
  • an effective amount of an excipient or combination of excipients results in an initial recovered potency of, e.g., at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 100%.
  • a therapeutically effective concentration of a Clostridial toxin active ingredient reduces a symptom associated with the aliment being treated by, e.g., at most 10%, at most 20%, at most 30%, at most 40%, at most 50%, at most 60%, at most 70%, at most 80%, at most 90% or at most 100%.
  • Heavy chain means the heavy chain of a botulinum neurotoxin. It has a molecular weight of about 100 kDa and can be referred to as the H chain, or as H.
  • He means a fragment (about 50 kDa) derived from the H chain of a botulinum neurotoxin which is approximately equivalent to the carboxyl end segment of the H chain, or the portion corresponding to that fragment in the intact H chain. It is believed to be immunogenic and to contain the portion of the natural or wild type botulinum neurotoxin involved in high affinity, presynaptic binding to motor neurons.
  • H N means a fragment (about 50 kDa) derived from the H chain of a botulinum neurotoxin which is approximately equivalent to the amino end segment of the H chain, or the portion corresponding to that fragment in the intact in the H chain. It is believed to contain the portion of the natural or wild type botulinum neurotoxin involved in the translocation of the L chain across an intracellular endosomal membrane.
  • Light chain means the light chain of a clostridial neurotoxin. It has a molecular weight of about 50 kDa, and can be referred to as the L chain, L, or as the proteolytic domain (amino acid sequence) of a botulinum neurotoxin.
  • LH N or L-H N means a fragment derived from a clostridial neurotoxin that contains the L chain, or a functional fragment thereof coupled to the H N domain It can be obtained from the intact clostridial neurotoxin by proteolysis, so as to remove or to modify the He domain.
  • Implant means a controlled release (e.g., pulsatile or continuous) composition or drug delivery system.
  • the implant can be, for example, injected, inserted or implanted into a human body.
  • Liquid composition “Liquid composition”, “liquid pharmaceutical composition”, or “liquid formulation” refers to a pharmaceutically active preparation of drug or biologically active ingredient which is capable of being stored in a liquid pharmaceutical excipient, such as a buffering agent, for an extended period of time, such that it can be ready-to-use as needed by a clinician.
  • the liquid pharmaceutical composition is manufactured without a lyophilization process.
  • “Local administration” means direct administration of a pharmaceutical at or to the vicinity of a site on or within an animal body, at which site a biological effect of the pharmaceutical is desired, such as via, for example, intramuscular or intra- or subdermal injection or topical administration.
  • Topical administration is a type of local administration in which a pharmaceutical agent is applied to a patient's skin.
  • Lyoprotector or “lyoprotectant” means a substance that is included in a lyophilized formulation to protect a Clostridial toxin active ingredient during the freeze-drying process.
  • Lyoprotectors include for example polyhydroxy compounds such as sugars (mono-, di-, and polysaccharides), polyalcohols, and their derivatives.
  • Exemplary lyoprotectors which can be used with the lyophilized formulations disclosed herein include sucrose, trehalose, mannitol, sorbitol, glucose, raffinose, maltose, glycerol, lactose, fructose, galactose, and combinations thereof.
  • “Lyophilized composition”, “lyophilized pharmaceutical composition”, “lyophilized formulation”, or “solid composition” refers to a formulation containing a Clostridial toxin active ingredient which has been subjected to a lyophilization, freeze-drying or vacuum-drying process; and can be reconstituted with a reconstitution vehicle, such as for example saline or water, prior to administration to a patient.
  • the lyophilized composition can be a freeze-dried composition or a vacuum-dried composition.
  • Modified botulinum toxin means a botulinum toxin that has had at least one of its amino acids deleted, modified, or replaced, as compared to a native botulinum toxin. Additionally, the modified botulinum toxin can be a recombinantly produced neurotoxin, or a derivative or fragment of a recombinantly made neurotoxin. A modified botulinum toxin retains at least one biological activity of the native botulinum toxin, such as, the ability to bind to a botulinum toxin receptor, or the ability to inhibit neurotransmitter release from a neuron.
  • modified botulinum toxin is a botulinum toxin that has a light chain from one botulinum toxin serotype (such as serotype A), and a heavy chain from a different botulinum toxin serotype (such as serotype B).
  • a modified botulinum toxin is a botulinum toxin coupled to a neurotransmitter, such as substance P.
  • “Mutation” means a structural modification of a naturally occurring protein or nucleic acid sequence.
  • a mutation can be a deletion, addition or substitution of one or more nucleotides in the DNA sequence.
  • the mutation can be a deletion, addition or substitution of one or more amino acids in a protein sequence.
  • a specific amino acid comprising a protein sequence can be substituted for another amino acid, for example, an amino acid selected from a group which includes the amino acids alanine, aspargine, cysteine, aspartic acid, glutamic acid, phenylalanine, glycine, histidine, isoleucine, lysine, leucine, methionine, proline, glutamine, arginine, serine, threonine, valine, tryptophan, tyrosine or any other natural or non-naturally occurring amino acid or chemically modified amino acids.
  • Mutations to a protein sequence can be the result of mutations to DNA sequences that when transcribed, and the resulting mRNA translated, produce the mutated protein sequence. Mutations to a protein sequence can also be created by fusing a peptide sequence containing the desired mutation to a desired protein sequence.
  • “Patient” means a human or non-human subject receiving medical or veterinary care. Accordingly, the compositions as disclosed herein can be used in treating any animal, such as, for example, mammals, or the like.
  • “Peripherally administering” or “peripheral administration” means subdermal, intradermal, transdermal, or subcutaneous administration, but excludes intramuscular administration. “Peripheral” means in a subdermal location, and excludes visceral sites.
  • “Pharmaceutical composition” means a composition comprising an active pharmaceutical ingredient, such as, for example, a clostridial toxin active ingredient such as a botulinum toxin, and at least one additional ingredient, such as, for example, a stabilizer or excipient or the like.
  • a pharmaceutical composition is therefore a formulation which is suitable for diagnostic or therapeutic administration to a subject, such as a human patient.
  • the pharmaceutical composition can be, for example, in a lyophilized or vacuum dried condition, a solution formed after reconstitution of the lyophilized or vacuum dried pharmaceutical composition, or as a solution or solid which does not require reconstitution.
  • “Pharmacologically acceptable excipient” is synonymous with “pharmacological excipient” or “excipient” and refers to any excipient that has substantially no long term or permanent detrimental effect when administered to mammal and encompasses compounds such as, e.g., stabilizing agent, a bulking agent, a cryo-protectant, a lyo-protectant, an additive, a vehicle, a carrier, a diluent, or an auxiliary.
  • An excipient generally is mixed with an active ingredient, or permitted to dilute or enclose the active ingredient and can be a solid, semi-solid, or liquid agent.
  • a pharmaceutical composition comprising a Clostridial toxin active ingredient can include one or more pharmaceutically acceptable excipients that facilitate processing of an active ingredient into pharmaceutically acceptable compositions.
  • any pharmacologically acceptable excipient is not incompatible with the Clostridial toxin active ingredient, its use in pharmaceutically acceptable compositions is contemplated.
  • Non-limiting examples of pharmacologically acceptable excipients can be found in, e.g., Pharmaceutical Dosage Forms and Drug Delivery Systems (Howard C. Ansel et al., eds., Lippincott Williams & Wilkins Publishers, 7 th ed. 1999); Remington: The Science and Practice of Pharmacy (Alfonso R.
  • the constituent ingredients of a pharmaceutical composition can be included in a single composition (that is, all the constituent ingredients, except for any required reconstitution fluid, are present at the time of initial compounding of the pharmaceutical composition) or as a two-component system, for example a vacuum-dried composition reconstituted with a reconstitution vehicle which can, for example, contain an ingredient not present in the initial compounding of the pharmaceutical composition.
  • a two-component system can provide several benefits, including that of allowing incorporation of ingredients which are not sufficiently compatible for long-term shelf storage with the first component of the two component system.
  • the reconstitution vehicle may include a preservative which provides sufficient protection against microbial growth for the use period, for example one-week of refrigerated storage, but is not present during the two-year freezer storage period during which time it might degrade the toxin.
  • Other ingredients which may not be compatible with a botulinum toxin or other ingredients for long periods of time, can be incorporated in this manner; that is, added in a second vehicle (e.g. in the reconstitution vehicle) at the approximate time of use.
  • a pharmaceutical composition can also include preservative agents such as benzyl alcohol, benzoic acid, phenol, parabens and sorbic acid.
  • compositions can include, for example, excipients, such as surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; preservatives; physiologically degradable compositions such as gelatin; aqueous vehicles and solvents; oily vehicles and solvents; suspending agents; dispersing or wetting agents; emulsifying agents, demulcents; buffers; salts; thickening agents; fillers; antioxidants; stabilizing agents; and pharmaceutically acceptable polymeric or hydrophobic materials and other ingredients known in the art and described, for example in Genaro, ed., 1985, Remington's Pharmaceutical Sciences, Mack Publishing Co., Easton, Pa., which is incorporated herein by reference.
  • excipients such as surface active agents; dispersing agents; inert diluents; granulating and disintegrating agents; binding agents; lubricating agents; preservatives; physiologically degradable compositions such as gelatin;
  • Polysaccharide means a polymer of more than two saccharide molecule monomers.
  • the monomers can be identical or different.
  • Stabilizing agent means a substance that acts to stabilize a Clostridial toxin active ingredient such that the potency of the pharmaceutical composition is increased relative to an unstabilized composition.
  • “Stabilizers” can include excipients, and can include protein and non-protein molecules.
  • “Surfactant” refers to a natural or synthetic amphiphilic compound.
  • a surfactant can be non-ionic, zwitterionic, or ionic.
  • Non-limiting examples of surfactants include a poloxamer, a polysorbate, and combinations thereof.
  • “Therapeutic formulation” means a formulation can be used to treat and thereby alleviate a disorder or a disease, such as, for example, a disorder or a disease characterized by hyperactivity (i.e. spasticity) of a peripheral muscle.
  • TEM is synonymous with “Targeted Exocytosis Modulator” or “retargeted endopeptidase.”
  • a TEM comprises an enzymatic domain from a Clostridial toxin light chain, a translocation domain from a Clostridial toxin heavy chain, and a targeting domain.
  • the targeting domain of a TEM provides an altered cell targeting capability that targets the molecule to a receptor other than the native Clostridial toxin receptor utilized by a naturally-occurring Clostridial toxin.
  • This re-targeted capability is achieved by replacing the naturally-occurring binding domain of a Clostridial toxin with a targeting domain having a binding activity for a non-Clostridial toxin receptor.
  • a TEM undergoes all the other steps of the intoxication process including internalization of the TEM/receptor complex into the cytoplasm, formation of the pore in the vesicle membrane and di-chain molecule, translocation of the enzymatic domain into the cytoplasm, and exerting a proteolytic effect on a component of the SNARE complex of the target cell.
  • Tonicity agent or “isotonic agent” means a low molecular weight excipient which is included in a lyophilized or liquid formulation to provide isotonicity.
  • a disaccharide such as trehalose or sucrose
  • a polyalcohol such as sorbitol or mannitol
  • a monosaccharide such as glucose
  • a salt such as sodium chloride
  • Topical administration excludes systemic administration of the neurotoxin. In other words, and unlike conventional therapeutic transdermal methods, topical administration of botulinum toxin does not result in significant amounts, such as the majority of, the neurotoxin passing into the circulatory system of the patient.
  • Treating means to alleviate (or to eliminate) at least one symptom of a condition or disorder, such as, for example, wrinkles, spasticity, depression, pain (such as, for example, headache pain), bladder overactivity, or the like, either temporarily or permanently.
  • the term “unit” or “U” refers to the LD 50 dose or the dose determined by a cell based potency assay (CBPA).
  • the LD 50 dose is defined as the amount of a Clostridial toxin active ingredient, Clostridial toxin complex or modified Clostridial toxin that killed 50% of the mice injected with the Clostridial toxin, Clostridial toxin complex or modified Clostridial toxin.
  • the CBPA dose is determined as described in U.S. Pat. No. 8,618,261, the assay details of which are incorporated by reference herein.
  • “Variant” means a clostridial neurotoxin, such as wild-type botulinum toxin serotype A, B, C, D, E, F or G, that has been modified by the replacement, modification, addition or deletion of at least one amino acid relative to wild-type botulinum toxin, which is recognized by a target cell, internalized by the target cell, and catalytically cleaves a SNARE (SNAP (Soluble NSF Attachment Protein) Receptor) protein in the target cell.
  • SNARE Soluble NSF Attachment Protein
  • a variant neurotoxin component can comprise a variant light chain of a botulinum toxin having one or more amino acids substituted, modified, deleted and/or added.
  • This variant light chain may have the same or better ability to prevent exocytosis, for example, the release of neurotransmitter vesicles.
  • the biological effect of a variant may be decreased compared to the parent chemical entity.
  • a variant light chain of a botulinum toxin type A having an amino acid sequence removed may have a shorter biological persistence than that of the parent (or native) botulinum toxin type A light chain.
  • the composition does not comprise a sugar or polyalcohol.
  • Sugar is defined in the next section.
  • polyalcohol is synonymous with “sugar alcohol,” “polyhydric alcohol,” and “polyol” and refers to a sugar derivative having an alcohol group (CH 2 OH) instead of the aldehyde group (CHO), such as, e.g., mannitol from mannose, xylitol from xylose, and lactitol from lactulose.
  • Non-limiting examples of polyols include, glycol, glycerol, arabitol, erythritol, xylitol, maltitol, sorbitol (gluctiol), mannitol, inositol, lactitol, galactitol (iditol), isomalt.
  • Other non-limiting examples of sugar excipients can be found in, e.g., Ansel, supra, (1999); Gennaro, supra, (2000); Hardman, supra, (2001); and Rowe, supra, (2003), each of which is hereby incorporated by reference in its entirety.
  • Certain embodiments of the present invention include a pharmaceutical composition
  • a pharmaceutical composition comprising (or consisting of, or consisting essentially of) a Clostridial toxin active ingredient such as a botulinum toxin, a disaccharide, a surfactant and an antioxidant.
  • Clostridial toxin active ingredient refers to a therapeutically effective concentration of a Clostridial toxin active ingredient, such as, e.g., a Clostridial toxin complex, a Clostridial toxin, a modified Clostridial toxin, or a re-targeted Clostridial toxin.
  • a botulinum toxin is a particularly preferred Clostridial toxin active ingredient for use in the invention.
  • terapéuticaally effective concentration is synonymous with “therapeutically effective amount,” “effective amount,” “effective dose,” and “therapeutically effective dose” and refers to the minimum dose of a Clostridial toxin active ingredient, which is most preferably a botulinum toxin, necessary to achieve the desired therapeutic effect and includes a dose sufficient to reduce a symptom associated with aliment being treated.
  • a therapeutically effective concentration of a Clostridial toxin active ingredient which is most preferably a botulinum toxin, reduces a symptom associated with the aliment being treated by, e.g., at least 10%, at least 20%, at least 30%, at least 40%, at least 50%, at least 60%, at least 70%, at least 80%, at least 90% or at least 100%.
  • a therapeutically effective concentration of a Clostridial toxin active ingredient which is most preferably a botulinum toxin, reduces a symptom associated with the aliment being treated by, e.g., at most 10%, at most 20%, at most 30%, at most 40%, at most 50%, at most 60%, at most 70%, at most 80%, at most 90% or at most 100%.
  • any amount of Clostridial toxin active ingredient which is most preferably a botulinum toxin, can be added in formulating a Clostridial toxin pharmaceutical compositions disclosed in the present specification, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient is recoverable.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is at least 0.1 U/ml, at least 1.0 U/ml, at least 10 U/ml, at least 50 U/ml, at least 100 U/ml, at least 200 U/ml, or at least 1000 U/ml.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is at most 0.1 U/ml, at most 1.0 U/ml, at most 10 U/ml, at most 50 U/ml, at most 100 U/ml, at most 200 U/ml, or at most 1000 U/ml. In yet other aspects of this embodiment, the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is from about 0.1 U/ml to about 1000 U/ml, or about 1.0 U/ml to about 1000 U/ml.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is from about 0.001 U/ml to about 100 U/ml, about 0.01 U/ml to about 100 U/ml, about 0.1 U/ml to about 100 U/ml, or about 1.0 U/ml to about 100 U/ml.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is at least 1.0 ⁇ g, at least 10 ⁇ g, at least 100 ⁇ g, at least 1.0 ng, at least 10 ng, at least 100 ng, at least 1.0 ⁇ g, at least 10 ⁇ g, at least 100 ⁇ g, or at least 1.0 mg.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is at most 1.0 ⁇ g, at most 10 ⁇ g, at most 100 ⁇ g, at most 1.0 ng, at most 10 ng, at most 100 ng, at most 1.0 ⁇ g, at most 10 ⁇ g, at most 100 ⁇ g, or at most 1.0 mg.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is about 1.0 ⁇ g to about 10 ⁇ g, about 10 ⁇ g to about 10 ⁇ g, about 100 ⁇ g to about 10 ⁇ g, about 1.0 ng to about 10 ⁇ g, about 10 ng to about 10 ⁇ g, or about 100 ng to about 10 ⁇ g.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is about 1.0 ⁇ g to about 1.0 ⁇ g, about 10 ⁇ g to about 1.0 ⁇ g, about 100 ⁇ g to about 1.0 ⁇ g, about 1.0 ng to about 1.0 ⁇ g, about 10 ng to about 1.0 ⁇ g, or about 100 ng to about 1.0 ⁇ g.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is about 1.0 ⁇ g to about 5.0 ⁇ g, about 10 ⁇ g to about 5.0 ⁇ g, about 100 ⁇ g to about 5.0 ⁇ g, about 1.0 ng to about 5.0 ⁇ g, about 10 ng to about 5.0 ⁇ g, or about 100 ng to about 5.0 ⁇ g.
  • the amount of Clostridial toxin active ingredient, which is most preferably a botulinum toxin, added to the formulation is about 1.0 ⁇ g to about 10 ⁇ g, about 10 ⁇ g to about 10 ⁇ g, about 100 pg to about 10 ⁇ g, about 1.0 ng to about 10 ⁇ g, about 10 ng to about 10 ⁇ g, or about 100 ng to about 10 ⁇ g.
  • a Clostridial toxin pharmaceutical composition comprises a BoNT/A, a BoNT/B, a BoNT/C 1 , a BoNT/D, a BoNT/E, a BoNT/F, a BoNT/G, a BoNT mosaic, such as BoNT/DC, BoNT/CD and BoNT/FA, a TeNT, a BaNT, or a BuNT.
  • a Clostridial toxin pharmaceutical composition comprises a Clostridial toxin variant as the Clostridial toxin active ingredient.
  • a Clostridial toxin pharmaceutical composition comprises naturally-occurring Clostridial toxin variant or a non-naturally-occurring Clostridial toxin variant.
  • a Clostridial toxin pharmaceutical composition comprises a BoNT/A variant, a BoNT/B variant, a BoNT/C 1 variant, a BoNT/D variant, a BoNT/E variant, a BoNT/F variant, a BoNT/G variant, a TeNT variant, a BaNT variant, or a BuNT variant, where the variant is either a naturally-occurring variant or a non-naturally-occurring variant.
  • Clostridial toxin complex refers to a complex comprising a Clostridial toxin and associated NAPs, such as, e.g., a Botulinum toxin complex, a Tetanus toxin complex, a Baratii toxin complex, and a Butyricum toxin complex.
  • Non-limiting examples of Clostridial toxin complexes include those produced by a Clostridium botulinum , such as, e.g., a 900-kDa BoNT/A complex, a 500-kDa BoNT/A complex, a 300-kDa BoNT/A complex, a 500-kDa BoNT/B complex, a 500-kDa BoNT/C 1 complex, a 500-kDa BoNT/D complex, a 300-kDa BoNT/D complex, a 300-kDa BoNT/E complex, and a 300-kDa BoNT/F complex.
  • a Clostridium botulinum such as, e.g., a 900-kDa BoNT/A complex, a 500-kDa BoNT/A complex, a 300-kDa BoNT/A complex, a 500-kDa BoNT/B complex, a 500-kDa BoNT/C 1 complex, a 500-kD
  • Clostridial toxin complexes can be purified using the methods described in Schantz, supra, (1992); Hui Xiang et al., Animal Product Free System and Process for Purifying a Botulinum Toxin, U.S. Pat. No. 7,354,740, each of which is hereby incorporated by reference in its entirety.
  • Clostridial toxin complexes can be obtained from, e.g., List Biological Laboratories, Inc. (Campbell, Calif.), the Centre for Applied Microbiology and Research (Porton Down, U.K), Wako (Osaka, Japan), and Sigma Chemicals (St Louis, Mo.).
  • non-protein excipient refers to any excipient that is not a polypeptide comprising at least fifteen amino acids. It is envisioned that any non-protein excipient is useful in formulating a Clostridial toxin pharmaceutical compositions disclosed in the present specification, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient, which is most preferably a botulinum toxin, is recovered using this non-protein excipient.
  • compositions provide, in part, a sugar.
  • sugar refers to a compound comprising one to 10 monosaccharide units, e.g., a monosaccharide, a disaccharide, a trisaccharide, and an oligosaccharide comprising four to ten monosaccharide units. It is envisioned that any sugar is useful in formulating a Clostridial toxin pharmaceutical compositions disclosed in the present specification, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient, which is most preferably a botulinum toxin, is recovered using this sugar.
  • the sugar can function as a lyoprotector.
  • the sugar can function as a tonicity agent.
  • Monosaccharides are polyhydroxy aldehydes or polyhydroxy ketones with three or more carbon atoms, including aldoses, dialdoses, aldoketoses, ketoses and diketoses, as well as cyclic forms, deoxy sugars and amino sugars, and their derivatives, provided that the parent monosaccharide has a (potential) carbonyl group.
  • Monosacchrides include trioses, like glyceraldehyde and dihydroxyacetone; tetroses, like erythrose, erythrulose and threose; pentoses, like arabinose, lyxose, ribose, ribulose, xylose, xylulose; hexoses, like allose, altrose, fructose, fucose, galactose, glucose, gulose, idose, mannose, psicose, rhamnose, sorbose, tagatose, talose and trehalose; heptoses, like sedoheptulose and mannoheptulose; octooses, like octulose and 2-keto-3-deoxy-manno-octonate; nonoses like sialose; and decose.
  • trioses like glyceraldehyde and dihydroxyacetone
  • Oligosaccharides are compounds in which at least two monosaccharide units are joined by glycosidic linkages. According to the number of units, they are called disaccharides, trisaccharides, tetrasaccharides, pentasaccharides, hexoaccharides, heptoaccharides, octoaccharides, nonoaccharides, decoaccharides, etc.
  • An oligosaccharide can be unbranched, branched or cyclic.
  • Common disaccharides include, without limitation, sucrose, lactose, maltose, trehalose, cellobiose, gentiobiose, kojibiose, laminaribiose, mannobiose, melibiose, nigerose, rutinose, and xylobiose.
  • Common trisaccharides include, without limitation, raffinose, acarbose, maltotriose, and melezitose.
  • sugar excipients can be found in, e.g., Ansel, supra, (1999); Gennaro, supra, (2000); Hardman, supra, (2001); and Rowe, supra, (2003), each of which is hereby incorporated by reference in its entirety.
  • a Clostridial toxin pharmaceutical composition comprises a sugar.
  • a Clostridial toxin pharmaceutical composition comprises a monosaccharide.
  • a Clostridial toxin pharmaceutical composition comprises a disaccharide, a trisaccharide, a tetrasaccharide, a pentasaccharide, a hexoaccharide, a heptoaccharide, an octoaccharide, a nonoaccharide, or a decoaccharide.
  • a Clostridial toxin pharmaceutical composition comprises an oligosaccharide comprising two to ten monosaccharide units. Trehalose and sucrose are particularly preferred sugars for use in the invention.
  • any amount of sugar which is preferably trehalose or sucrose, is useful in formulating a Clostridial toxin pharmaceutical compositions disclosed in the present specification, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient, which is most preferably a botulinum toxin, is recovered using this sugar amount.
  • the amount of sugar, which is preferably trehalose or sucrose, added to the formulation is about 0.1% (w/w), about 0.5% (w/w), about 1.0% (w/w), about 1.5% (w/w), about 2.0% (w/w), about 2.5% (w/w), about 3.0% (w/w), about 3.5% (w/w), about 4.0% (w/w), about 4.5% (w/w), about 5.0% (w/w), about 5.5% (w/w), about 6.0% (w/w), about 6.5% (w/w), about 7.0% (w/w), about 7.5% (w/w), about 8.0% (w/w), about 8.5% (w/w), about 9.0% (w/w), about 9.5% (w/w), about 10% (w/w), about 15% (w/w), about 20% (w/w), about 25% (w/w), about 30% (w/w), or about 35% (w/w).
  • the amount of sugar, which is preferably trehalose or sucrose, added to the formulation is at least 0.1% (w/w), at least 0.5% (w/w), at least 1.0% (w/w), at least 1.5% (w/w), at least 2.0% (w/w), at least 2.5% (w/w), at least 3.0% (w/w), at least 3.5% (w/w), at least 4.0% (w/w), at least 4.5% (w/w), at least 5.0% (w/w), at least 5.5% (w/w), at least 6.0% (w/w), at least 6.5% (w/w), at least 7.0% (w/w), at least 7.5% (w/w), at least 8.0% (w/w), at least 8.5% (w/w), at least 9.0% (w/w), at least 9.5% (w/w), at least 10% (w/w), at least 15% (w/w), at least 20% (w/w), at least 25% (w/w), at least 30% (w/w), or at least 35% (w/w), at least
  • the amount of sugar, which is preferably trehalose or sucrose, added to the formulation is at most 0.1% (w/w), at most 0.5% (w/w), at most 1.0% (w/w), at most 1.5% (w/w), at most 2.0% (w/w), at most 2.5% (w/w), at most 3.0% (w/w), at most 3.5% (w/w), at most 4.0% (w/w), at most 4.5% (w/w), at most 5.0% (w/w), at most 5.5% (w/w), at most 6.0% (w/w), at most 6.5% (w/w), at most 7.0% (w/w), at most 7.5% (w/w), at most 8.0% (w/w), at most 8.5% (w/w), at most 9.0% (w/w), at most 9.5% (w/w), at most 10% (w/w), at most 15% (w/w), at most 20% (w/w), at most 25% (w/w), at most 30% (w/w), or at most 35% (w/w), at most
  • the present Clostridial toxin pharmaceutical composition comprises a disaccharide, which is preferably trehalose or sucrose.
  • disaccharides include, without limitation, sucrose, lactose, maltose, trehalose, cellobiose, gentiobiose, kojibiose, laminaribiose, mannobiose, melibiose, nigerose, rutinose, and xylobiose.
  • the clostridial toxin pharmaceutical composition comprises sucrose.
  • the clostridial toxin pharmaceutical composition comprises trehalose.
  • the amount of disaccharide, which is preferably trehalose or sucrose, added to the formulation added to the formulation is about 0.1% (w/w), about 0.5% (w/w), about 1.0% (w/w), about 1.5% (w/w), about 2.0% (w/w), about 2.5% (w/w), about 3.0% (w/w), about 3.5% (w/w), about 4.0% (w/w), about 4.5% (w/w), about 5.0% (w/w), about 5.5% (w/w), about 6.0% (w/w), about 6.5% (w/w), about 7.0% (w/w), about 7.5% (w/w), about 8.0% (w/w), about 8.5% (w/w), about 9.0% (w/w), about 9.5% (w/w), about 10% (w/w), about 15% (w/w), about 20% (w/w), about 25% (w/w), about 30% (w/w), or about 35% (w/w).
  • compositions provide, in part, a surfactant.
  • surfactant refers to a natural or synthetic amphiphilic compound.
  • a surfactant can be non-ionic, zwitterionic, or ionic. It is envisioned that any surfactant is useful in formulating a Clostridial toxin pharmaceutical compositions disclosed in the present specification, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient, which is most preferably a botulinum toxin, is recovered using this surfactant amount.
  • Non-limiting examples of surfactants include polysorbates like polysorbate 20 (TWEEN® 20), polysorbate 40 (TWEEN® 40), polysorbate 60 (TWEEN 60), polysorbate 61 (TWEEN® 61), polysorbate 65 (TWEEN® 65), polysorbate 80 (TWEEN® 80), and polysorbate 81 (TWEEN® 81); poloxamers (polyethylene-polypropylene copolymers), like Poloxamer 124 (PLURONIC® L44), Poloxamer 181 (PLURONIC® L61), Poloxamer 182 (PLURONIC® L62), Poloxamer 184 (PLURONIC® L64), Poloxamer 188 (PLURONIC® F68), Poloxamer 237 (PLURONIC® F87), Poloxamer 338 (PLURONIC® L108), Poloxamer 407 (PLURONIC® F127), polyoxyethyleneglycol dodecyl ethers, like BRIJ®
  • surfactant excipients can be found in, e.g., Ansel, supra, (1999); Gennaro, supra, (2000); Hardman, supra, (2001); and Rowe, supra, (2003), each of which is hereby incorporated by reference in its entirety.
  • Poloxamer 188 is a particularly preferred surfactant in the invention.
  • a Clostridial toxin pharmaceutical composition comprises a surfactant, which is preferably Poloxamer 188.
  • a Clostridial toxin pharmaceutical composition comprises a polysorbate, a poloxamer, a polyoxyethyleneglycol dodecyl ether, 2-dodecoxyethanol, polyoxyethylene octyl phenyl ether, sodium dodecyl sulfate, 3-[(3-Cholamidopropyl)dimethylammonio]-1-propanesulfonate, 3-[(3-Cholamidopropyl) dimethylammonio]-2-hydroxy-1-propanesulfonate, sucrose monolaurate; or sodium cholate.
  • any amount of surfactant which is preferably Poloxamer 188, is useful in formulating a Clostridial toxin pharmaceutical compositions disclosed in the present specification, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient, which is preferably a botulinum toxin, is recovered using this surfactant amount.
  • the amount of surfactant, which is preferably Poloxamer 188, added to the formulation is about 0.01% (w/w), about 0.02% (w/w), about 0.03% (w/w), about 0.04% (w/w), about 0.05% (w/w), about 0.06% (w/w), about 0.07% (w/w), about 0.08% (w/w), about 0.09% (w/w), about 0.1% (w/w), about 0.5% (w/w), about 1.0% (w/w), about 1.5% (w/w), about 2.0% (w/w), about 2.5% (w/w), about 3.0% (w/w), about 3.5% (w/w), about 4.0% (w/w), about 4.5% (w/w), about 5.0% (w/w), about 5.5% (w/w), about 6.0% (w/w), about 6.5% (w/w), about 7.0% (w/w), about 7.5% (w/w), about 8.0% (w/w), about 8.5% (w/w), about 0.01% (w
  • the amount of surfactant, which is preferably Poloxamer 188, added to the formulation is at least 0.01% (w/w), at least 0.02% (w/w), at least 0.03% (w/w), at least 0.04% (w/w), at least 0.05% (w/w), at least 0.06% (w/w), at least 0.07% (w/w), at least 0.08% (w/w), at least 0.09% (w/w), at least 0.1% (w/w), at least 0.5% (w/w), at least 1.0% (w/w), at least 1.5% (w/w), at least 2.0% (w/w), at least 2.5% (w/w), at least 3.0% (w/w), at least 3.5% (w/w), at least 4.0% (w/w), at least 4.5% (w/w), at least 5.0% (w/w), at least 5.5% (w/w), at least 6.0% (w/w), at least 6.5% (w/w), at least 7.0% (w/w),
  • the amount of surfactant, which is preferably Poloxamer 188, added to the formulation is at most 0.01% (w/w), at most 0.02% (w/w), at most 0.03% (w/w), at most 0.04% (w/w), at most 0.05% (w/w), at most 0.06% (w/w), at most 0.07% (w/w), at most 0.08% (w/w), at most 0.09% (w/w), at most 0.1% (w/w), at most 0.5% (w/w), at most 1.0% (w/w), at most 1.5% (w/w), at most 2.0% (w/w), at most 2.5% (w/w), at most 3.0% (w/w), at most 3.5% (w/w), at most 4.0% (w/w), at most 4.5% (w/w), at most 5.0% (w/w), at most 5.5% (w/w), at most 6.0% (w/w), at most 6.5% (w/w), at most 7.0% (w/w/w),
  • the clostridial toxin pharmaceutical composition comprises a poloxamer, which is preferably Poloxamer 188.
  • Poloxamers which can be used with the present pharmaceutical composition include Poloxamer 124 (PLURONIC® L44), Poloxamer 181 (PLURONIC® L61), Poloxamer 182 (PLURONIC® L62), Poloxamer 184 (PLURONIC® L64), Poloxamer 188 (PLURONIC® F68), Poloxamer 237 (PLURONIC® F87), Poloxamer 338 (PLURONIC® L108), Poloxamer 407 (PLURONIC® F127).
  • poloxamer 188 may be more advantageous.
  • the clostridial toxin pharmaceutical composition comprises a polysorbate.
  • Polysorbates which can be used with the present pharmaceutical composition includes polysorbate 20 (TWEEN® 20), polysorbate 40 (TWEEN® 40), polysorbate 60 (TWEEN® 60), polysorbate 61 (TWEEN® 61), polysorbate 65 (TWEEN® 65), polysorbate 80 (TWEEN® 80), and polysorbate 81 (TWEEN® 81).
  • polysorbate 20 may be more advantageous than some other polysorbates.
  • antioxidants include, without limitation, methionine, cysteine, N-acetyl-cysteine (NAC), sodium metabisulfite, sodium thiosulfate, butylated hydroxyanisole, butylated hydroxytoluene, vitamin E and analogs including Trolox C; chelators such as EDTA (ethylene diamine tetraacetic acid sodium salt), EGTA (ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid), DTPA (diethylenetriaminepentaacetic acid), analogs or derivatives thereof, and combinations thereof.
  • EDTA ethylene diamine tetraacetic acid sodium salt
  • EGTA ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-tetraacetic acid
  • DTPA diethylenetriaminepentaacetic acid
  • Methionine and NAC are particularly preferred antioxidants for use in the invention.
  • NAC is particularly preferably used together with EDTA in certain formulations of the invention.
  • NAC is the sole antioxidant used.
  • methionine is the sole antioxidant used.
  • the amount of antioxidant, which is preferably methionine or NAC, added to the formulation ranges from about 0.01% (w/w) to about 0.10% (w/w).
  • EDTA is preferably added in an amount from about 0.01% (w/w) to about 0.10% (w/w).
  • a Clostridial toxin pharmaceutical composition disclosed in the present specification can optionally include, without limitation, other pharmaceutically acceptable components (or pharmaceutical components), including, without limitation, buffers, preservatives, tonicity adjusters, salts, antioxidants, osmolality adjusting agents, emulsifying agents, sweetening or flavoring agents, and the like.
  • buffers include, without limitation, acetate buffers, borate buffers, citrate buffers, phosphate buffers, neutral buffered saline, and phosphate buffered saline. Histidine is a particularly preferred buffer.
  • an effective pH level is at least about pH 5.0, at least about pH 5.5, at least about pH 6.0, at least about pH 6.5, at least about pH 7.0 or at about about pH 7.5.
  • an effective pH level is at most about pH 5.0, at most about pH 5.5, at most about pH 6.0, at most about pH 6.5, at most about pH 7.0 or at most about pH 7.5.
  • an effective pH level is about pH 5.0 to about pH 8.0, an effective pH level is about pH 5.0 to about pH 7.0, an effective pH level is about pH 5.0 to about pH 6.0, is about pH 5.5 to about pH 8.0, an effective pH level is about pH 5.5 to about pH 7.0, an effective pH level is about pH 5.5 to about pH 5.0, is about pH 5.5 to about pH 7.5, an effective pH level is about pH 5.5 to about pH 6.5.
  • An effective pH of 5.5 to 6.0 is particularly preferred.
  • the pharmaceutical compositions disclosed herein can have a pH of between about 5 and 8 when reconstituted or upon injection.
  • the composition will have a pH below 8, such as, for example, 7.9, or 7.8, or 7.7, or 7.6, or 7.5, or 7.4, or 7.3, or 7.2, or 7.1, or 7.0, or 6.9, or 6.8, or 6.7, or 6.6, or 6.5, or 6.4, or 6.3, or 6.2, or 6.1, or 6.0, or 5.9, or 5.8, or 5.7, or 5.6, or 5.5, or 5.4, or 5.3, or 5.2, or 5.1, or the like.
  • the pH ranges from 5 to 7.
  • a pH of 5.5 to 6.5 is preferred and a pH of 5.5 to 6.0 is particularly preferred.
  • any concentration of a buffer can be useful in formulating a Clostridial toxin pharmaceutical composition, with the proviso that a therapeutically effective amount of the Clostridial toxin active ingredient, which is most preferably a botulinum toxin, is recovered using this effective concentration of buffer, which is preferably histidine.
  • an effective concentration of buffer, which is preferably histidine is at least 0.1 mM, at least 0.2 mM, at least 0.3 mM, at least 0.4 mM, at least 0.5 mM, at least 0.6 mM, at least 0.7 mM, at least 0.8 mM, or at least 0.9 mM.
  • an effective concentration of buffer which is preferably histidine, is at least 1.0 mM, at least 2.0 mM, at least 3.0 mM, at least 4.0 mM, at least 5.0 mM, at least 6.0 mM, at least 7.0 mM, at least 8.0 mM, or at least 9.0 mM.
  • an effective concentration of buffer, which is preferably histidine is at least 10 mM, at least 20 mM, at least 30 mM, at least 40 mM, at least 50 mM, at least 60 mM, at least 70 mM, at least 80 mM, or at least 90 mM.
  • an effective concentration of buffer which is preferably histidine, is at least 100 mM, at least 200 mM, at least 300 mM, at least 400 mM, at least 500 mM, at least 600 mM, at least 700 mM, at least 800 mM, or at least 900 mM.
  • an effective concentration of buffer, which is preferably histidine is at most 0.1 mM, at most 0.2 mM, at most 0.3 mM, at most 0.4 mM, at most 0.5 mM, at most 0.6 mM, at most 0.7 mM, at most 0.8 mM, or at most 0.9 mM.
  • an effective concentration of buffer which is preferably histidine, is at most 1.0 mM, at most 2.0 mM, at most 3.0 mM, at most 4.0 mM, at most 5.0 mM, at most 6.0 mM, at most 7.0 mM, at most 8.0 mM, or at most 9.0 mM.
  • an effective concentration of buffer, which is preferably histidine is at most 10 mM, at most 20 mM, at most 30 mM, at most 40 mM, at most 50 mM, at most 60 mM, at most 70 mM, at most 80 mM, or at most 90 mM.
  • an effective concentration of buffer which is preferably histidine, is at most 100 mM, at most 200 mM, at most 300 mM, at most 400 mM, at most 500 mM, at most 600 mM, at most 700 mM, at most 800 mM, or at most 900 mM.
  • an effective concentration of buffer which is preferably histidine, is about 0.1 mM to about 900 mM, 0.1 mM to about 500 mM, 0.1 mM to about 100 mM, 0.1 mM to about 90 mM, 0.1 mM to about 50 mM, 1.0 mM to about 900 mM, 1.0 mM to about 500 mM, 1.0 mM to about 100 mM, 1.0 mM to about 90 mM, or 1.0 mM to about 50 mM.
  • the concentration of the buffer which is most preferably histidine, is preferably 20 mM.
  • Embodiments of the invention can be practiced with a composition that comprises a plurality of botulinum toxin serotypes, such as botulinum toxin serotypes selected from the group consisting of botulinum toxin serotypes A, B, C 1 D, E, F, G and mosaic.
  • botulinum toxin serotypes selected from the group consisting of botulinum toxin serotypes A, B, C 1 D, E, F, G and mosaic.
  • purified botulinum toxins can be used.
  • modified botulinum toxins may be used.
  • the Clostridial toxin pharmaceutical composition of the invention can be formulated as a lyophilized (i.e. freeze dried) or vacuum dried powder which can be reconstituted with a suitable fluid, such as saline or water, prior to administration to a patient.
  • a suitable fluid such as saline or water
  • the pharmaceutical composition can be formulated as an aqueous solution or suspension.
  • the solid Clostridial toxin pharmaceutical composition of the invention comprises a botulinum toxin, a tonicity agent, a poloxamer and/or a polysorbate and an antioxidant.
  • the Clostridial toxin pharmaceutical composition comprises a botulinum toxin.
  • the Clostridial toxin pharmaceutical composition comprises trehalose.
  • the Clostridial toxin pharmaceutical composition comprises poloxamer 188 or polysorbate 20.
  • the composition comprises EDTA, EGTA, DTPA, or analogs thereof.
  • the composition comprises methionine and/or NAC.
  • the composition further comprises EDTA, EGTA, DTPA, or analogs thereof.
  • the composition further comprises a buffering agent.
  • the composition comprises histidine buffer.
  • the relative weight amounts of trehalose, poloxamer and methionine are within the following ranges respectively: 1 to 10%; 0.5 to 5% and 0.1 to 0.3%.
  • the relative weight amounts of trehalose, polysorbate and methionine are within the following ranges respectively: 1 to 10%; 0.02% to 0.06%; and 0.1 to 0.3%.
  • the relative weight amount of EDTA or an EDTA analog is from about 0.01 to 0.10%.
  • the relative weight amount of NAC ranges from 0.01 to 0.5%.
  • the Clostridial toxin pharmaceutical composition is formulated as a solid (i.e lyophilized or vacuum dried) composition.
  • the solid Clostridial pharmaceutical composition comprises a lyoprotector.
  • the preferred lyoprotector includes sucrose, trehalose, mannitol, sorbitol or combinations thereof.
  • the solid pharmaceutical composition comprises NAC in a relative weight amount of 0.01 to 0.05%.
  • the pharmaceutical composition further comprises EDTA, EGTA, DTPA, or analogs thereof.
  • the solid pharmaceutical composition comprises methionine and EDTA or an EDTA analog.
  • the Clostridial toxin pharmaceutical composition is formulated as a liquid.
  • the liquid pharmaceutical composition comprises NAC in a relative weight amount of 0.1 to 0.5%.
  • the liquid pharmaceucial composition comprises NAC and EDTA, EGTA, DTPA, or analogs thereof.
  • the liquid pharmaceutical composition comprises histidine buffer.
  • the liquid pharmaceutical composition has a pH from 5 to 7.
  • the invention relates to a pharmaceutical composition
  • a pharmaceutical composition comprising:
  • poloxamer 188 with either methionine or N-Acetyl-cysteine in the present invention is preferred because of the synergistic effect on the stability of the compositions caused by the combination of this particular surfactant with either of these antioxidants.
  • composition may further comprise trehalose or sucrose.
  • Trehalose is preferred over sucrose for the solid compositions.
  • composition may optionally also include NaCl.
  • NaCl may particularly preferably be included in compositions comprising botulinum toxin, trehalose or sucrose, poloxamer 188, and methionine, and is particularly preferably included in liquid compositions comprising botulinum toxin, trehalose or sucrose, poloxamer 188, and methionine.
  • NaCl may function as a tonicity agent in a reconstitution vehicle.
  • the composition may optionally include EDTA, EGTA, DTPA, or analogs thereof.
  • EDTA may be included in compositions comprising botulinum toxin, trehalose or sucrose, poloxamer 188 and methionine, and is preferably included in liquid compositions comprising botulinum toxin, trehalose or sucrose, poloxamer 188 and methionine.
  • EDTA, EGTA, DTPA, or analogs thereof may also be included in compositions comprising botulinum toxin, trehalose or sucrose, poloxamer 188 and NAC; and is particularly preferably included in liquid compositions comprising botulinum toxin, trehalose or sucrose, poloxamer 188 and NAC.
  • the combination of EDTA and NAC is particularly preferred as it has a synergistic stabilising effect on the compositions of the invention.
  • the relative weight amounts (%, w/w) of trehalose or sucrose, poloxamer 188, methionine, and NaCl where present, and EDTA where present are preferably within the following ranges:
  • Trehalose or sucrose 1 to 10 poloxamer 188 0.5 to 5 methionine 0.1 to 0.3 NaCl 0.1 to 10 EDTA 0.01 to 0.1.
  • Such compositions may be both liquid and solid formulations.
  • the sugar is trehalose.
  • compositions preferably comprise a buffer.
  • the buffer is preferably histidine, and the concentration of histidine is preferably 20 mM when the composition is a liquid composition.
  • the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is most preferably in the range 5.5-6.
  • the histidine is preferably comprised in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the relative weight amounts (%, w/w) of trehalose, poloxamer 188, and methionine are:
  • the composition labelled as a) above may be a solid composition, which is preferably lyophilised.
  • This composition also preferably comprises a buffer, wherein the buffer is preferably histidine, wherein the histidine is preferably comprised in the solid composition in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the histidine may be present as a pure substance, the acid salt of histidine (e.g. Histidine HCl), a hydrate of an acid salt of the histidine, or a mix of any of the foregoing.
  • histidine base may be present in an amount of 1.43 mg/mL (or 0.14% w/w) together with histidine hydrochloride in an amount of 2.26 mg/mL (or 0.23% w/w).
  • the total concentration of histidine species is then 0.37% w/w.
  • the solid composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • This solid composition most preferably has either of the following compositions:
  • the composition is a solid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, methionine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the solid composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl may be present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the composition labelled as a) above may also be a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • the composition is a liquid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, methionine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of trehalose, poloxamer 188 and methionine are:
  • trehalose 7 to 9 poloxamer 188 0.5 to 0.7 methionine 0.15 to 0.25; and are preferably trehalose 8 poloxamer 188 0.6 methionine 0.2.
  • the composition labelled as b) above is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 5.5.
  • the composition is a liquid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, methionine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of trehalose, poloxamer 188, methionine, and NaCl are:
  • the composition labelled as c) above is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, and the pH is more preferably in the range 5.5-6.5, the pH is yet more preferably in the range 5.5-6, and is most preferably 5.5.
  • the composition is a liquid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, methionine, NaCl and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of trehalose, poloxamer 188, methionine, and EDTA are:
  • the composition labelled as d) above is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • the composition is a liquid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, methionine, EDTA and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of trehalose or sucrose, poloxamer 188, N-Acetyl-cysteine, and EDTA where present are preferably within the following ranges
  • compositions may be both liquid and solid formulations, and are preferably liquid compositions.
  • the sugar is trehalose.
  • compositions preferably comprise a buffer.
  • the buffer is preferably histidine, and the concentration of histidine is preferably 20 mM when the composition is a liquid composition.
  • the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is most preferably in the range 5.5-6.
  • the histidine is preferably comprised in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the relative weight amounts (%, w/w) of trehalose, poloxamer 188, N-Acetyl-cysteine and EDTA are:
  • this composition is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • the composition is a liquid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, N-Acetyl-cysteine, EDTA and a buffer, wherein these components are preferably present in the amounts defined above.
  • the EDTA is an optional component in the N-Acetyl-cysteine containing compositions of the invention.
  • the relative weight amounts (%, w/w) of trehalose, poloxamer 188, and N-Acetyl-cysteine may be:
  • the relative weight amounts (%, w/w) of components in the EDTA-free compositions are:
  • this EDTA-free composition is preferably a solid composition, which is preferably lyophilised.
  • This composition also preferably comprises a buffer, wherein the buffer is preferably histidine, wherein the histidine is preferably comprised in the solid composition in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the histidine may be present as a pure substance, the acid salt of histidine, a hydrate of an acid salt of the histidine, or a mix of any of the foregoing.
  • histidine base may be present in an amount of 1.43 mg/mL (or 0.14% w/w) together with histidine hydrochloride in an amount of 2.26 mg/mL (or 0.23% w/w).
  • the total concentration of histidine species is then 0.37% w/w.
  • the composition is a solid composition consisting of one or more botulinum toxins, trehalose, poloxamer 188, N-Acetyl-cysteine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the composition of the invention does not comprise a sugar or polyalcohol.
  • the composition comprises botulinum toxin, poloxamer 188, and methionine or N-Acetyl-cysteine, but no sugar or polyalcohol.
  • the composition comprises N-Acetyl-cysteine, it is preferred that it additionally also contains EDTA.
  • the relative weight amounts (%, w/w) of poloxamer 188, and methionine are preferably within the following ranges:
  • poloxamer 188 0.5 to 5 methionine 0.1 to 0.3.
  • the relative weight amounts (%, w/w) of poloxamer 188, and N-Acetyl-cysteine and EDTA are preferably within the following ranges:
  • poloxamer 188 0.5 to 5 N-Acetyl-cysteine 0.01 to 0.5 EDTA 0.01 to 0.1.
  • compositions are preferably liquid formulations.
  • the relative weight amounts (%, w/w) of poloxamer 188 and methionine are:
  • compositions are preferably liquid compositions.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • These compositions may also include NaCl. NaCl may be included in a relative weight amount of 0.5 to 1.5% (w/w), more preferably 0.9% (w/w).
  • the composition is a liquid composition consisting of one or more botulinum toxins, poloxamer 188, methionine, and a buffer, and optionally NaCl, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of poloxamer 188 and N-Acetyl-cysteine are:
  • compositions are preferably liquid compositions.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • These compositions may also include NaCl. NaCl may be included in a relative weight amount of 0.5 to 1.5% (w/w), more preferably 0.9% (w/w).
  • the composition is a liquid composition consisting of one or more botulinum toxins, poloxamer 188, N-Acetyl-cysteine, a buffer, and optionally EDTA, and optionally NaCl, wherein these components are preferably present in the amounts defined above.
  • composition which does not comprise a sugar or polyalcohol described above may comprise Tween-20 in the place of poloxamer-188.
  • Such compositions may comprise Tween-20 in an amount of 0.01 to 0.1% (w/w), more preferably 0.02 to 0.06% (w/w), and most preferably 0.04% (w/w).
  • the relative weight amounts (%, w/w) of sucrose, poloxamer 188, and methionine are:
  • the composition labelled as a′) above may be a solid composition, which is preferably lyophilised.
  • This composition also preferably comprises a buffer, wherein the buffer is preferably histidine, wherein the histidine is preferably comprised in the solid composition in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the histidine may be present as a pure substance, the acid salt of histidine (e.g. Histidine HCl), a hydrate of an acid salt of the histidine, or a mix of any of the foregoing.
  • histidine base may be present in an amount of 1.43 mg/mL (or 0.14% w/w) together with histidine hydrochloride in an amount of 2.26 mg/mL (or 0.23% w/w).
  • the total concentration of histidine species is then 0.37% w/w.
  • This solid composition most preferably has either of the following compositions:
  • the composition is a solid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, methionine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the solid composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl may be present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the composition labelled as a′) above may also be a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • the composition is a liquid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, methionine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of sucrose, poloxamer 188 and methionine are:
  • sucrose 7 to 9 poloxamer 188 0.5 to 0.7 methionine 0.15 to 0.25; and are preferably sucrose 8 poloxamer 188 0.6 methionine 0.2.
  • the composition labelled as b′) above is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 5.5.
  • the composition is a liquid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, methionine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of sucrose, poloxamer 188, methionine, and NaCl are:
  • the composition labelled as c′) above is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 5.5.
  • the composition is a liquid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, methionine, NaCl and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of sucrose, poloxamer 188, methionine, and EDTA are:
  • the composition labelled as d′) above is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is more preferably in the range 5.5-6, and is most preferably 6.
  • the composition is a liquid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, methionine, EDTA and a buffer, wherein these components are preferably present in the amounts defined above.
  • the relative weight amounts (%, w/w) of sucrose, poloxamer 188, N-Acetyl-cysteine and EDTA are:
  • this composition is preferably a liquid composition.
  • the composition preferably comprises a buffer, wherein the buffer is preferably histidine.
  • the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and the pH is yet more preferably in the range 5.5-6, and is most preferably 6.
  • the composition is a liquid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, N-Acetyl-cysteine, EDTA and a buffer, wherein these components are preferably present in the amounts defined above.
  • the EDTA is an optional component in the N-Acetyl-cysteine containing compositions of the invention.
  • the relative weight amounts (%, w/w) of sucrose, poloxamer 188, and N-Acetyl-cysteine may be:
  • the relative weight amounts (%, w/w) of components in the EDTA-free compositions are:
  • this EDTA-free composition is preferably a solid composition, which is preferably lyophilised.
  • This composition also preferably comprises a buffer, wherein the buffer is preferably histidine, wherein the histidine is preferably comprised in the solid composition in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the histidine may be present as a pure substance, the acid salt of histidine, a hydrate of an acid salt of the histidine, or a mix of any of the foregoing.
  • histidine base may be present in an amount of 1.43 mg/mL (or 0.14% w/w) together with histidine hydrochloride in an amount of 2.26 mg/mL (or 0.23% w/w).
  • the total concentration of histidine species is then 0.37% w/w.
  • the composition is a solid composition consisting of one or more botulinum toxins, sucrose, poloxamer 188, N-Acetyl-cysteine, and a buffer, wherein these components are preferably present in the amounts defined above.
  • compositions of the invention may be a liquid composition, in which case the composition preferably comprises a buffer.
  • This buffer is preferably histidine, and the concentration of histidine is preferably 20 mM.
  • the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and is most preferably in the range 5.5-6.
  • compositions of the invention may also be a solid composition, which is preferably lyophilised.
  • the composition may further comprise a buffer, wherein the buffer is preferably histidine, wherein the histidine is preferably comprised in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • composition of the invention comprises no animal-derived protein.
  • compositions comprising a botulinum toxin, poloxamer 188, and methionine or N-Acetyl-cysteine may also further comprise ethylene diamine tetraacetic acid sodium salt (EDTA) or an EDTA analog.
  • EDTA ethylene diamine tetraacetic acid sodium salt
  • the relative weight amount (%, w/w) of EDTA in these compositions may be in the range from about 0.01 to 0.10.
  • Antioxidant refers to any compound which protects an active ingredient from reaction with oxygen. Antioxidants can be broadly divided into three categories:
  • antioxidants which react with oxygen more readily than a particular active ingredient and therefore can scavenge oxygen.
  • this type of antioxidant is preferably ascorbic acid;
  • chain terminators which react with free radicals and peroxides to prevent propagation of radical chains.
  • methionine, cysteine, N-Acetyl-cysteine and BHT are preferable chain terminators; and
  • chelating agents which reduce catalytic activity of transition metals by forming complexes with the metals.
  • EDTA, EGTA, and DTPA are preferred chelating agents.
  • compositions define the invention by reference to the general or specific types of antioxidant discussed in the previous paragraph. These compositions may all optionally comprise a buffer.
  • the buffer is preferably histidine, and the concentration of histidine is preferably 20 mM, and the pH is preferably in the range 5-7, and the pH is still more preferably in the range 5.5-6.5, and the pH is most preferably in the range 5.5-6.
  • the buffer is preferably histidine, and the histidine is preferably comprised in a relative weight amount of 0.1 to 0.5 (% w/w), and is more preferably contained in a relative weight amount of 0.3-0.4% (w/w).
  • all of the following compositions may comprise NaCl.
  • the invention also relates to a liquid pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a poloxamer; (iii) a chelating agent; and (iv) a sacrificial antioxidant.
  • the chelating agent is EDTA, EGTA or DTPA and the sacrificial antioxidant is ascorbic acid.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the invention also relates to a liquid pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a poloxamer; (iii) a chelating agent; and/or (iv) a chain terminator.
  • the chelating agent is EDTA and the chain terminator is N-acetyl-cysteine. In another preferred embodiment, the chelating agent is EDTA and the chain terminator is Butylated hydroxytoluene (BHT). In another preferred embodiment, the chelating agent is EDTA and the chain terminator is methionine. In another preferred embodiment of this liquid pharmaceutical composition, the chelating agent is DTPA and the chain terminator is N-acetyl-cysteine. In another preferred embodiment, the chelating agent is DTPA and the chain terminator is BHT. In another preferred embodiment, the chelating agent is DTPA and the chain terminator is methionine.
  • the chelating agent is EGTA and the chain terminator is N-acetyl-cysteine.
  • the chelating agent is EGTA and the chain terminator is BHT.
  • the chelating agent is EGTA and the chain terminator is methionine.
  • the liquid composition includes a chain terminator and not a chelating agent; wherein the chain terminator is NAC.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the invention also relates to a liquid pharmaceutical composition
  • a liquid pharmaceutical composition comprising:
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the poloxamer-188 and methionine are preferably present in the amounts defined above with respect to the compositions which do not comprise a sugar or a polyalcohol.
  • the invention also relates to a liquid pharmaceutical composition
  • a liquid pharmaceutical composition comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof; (ii) a poloxamer; and (iii) methionine.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the poloxamer-188 and methionine are preferably present in the amounts defined above with respect to the compositions which comprise a sugar or a polyalcohol.
  • the invention also preferably relates to a liquid pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; (iv) a chelating agent; and (v) a sacrificial antioxidant.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the sacrificial antioxidant is preferably ascorbic acid.
  • the clostridial toxin is preferably a botulinum toxin, the poloxamer is preferably poloxamer-188 and the polysorbate is preferably polysorbate-20 or 80.
  • the invention also preferably relates to a liquid pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; (iv) a chelating agent; and (v) a chain terminator.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the chain terminator is preferably NAC.
  • the clostridial toxin is preferably a botulinum toxin, the poloxamer is preferably poloxamer-188 and the polysorbate is preferably polysorbate-20 or 80.
  • the invention also preferably relates to a liquid pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a tonicity agent selected from trehalose, sucrose, NaCl and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; (iv) a chelating agent; and (v) a chain terminator.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the chain terminator is preferably NAC.
  • the clostridial toxin is preferably a botulinum toxin, the poloxamer is preferably poloxamer-188 and the polysorbate is preferably polysorbate-20 or 80.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a lyoprotectant selected from trehalose, sucrose, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; (iv) a chelating agent; and (v) a sacrificial antioxidant.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the sacrificial antioxidant is preferably ascorbic acid.
  • the clostridial toxin is preferably a botulinum toxin
  • the poloxamer is preferably poloxamer-188
  • the polysorbate is preferably polysorbate-20 or 80.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a lyoprotectant selected from trehalose, sucrose, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; (iv) a chelating agent; and (v) a chain terminator.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the chain terminator is preferably NAC.
  • the clostridial toxin is preferably a botulinum toxin
  • the poloxamer is preferably poloxamer-188
  • the polysorbate is preferably polysorbate-20 or 80.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a lyoprotectant selected from trehalose, sucrose, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; and (iv) a chain terminator.
  • the chain terminator is preferably NAC or methionine.
  • the clostridial toxin is preferably a botulinum toxin
  • the poloxamer is preferably poloxamer-188
  • the polysorbate is preferably polysorbate-20 or 80.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, or combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; (iv) a chelating agent; and (v) a chain terminator.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the chain terminator is preferably NAC.
  • the clostridial toxin is preferably a botulinum toxin
  • the poloxamer is preferably poloxamer-188
  • the polysorbate is preferably polysorbate-20 or 80.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, or combinations thereof; (iii) a poloxamer; (iv) a chelating agent; and (v) a sacrificial antioxidant.
  • the chelating agent is preferably EDTA, EGTA or DTPA and the sacrificial antioxidant is preferably ascorbic acid.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, or combinations thereof; (iii) a poloxamer; (iv) a chelating agent; and (v) a chain terminator.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, or combinations thereof; (iii) a poloxamer; and (iv) a chain terminator.
  • the chain terminator is N-Acetyl-cysteine.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, or combinations thereof; (iii) a poloxamer; and (iv) methionine.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a lyoprotector selected from trehalose, sucrose, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate and combinations thereof; and (iv) at least two types of antioxidant selected from the list of chelating agents, chain terminators, and sacrificial antioxidants.
  • the clostridial toxin is preferably a botulinum toxin
  • the poloxamer is preferably poloxamer-188
  • the polysorbate is preferably polysorbate-20 or 80.
  • the chelating agents are preferably EDTA, EGTA or DTPA
  • the sacrificial antioxidant is preferably ascorbic acid
  • the chain terminators are preferably methionine, cysteine, NAC, or BHT.
  • the two types of antioxidants preferably include combinations of ascorbic acid with methionine, cysteine, NAC, or BHT.
  • the two types of antioxidants also preferably include combinations of ascorbic acid with EDTA, EGTA or DTPA.
  • the two types of antioxidants also preferably include the combinations of EDTA with methionine, cysteine, NAC, or BHT.
  • the two types of antioxidant also preferably include the combinations of DTPA with methionine, cysteine, NAC, or BHT.
  • the two types of antioxidant also preferably include the combinations of EGTA with methionine, cysteine, NAC, or BHT.
  • the lyophilized composition is reconstituted with a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof.
  • the lyophilized composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl is present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, mannitol, sorbitol, or glucose; (iii) a poloxamer; (iv) a chelating agent; and (v) a chain terminator.
  • the chelating agent is EDTA
  • the chain terminator is N-Acetyl-cysteine or methionine.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the invention also relates to a lyophilized pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) trehalose, sucrose, mannitol, sorbitol, or glucose; (iii) a poloxamer; and (v) a chain terminator.
  • the chain terminator is N-Acetyl-cysteine or methionine.
  • the clostridial toxin is preferably a botulinum toxin and the poloxamer is preferably poloxamer-188.
  • the invention also relates to a liquid pharmaceutical composition, comprising:
  • a Clostridial toxin (i) a Clostridial toxin; (ii) a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate, and combinations thereof; and (iv) at least two types of antioxidant selected from the list of chelating agents, chain terminators, and sacrificial antioxidants.
  • a Clostridial toxin (ii) a tonicity agent selected from trehalose, sucrose, sodium chloride, mannitol, sorbitol, glucose, and combinations thereof; (iii) a surfactant selected from a poloxamer, a polysorbate, and combinations thereof; and (iv) at least two types of antioxidant selected from the list of chelating agents, chain terminators, and sacrificial antioxidants.
  • the clostridial toxin is preferably a botulinum toxin
  • the poloxamer is preferably poloxamer-188
  • the polysorbate is preferably polysorbate-20 or 80.
  • the chelating agents are preferably EDTA, EGTA or DTPA
  • the sacrificial antioxidant is preferably ascorbic acid
  • the chain terminators are preferably methionine, cysteine, NAC, or BHT.
  • the two types of antioxidants preferably include combinations of ascorbic acid with methionine, cysteine, NAC, or BHT.
  • the two types of antioxidants also preferably include combinations of ascorbic acid with EDTA, EGTA or DTPA.
  • the two types of antioxidants also preferably include the combinations of EDTA with methionine, cysteine, NAC, or BHT.
  • the two types of antioxidant also preferably include the combinations of DTPA with methionine, cysteine, NAC, or BHT.
  • the two types of antioxidant also preferably include the combinations of EGTA with methionine, cysteine, NAC, or BHT.
  • the invention provides methods of treating diseases, disorders, conditions, and the like, comprising the step of administering a pharmaceutical formulation of the invention to a subject in need thereof in an amount sufficient to produce improved patient function.
  • the diseases are of a neuromuscular nature, such as, for example, those diseases that affect muscles and nerve control thereof, such as, for example, overactive bladder, and the like.
  • the compositions of the invention are used in the treatment of cardiac arrhythmia.
  • certain embodiments relate to the treatment of pain, such as, for example, treatment of headache pain, or back pain, or muscle pain, or the like.
  • methods of the invention encompass the treatment of psychological disorders, including, for example, depression, anxiety, and the like.
  • the compositions of the invention are used in the treatment of depression.
  • composition is used in the treatment of depression, it is preferably used to treat adults with moderate to severe major depressive disorder (MDD) either single episode or recurrent, wherein this diagnosis is based upon the Diagnostic and Statistical Manual of Mental Disorders Text Edition, published in 2000 (DSM-IV-TR).
  • MDD moderate to severe major depressive disorder
  • DSM-IV-TR Diagnostic and Statistical Manual of Mental Disorders Text Edition
  • the composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl may be present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the composition is preferably administered in a single treatment session.
  • the dosage is preferably a total dose of 30 Units or 50 Units. These dosages are preferably administered in divided injection into 6 (for the 30 units dosage) or 8 (for the 50 Units dosage) injection sites into the glabellar region of the forehead, preferably into the procerus and corrugator muscles. This treatment may be repeated in 3 to 6 months intervals.
  • One advantage of the use of this method is that the patients treated with this composition show an improvement in the clinic Montgomery-Asberg Depression Rating scale. In addition, these patients also have improved clinic CGI-S scores (Clinical Global Impression of Change scores), and clinic HAM-D17 total scores (Hamilton Rating Scale for Depression).
  • compositions and methods of the invention can be useful for the treatment, reduction of symptoms, and/or prevention of, for example, achalasia, anal fissure, anismus, blepharospasm, cerebral palsy, cervical dystonia, cervicogenic headache, hemifacial spasm, dyshidrotic eczema, dysphagia, dysphonia, esophageal dysmotility, esophageal muscular ring, esotropia (infantile), eyelift, facial myokemia, gait disturbances (idiopathic toe-walking), generalized dystonia, hemifacial spasm, hyperfunctional facial lines (glabellar, forehead, crows' feet, down-turned angles of the mouth), hyperhidrosis, incontinence (idiopathic or neurogenic), medication overuse headache, migraine headache, myoclonus, muscle mass or activity reduction, involving, for example, the masseter or the like, myofascial pain syndrome, obstructive
  • composition is used in the treatment of cardiac arrhythmia
  • the patient is typically undergoing cardiac surgery.
  • the formulation used in the treatment may be any of the compositions of the invention. However, the formulation is preferably based on the lyophilized formulation described in Table A, which is taken up into solution for administration.
  • Table A Raw Material Concentration, Quantity per (Ingredient) w/w vial Function Botulinum 1200 U/mL 200 U Drug Substance toxin type A Trehalose 80 mg/mL 16 mg Lyo Protectant P188 40 mg/mL 8 mg Surfactant L-methionine 2 mg/mL 0.4 mg Antioxidant L-Histidine 1.430 mg/mL 0.286 mg Buffer L-Histidine HCl, 2.263 mg/mL 0.453 mg Buffer Monohydrate Water QS Adjust QS Adjust Solvent, removed by freeze-drying
  • the composition is reconstituted with a reconstitution vehicle comprising NaCl prior to administration to a patient.
  • NaCl may be present in an amount of 0.9% (w/w) in the reconstitution vehicle.
  • the mode of administration of the composition is by one time injection into the major epicardial fat pads of the heart.
  • the dosage used is 25 U per epicardial fat pad (125 U total dose) or 50 U per epicardial fat pad (250 U total dose).
  • One advantage of the use of this method is that the incidence of atrial fibrillation (AF) as measured by ECG through week 4 can be reduced.
  • Other advantages include: a reduction in the length of hospital stay; reduction in the length of stay in ICU; reduced rehospitalization rate of patients; reduced anticoagulant medication use; and reduced need for interventional procedures for Post Operative Atrial fibrillation (POAF), such as ablation, pacemaker implantation, electrical or pharmacologic cardioversion.
  • POAF Post Operative Atrial fibrillation
  • patients are limited to a maximum of 360 U of botulinum toxin administered over any 90-day period.
  • the neuromuscular disease is hyperhidrosis.
  • a subject suffering from hyperhidrosis receives about 59 U per axilla, or about 58 U per axilla, or about 57 U per axilla, or about 56 U per axilla, or about 55 U per axilla, or about 54 U per axilla, or about 53 U per axilla, or about 52 U per axilla, or about 51 U per axilla, or about 50 U per axilla, or about 49 U per axilla, or about 48 U per axilla, or about 47 U per axilla, or about 46 U per axilla, or about 45 U per axilla, or about 44 U per axilla, or about 43 U per axilla, or about 42 U per axilla, or about 41 U per axilla, or about 40 U per axilla, or about 39 U per axilla, or about 38 U per axilla, or about 37 U
  • the neuromuscular disease is hemifacial spasm.
  • a subject suffering from hemifacial spasm for example receives between about 1.5 to 15 U per treatment of the pharmaceutical formulation of the present invention.
  • the subject receives between about 1.5 to 3 U, 1.5 to 5 U, 1.5 to 7 U, 1.5 to 10 U, 1.5 to 12 U, 1.5 to 15 U, 5 to 10 U, 5 to 15 U, or 10 to 15 U per treatment are administered to a patient with hemifacial spasm.
  • the subject receives about 1.5 U, about 2 U, about 2.5 U, about 3 U, about 3.5 U, about 4 U, about 4.5 U about 5 U, about 5.5 U, about 6 U, about 6.5 U, about 7 U, about 7.5 U, about 8 U, about 8.5 U, about 9 U, about 9.5 U, about 10 U, about 10.5 U, about 11 U, about 11.5 U, about 12 U, about 12.5 U, about 13 U, about 13.5 U, about 14 U, about 14.5 U, or about 15 U per treatment are administered to a patient with hemifacial spasm. Dosages greater than 15 U per treatment may also be administered to patients with hemifacial spasm to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the neuromuscular disease is cervical dystonia.
  • a subject suffering from cervical dystonia receives between about 15 to 300 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 35 to 250 U, 65 to 200 U, 85 to 175 U, 105 to 160 U, or 125 to 145 U are administered to a patient with cervical dystonia.
  • dosages to the stemocleidomastoid muscle are limited to 100 U or less. Dosages greater than 300 U per treatment may also be administered to patients with cervical dystonia to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the neuromuscular disease is blepharospasm.
  • a subject suffering from blepharospasm receives between about 1.25 to 2.5 U of a pharmaceutical formulation of the present invention injected into the medial and lateral pretarsal orbicularis oculi of the upper lid and into the lateral pretarsal orbicularis oculi of the lower lid.
  • the subject receives about 1.5 U, about 1.6 U, about 1.7 U, about 1.8 U, about 1.9 U, about 2.0 U, about 2.1 U, about 2.2 U, about 2.3 U, about 2.4 U, about 2.5 U, or more, per injection site.
  • a treatment session can comprise multiple treatments.
  • the neuromuscular disease is strabismus.
  • a subject suffering from strabismus receives between about 1.25 to 2.5 U per injection site of a pharmaceutical formulation of the present invention.
  • the subject recieves about 1.5 U, about 1.6 U, about 1.7 U, about 1.8 U, about 1.9 U, about 2.0 U, about 2.1 U, about 2.2 U, about 2.3 U, about 2.4 U, about 2.5 U, or more, per injection site to achieve a therapeutic response.
  • lower doses are used for treatment of small deviations.
  • vertical muscles and horizontal strabismus of less than 20 prism diameters can be treated with 1.25 to 2.5 U per injection site.
  • a treatment session can comprise multiple treatments.
  • the neuromuscular disease is muscle spasticity.
  • a subject suffering from muscle spasticity for example, receives between about 20 to 200 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 20 to 30 U, 20 to 40 U, 20 to 60 U, 20 to 80 U, 20 to 100 U, 20 to 125 U, 20 to 150 U, or 20 to 175 U per treatment are administered to a patient with muscle spasticity.
  • the subject receives about 20 U, about 25 U, about 30 U, about 35 U, about 40 U, about 45 U, about 50 U, about 55 U, about 60 U, about 65 U, about 70 U, about 75 U, about 80 U, about 85 U, about 90 U, about 95 U, about 100 U, about 105 U, about 110 U, about 115 U, about 120 U, about 125 U, about 130 U, about 135 U, about 140 U, about 145 U, about 150 U, about 155 U, about 160 U, about 165 U, about 170 U, about 175 U, about 180 U, about 185 U, about 190 U, about 195 U, or about 200 U per treatment are administered to a patient with muscle spasticity.
  • the biceps brachii can be injected with between 100 U and 200 U divided into 4 injection sites.
  • the flexor carpi radialis can be injected with between 12.5 U and 50 U in 1 injection site.
  • the flexor carpi ulnaris can be injected with between 12.5 U and 50 U in 1 injection site.
  • the flexor digitorum profundus can be injected with between 30 U and 50 U in one injection site.
  • the flexor digitorum sublimis can be injected with between 30 U and 50 in a single injection site. Dosages greater than 200 U per treatment may also be administered to patients with muscle spasticity to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the present invention provides methods for treating pain comprising the step of administering a pharmaceutical formulation of the present invention to a subject in need thereof in an amount sufficient to reduce pain.
  • the patient suffers from myofascial pain, migraine headache pain, tension headache pain, neuropathic pain, facial pain, lower-back pain, sinus-headache pain, pain associated with temporomandibular joint disease, pain associated with spasticity or cervical dystonia, post-surgical wound pain, or neuralgia.
  • a treatment session can comprise multiple treatments.
  • the patient suffers from facial pain.
  • a subject suffering from facial pain for example, receives between about 4 to 40 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 4 to 10 U, 4 to 15 U, 4 to 20 U, 4 to 25 U, 4 to 30 U, 4 to 35 U, 7 to 15 U, 7 to 20 U, 7 to 25 U, 7 to 30 U, 7 to 35 U, or 7 to 40 U per treatment are administered to a patient suffering from facial pain.
  • the subject receives about 4 U, about 5 U, about 7.5 U, about 10 U, about 12.5 U, about 15 U, about 17.5 U, about 20.0 U, about 22.5 U, about 25.0 U, about 27.5 U, about 30.0 U, about 32.5 U, about 35 U, about 37.5 U, or about 40 U per treatment are administered to a patient with facial pain. Dosages greater than 40 U per treatment may also be administered to patients with facial pain to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the patient suffers from myofascial pain.
  • a subject suffering from myofascial pain receives between about 5 to 100 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 5 to 10 U, 5 to 20 U, 5 to 30 U, 5 to 40 Units, 5 to 50 Units, 5 to 60 Units, 5 to 70 Units, 5 to 80 Units, 5 to 90 U, 10 to 20 U, 10 to 30 U, 10 to 50 U, or 10 to 60 U, or 10 to 70 U, or 10 to 80 U, 10 to 90 U, or 10 to 100 U per treatment are administered to a patient suffering from myofascial pain.
  • the subject receives about 5 U, about 10 U, about 15 U, about 20 U, about 25 U, about 30 U, about 35 U, about 40 U, about 45 U, about 50 U, about 55 U, about 60 U, about 65 U, about 70 U, about 75 U, about 80 U, about 85 U, about 90 U, about 95 U, or about 100 U per treatment are administered to a patient with myofascial pain. Dosages greater than 100 U per treatment may also be administered to patients with myofascial pain to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the subject suffers from lower-back pain.
  • a subject suffering from lower-back pain for example, receives between about 15 to 150 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 15 to 30 U, 15 to 50 U, 15 to 75 U, 15 to 100 U, 15 to 125 U, 15 to 150 U, 20 to 100 U, 20 to 150 U, or 100 to 150 U per treatment are administered to a patient with lower-back pain.
  • the subject receives about 15 U, about 20 U, about 25 U, about 30 U, about 35 U, about 40 U, about 45 U, about 50 U, about 55 U, about 60 U, about 65 U, about 70 U, about 75 U, about 80 U, about 85 U, about 90 U, about 95 U, about 100 U, about 105 U, about 110 U, about 115 U, about 120 U, about 125 U, about 130 U, about 135 U, about 140 U, about 145 U, or about 150 U per treatment are administered to a patient with lower-back pain. Dosages greater than 150 U per treatment may also be administered to patients with lower-back pain to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the patient suffers from migraine headache pain, including wherein the patient suffers from migraine headaches of 4 hours or more 15 or more days per month.
  • a subject suffering from migraine-headache pain for example, receives between about 0.5 to 200 U per treatment of a pharmaceutical formulation of the present invention. In a further example, the subject receives between about 5 to 190 U, 15 to 180 U, 25 to 170 U, 35 to 160 U, 45 to 150 U, 55 to 140 U, 65 to 130 U, 75 to 120 U, 85 to 110 U, or 95 to 105 U per treatment are administered to a patient suffering from migraine-headache pain.
  • a treatment session can comprise multiple treatments.
  • about 0.5 U, about 1.0 U, about 1.5 U, about 2.0 U, about 2.5 U, about 3.0 U, about 3.5 U, about 4.0 U, about 4.5 U, about 5.0 U, about 5.5 U, about 6.0 U, about 6.5 U, about 7.0 U, about 7.5 U, about 8.0 U, about 8.5 U, about 9.0 U, about 9.5 U, about 10.0 U, about 12 U, about 15 U, about 17 U, about 20 U, about 22 U, about 25 U, about 27 U, about 30 U, about 32 U, about 35 U, about 37 U, about 40 U, about 42 U, about 45 U, about 47 U, or about 50 U per treatment site are administered to a patient with migraine-headache pain.
  • a patient can be treated at multiple sites, such as, for example, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites, 18 sites, 19 sites, 20 sites, 21 sites, 22 sites, 23 sites, 24 sites, 25 sites, 26 sites, 27 sites, 28 sites, 29 sites, 30 sites, 31 sites, 32 sites, or more, or the like.
  • a patient suffering from migraine is injected 31 times with 5 U per 0.1 mL injection, across the corrugator (2 injections of 5 U each), procerus (1 injection of 5 U), frontalis (4 injections of 5 U each), temporalis (8 injections of 5 U each), occipitalis (6 injections of 5 U each), cervical paraspinal (4 injections of 5 U each), and trapezius (6 injections of 5 U each) muscles.
  • procerus muscle which can be injected at the midline, all muscles can, in certain embodiments, be injected bilaterally with half of the injection sites to the left and half to the right side of the head and neck. Dosages greater than 200 U per treatment may also be administered to patients with migraine-headache pain to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the patient suffers from sinus-headache pain.
  • a subject suffering from sinus-headache pain for example, receives between about 4 to 40 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 4 to 10 U, 4 to 15 U, 4 to 20 U, 4 to 25 U, 4 to 30 U, 4 to 35 U, 7 to 15 U, 7 to 20 U, 7 to 25 U, 7 to 30 U, 7 to 35 U, or 7 to 40 U per treatment are administered to a patient suffering from sinus-headache pain.
  • the subject receives about 4 U, about 5 U, about 7.5 U, about 10 U, about 12.5 U, about 15 U, about 17.5 U, about 20.0 U, about 22.5 U, about 25.0 U, about 27.5 U, about 30.0 U, about 32.5 U, about 35 U, about 37.5 U, or about 40 U per treatment are administered to a patient with sinus-headache pain. Dosages greater than 40 U per treatment may also be administered to patients with sinus headache-pain to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the patient suffers from tension-headache pain.
  • a subject suffering from tension-headache pain for example, receives between about 5 to 50 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 5 to 10 U, 5 to 15 U, 5 to 20 U, 5 to 25 U, 5 to 30 U, 5 to 35 U, 5 to 40 U, 5 to 45 U, 10 to 20 U, 10 to 25 U, 10 to 30 U, 10 to 35 U, 10 to 40 U, or 10 to 45 U per treatment are administered to a patient with tension-headache pain.
  • the subject receives about 5 U, about 10 U, about 20 U, about 25 U, about 30 U, about 35 U, about 40 U, about 45 U, or about 50 U per treatment are administered to a patient with tension-headache pain.
  • a patient suffering from tension headache is injected 31 times with 5 U per 0.1 mL injection, across the corrugator (2 injections of 5 U each), procerus (1 injection of 5 U), frontalis (4 injections of 5 U each), temporalis (8 injections of 5 U each), occipitalis (6 injections of 5 U each), cervical paraspinal (4 injections of 5 U each), and trapezius (6 injections of 5 U each) muscles.
  • all muscles can, in certain embodiments, be injected bilaterally with half of the injection sites to the left and half to the right side of the head and neck. Dosages greater than 200 U per treatment may also be administered to patients with tension headache pain to achieve a therapeutic response.
  • a treatment session can comprise multiple treatments.
  • the patient suffers from sinus headache pain or facial pain associated with acute or recurrent chronic sinusitis.
  • a pharmaceutical formulation of the present invention can be administered to the nasal mucosa or to the subcutaneous structures overlying the sinuses, wherein the administration of the formulation reduces the headache and/or facial pain associated with acute recurrent or chronic sinusitis.
  • any of the pharmaceutical formulations of the present invention can be administered to the nasal mucosa or to the subcutaneous structures overlying the sinuses, such as over one or more of the sinuses selected from the group consisting of: ethmoid; maxillary; mastoid; frontal; and sphenoid.
  • subcutaneous structures overlying the sinuses lie within one or more of the areas selected from the group consisting of: forehead; malar; temporal; post auricular; and lip.
  • multiple injections of 5 U each are administered to treat the sinus headache pain or facial pain associated with acute or recurrent chronic sinusitis.
  • a patient suffering from sinus headache pain or facial pain associated with acute or recurrent chronic sinusitis is treated by administering any of the pharmaceutical formulations of the present invention to an afflicted area of the patient.
  • the pharmaceutical formulations disclosed herein are administered to the projections of a trigeminal nerve innervating a sinus.
  • Patients suffering from sinus headache pain or facial pain associated with acute or recurrent chronic sinusitis often exhibit symptoms including rhinitis, sinus hypersecretion and/or purulent nasal discharge.
  • patients treated with the pharmaceutical formulations of the present invention exhibit symptoms of sinus hypersecretion and purulent nasal discharge.
  • Embodiments of the present invention also provide methods for treating a patient suffering from sinus headache pain or facial pain associated with acute or recurrent chronic sinusitis, wherein the subject suffers from neuralgia.
  • the neuralgia is trigeminal neuralgia.
  • the neuralgia is: associated with compressive forces on a sensory nerve; associated with intrinsic nerve damage, demyelinating disease, or a genetic disorder; associated with a metabolic disorder; associated with central neurologic vascular disease; or associated with trauma.
  • the pain is associated with dental extraction or reconstruction.
  • the invention also provide methods for treating a patient suffering from overactive bladder (OAB), such as, for example, that due to a neurologic condition (NOAB), or idiopathic OAB (IOAB).
  • OAB overactive bladder
  • NOAB neurologic condition
  • IOAB idiopathic OAB
  • pharmaceutical formulations of the present invention can be administered to the bladder or its vicinity, e.g. the detrusor, wherein the administration of the formulation reduces the urge incontinence associated with overactive bladder.
  • the dosage can be, for example, 200 U, or more, or less, or the like.
  • the dosage can be about 15 U, about 20 U, about 25 U, about 30 U, about 35 U, about 40 U, about 45 U, about 50 U, about 55 U, about 60 U, about 65 U, about 70 U, about 75 U, about 80 U, about 85 U, about 90 U, about 95 U, about 100 U, about 105 U, about 110 U, about 115 U, about 120 U, about 125 U, about 130 U, about 135 U, about 140 U, about 145 U, about 150 U, about 160 U, about 170 U, about 180 U, about 190 U, about 200 U, about 210 U, about 220, about 230 U, about 240 U, or more, or the like, per treatment.
  • a patient can be injected at multiple sites, such as, for example, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites, 18 sites, 19 sites, 20 sites, 21 sites, 22 sites, 23 sites, 24 sites, 25 sites, 26 sites, 27 sites, 28 sites, 29 sites, 30 sites, 31 sites, 32 sites, 33 sites, 34 sites, 35 sites, 36 sites, 37 sites, 38 sites, or more, or the like.
  • patients suffering from OAB are treated with 30 1 mL injections of approximately 6.7 U per injection into the detrusor muscle.
  • the invention also provides methods for treating a patient suffering from neurogenic detrusor overactivity (NDO), such as that due to a neurologic condition.
  • NDO neurogenic detrusor overactivity
  • pharmaceutical formulations of the present invention can be administered to the bladder or its vicinity, e.g. the detrusor, wherein the administration of the formulation reduces the urge incontinence associated with overactive bladder.
  • the dosage can be, for example, 200 U, or more, or less, or the like.
  • the dosage can be about 15 U, about 20 U, about 25 U, about 30 U, about 35 U, about 40 U, about 45 U, about 50 U, about 55 U, about 60 U, about 65 U, about 70 U, about 75 U, about 80 U, about 85 U, about 90 U, about 95 U, about 100 U, about 105 U, about 110 U, about 115 U, about 120 U, about 125 U, about 130 U, about 135 U, about 140 U, about 145 U, about 150 U, about 160 U, about 170 U, about 180 U, about 190 U, about 200 U, about 210 U, about 220, about 230 U, about 240 U, or more, or the like, per treatment.
  • a patient can be injected at multiple sites, such as, for example, 2 sites, 3 sites, 4 sites, 5 sites, 6 sites, 7 sites, 8 sites, 9 sites, 10 sites, 11 sites, 12 sites, 13 sites, 14 sites, 15 sites, 16 sites, 17 sites, 18 sites, 19 sites, 20 sites, 21 sites, 22 sites, 23 sites, 24 sites, 25 sites, 26 sites, 27 sites, 28 sites, 29 sites, 30 sites, 31 sites, 32 sites, or more, or the like.
  • patients suffering from NDO are treated with 30 1 mL injections of approximately 6.7 U per injection into the detrusor muscle.
  • the present invention provides methods for cosmetically modifying soft-tissue features comprising the step of administering at least one pharmaceutical formulation of the present invention to a subject in need thereof in an amount sufficient to modify said features.
  • the pharmaceutical formulation is administered via transcutaneous or transmucosal injection either at a single focus or multiple foci.
  • pharmaceutical formulations of the present invention are administered to the face or neck of the subject.
  • the pharmaceutical formulations of the present invention are administered to the subject in an amount sufficient to reduce rhytides.
  • the formulation can be administered between eyebrows of the subject in an amount sufficient to reduce vertical lines between the eyebrows and on a bridge of a nose.
  • the pharmaceutical formulations can also be administered near either one or both eyes of the subject in an amount sufficient to reduce lines at corners of the eyes.
  • compositions of the invention can be injected locally to smooth skin.
  • the pharmaceutical formulations of the present invention can also be administered to a forehead of the subject in an amount sufficient to reduce horizontal lines on said forehead.
  • the pharmaceutical formulation is administered to the neck of the subject in an amount sufficient to reduce muscle bands in the neck.
  • a pharmaceutical composition is applied to the masseter muscle to relax the muscle and/or decrease masseter mass.
  • the patient suffers from facial wrinkles.
  • a subject suffering from facial wrinkles can receive between about 1 to 100 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 1 to 10 U, 1 to 20 U, 1 to 30 U, 1 to 40 U, 1 to 50 U, 1 to 60 U, 1 to 70 U, 1 to 80 U, 1 to 90 U, 5 to 20 U, 5 to 30 U, 5 to 40 U, 5 to 50 U, 5 to 60 U, 5 to 70 U, 5 to 80 U, 5 to 90 U, or 5 to 100 U per treatment are administered to a patient with an inflammatory disorder.
  • about 1 U, about 10 U, about 20 U, about 30 U, about 40 U, about 50 U, about 60 U, about 70 U, about 80 U, about 90 U, or about 100 U per treatment are administered to a patient. Dosages greater than 100 U per treatment may also be administered to patients suffering from inflammation or an inflammatory disorder to achieve a therapeutic response.
  • the present invention provides methods for treating inflammation comprising the step of administering a pharmaceutical formulation of the present invention to a subject in need thereof in an amount sufficient to reduce inflammation.
  • pharmaceutical formulations of the present invention are administered to a patient without producing muscle weakness.
  • the pharmaceutical formulations of the present invention are administered to patients with an inflammatory condition.
  • the inflammatory condition is neurogenic inflammation.
  • the subject suffers from rheumatoid arthritis or a gastro-intestinal inflammatory disease.
  • the patient suffers from an inflammatory disorder.
  • a subject suffering from an inflammatory disorder for example, receives between about 1 to 100 U per treatment of a pharmaceutical formulation of the present invention.
  • the subject receives between about 1 to 10 U, 1 to 20 U, 1 to 30 U, 1 to 40 U, 1 to 50 U, 1 to 60 U, 1 to 70 U, 1 to 80 U, 1 to 90 U, 5 to 20 U, 5 to 30 U, 5 to 40 U, 5 to 50 U, 5 to 60 U, 5 to 70 U, 5 to 80 U, 5 to 90 U, or 5 to 100 U per treatment are administered to a patient with an inflammatory disorder.
  • about 1 U, about 10 U, about 20 U, about 30 U, about 40 U, about 50 U, about 60 U, about 70 U, about 80 U, about 90 U, or about 100 U per treatment are administered to a patient. Dosages greater than 100 U per treatment may also be administered to patients suffering from inflammation or an inflammatory disorder to achieve a therapeutic response.
  • a method within the scope of the present invention for treating a skin disorder can have the step of local administration of a botulinum neurotoxin to a location of a skin disorder of a patient, such as to a face, hand or foot of a patient.
  • the neurotoxin can be locally administered in an amount of between about 10-3 units/kg of patient weight and about 35 units/kg of patient weight.
  • the neurotoxin is locally administered in an amount of between about 10-2 U/kg and about 25 U/kg of patient weight.
  • the neurotoxin is administered in an amount of between about 10-1 U/kg and about 15 U/kg.
  • the neurotoxin is locally administered in an amount of between about 1 U/kg and about 10 U/kg.
  • a neurotoxin such as botulinum toxin type A or B
  • a skin disorder location by topical application or by subdermal administration, to effectively treat the skin disorder.
  • Administration of botulinum toxin can be carried out at multiple sites in the skin, wherein the sites of adjacent injections are separated by about 0.1 to 10 cm, or about 0.5 to about 5 cm, for example, by about 1.5 to about 3 cm.
  • the toxins may be any of the botulinum toxins A, B, C, D, E, F or G.
  • the amounts administered may vary between 0.1 and 1000 U, or about 1 to about 40, or from about 5 to about 10 U, depending on the manufactures specifications, the class of the toxin and the mode of administration.
  • the repeat time range for these administrations for maintenance of the desired change varies substantially according to the location of the injection, the condition to be adjusted and the condition of the patient. Thus the repeat time may vary from about 1 week to about 50 weeks, however a common range is about 4 to about 25 weeks, or even about 12 weeks to about 16 weeks.
  • the distances between administrations can vary from about 1 mm to about 10 cm, suitably from about 5 mm to about 5 cm, and more usually from about 1 cm to about 3 cm.
  • botulinum A may be suitably administered by intradermal injection between about 0.1 to about 10 U at a separation of from about 0.5 to about 10 cm.
  • the present invention provides methods for treating cutaneous disorders comprising the step of administering a pharmaceutical formulation of the present invention to a subject in need thereof in an amount sufficient to reduce a sebaceous or mucous secretion.
  • the pharmaceutical formulations of the present invention are administered to a patient without producing muscle weakness.
  • the pharmaceutical formulations of the present invention are injected into one or more sites of an eyelid or conjunctiva.
  • the formulations of the present invention are administered to a body surface.
  • the pharmaceutical formulations are administered in an amount sufficient to reduce cutaneous bacterial or fungal growth, including but not limited to Staphylococcus; Streptococcus and Moraxella .
  • the pharmaceutical formulations of the present invention are administered to an area selected from the group consisting of: eyelid; scalp; feet; groin; and armpit to reduce cutaneous infection.
  • Bulk drug product solutions were prepared by mixing an appropriate aliquot of a botulinum toxin type A with three different vehicle solutions as shown in Table 4. All three formulations contained 8% w/w trehalose, 4% w/w P188 and 20 mM Histidine buffer at pH 6.0. The target potency was 100 units/mL. Formulation 10 contained no antioxidant. Formulations 11 and 12 contained NAC and methionine, respectively. The bulk solutions were filled into 2 mL glass vials (1.25 mL fill), and sealed with rubber stopper and aluminum shell.
  • N-acetyl-L-cysteine accelerated loss of potency as compared with the antioxidant-free formulation, demonstrating that N-acetyl-L-cysteine acted as pro-oxidant in this formulation.
  • the liquid composition comprising NAC lost over 50% potency after storage for 1 month at 25° C. and lost essentially all activity (i.e., complete inactivation of the toxin) after storage for 1 month at 40° C.
  • the lyophilized compositions comprising NAC lost 7% ((98.6%-91.9%)/98.6%) potency after storage for 3 months at 25° C. and lost 12% ((98.6%-86.5%)/98.6%) potency after storage for 1 month at 40° C. This demonstrates that NAC can function as a stabilizer in the lyophilized compositions.
  • Bulk drug product solutions were prepared by mixing an appropriate aliquot of a botulinum toxin type A with different antioxidants as shown in Table 5. All formulations contained 8% w/w trehalose, 4% w/w P188, 20 mM Histidine buffer at pH 6.0 and one or more antioxidants as listed. Target potency was 100 U/mL. The bulk solutions were filled into 2 mL glass vials (1.25 mL fill), and sealed with rubber stopper and aluminum shell. Potency of the formulations was tested by a cell based potency assay (CBPA) after filling (time zero, t0) and storage for two weeks and 1 month at 40° C. Potency test results are given in Table 5.
  • CBPA cell based potency assay
  • Liquid compositions comprising NAC and EDTA sodium salt retained full potency after storage at 40° C. for 2 weeks and 1 month, as did a composition comprising NAC, EDTA sodium salt and tryptophan (Formulation 27).
  • a composition comprising NAC but not EDTA lost essentially all potency after 2 weeks storage at 40° C.
  • antioxidants a chelating agent (e.g., EDTA, EGTA or DTPA) and/or a chain terminator antioxidant (e.g., methionine, cysteine, NAC and BHT) provides a stabilizing effect on the botulinum toxin.
  • Each formulation contained 100 U/mL botulinum toxin, 8 w/w % trehalose, and 4 w/w % poloxamer P188 in 20 mM histidine buffer, pH 6.0 and the specified antioxidant.
  • NAC N-acetyl-L-cysteine
  • Met L-methionine
  • TRP L-tryptophan
  • GSH L-glutathione
  • NaSul sodium sulfite
  • PrpGal propyl gallate
  • Bulk drug product solutions were prepared by mixing an appropriate aliquot of a botulinum toxin type A with a poloxamer or a polysorbate as shown in Table 6. All formulations contained 8% w/w trehalose, 0.2% w/w methionine in 20 mM Histidine buffer at pH 6.0 and 4% w/w P188 or 0.04% w/w Tween-20 as listed. Target potency was 100 U/mL. The bulk solutions were filled into 2 mL glass vials (1.25 mL fill), and sealed with rubber stopper and aluminum shell. Potency of the formulations was tested by a cell based potency assay (CBPA) after filling to give an initial potency.
  • CBPA cell based potency assay
  • Bulk drug product solutions were prepared by mixing an appropriate aliquot of a botulinum toxin type A with different components as shown in Tables 7 and 8. The amounts of components contained were 0% or 8% w/w trehalose, 0% or 0.2% w/w methionine, 0% or 4% w/w P188, all of which were formulated in 20 mM Histidine buffer at pH 6.0. Target potency was 100, 150, or 200 U/mL. The bulk solutions were filled into 2 mL glass vials (1.25 mL fill), and sealed with rubber stopper and aluminum shell. Potency of the formulations was tested by a cell based potency assay (CBPA) after filling to give an initial potency.
  • CBPA cell based potency assay
  • Bulk drug product solutions were prepared by mixing an appropriate aliquot of a botulinum toxin type A with vehicle solutions, containing different stabilizers and surfactants as shown in Table 9. All formulations contained 8% or 0% w/w trehalose or sucrose, 4% w/w P188 or 0.04% w/w PS-20, optionally 20 mM Histidine buffer at pH 6.0, 0.2% w/w methionine, and optionally 0.9% w/w NaCl. Target potency was 100 U/mL. The bulk solutions were filled into 2 mL glass vials (1.25 mL fill), and sealed with rubber stopper and aluminum shell. Potency of the formulations was tested by cell based potency assay (CBPA) after filling (time zero, t0) and storage at 5° C. Potency test results are given in Table 10.
  • CBPA cell based potency assay
  • Bulk solutions of botulinum toxin were prepared by mixing an appropriate aliquot of a botulinum toxin type A with several vehicle solutions as described in Table 11.
  • the amounts of components contained were 0% or 8% w/w trehalose or sucrose, 0.2% w/w methionine, 0% or 4% w/w P188, 0% or 0.04% w/w Tween 20 all of which were formulated in 20 mM Histidine buffer at pH 6.0.
  • Target potency was 200 U/mL. These amounts are shown in Table 11 below.
  • the solutions were filled into glass vials and lyophilized using conventional freeze-drying conditions.
  • a 58-year-old college professor presents symptoms of depression.
  • Her physician diagnoses recurrent moderate to severe major depressive disorder (MDD) based upon the DSM-IV-TR criteria.
  • the physician administers by intramuscular injection a botulinum toxin solution made using the composition shown in Table A reconstituted in saline into the procerus and corrugator muscles in a single treatment session. 30 units in total are administered at 6 injection sites. The procerus and corrugator muscles are paralysed. It is later confirmed using the Montgomery-Asberg Depression Rating scale that the treatment has alleviated the depression. Additional efficacy measures including the clinic CGI-S score (Clinical Global Impression of Change scores), and the clinic HAM-D17 total score (Hamilton Rating Scale for Depression) further confirm this. The treatment is repeated after 3 months.
  • MDD major depressive disorder
  • a 41-year-old teacher undergoing cardiac surgery shows symptoms of cardiac arrhythmia.
  • the surgeon administers a botulinum toxin solution made using the composition shown in Table A reconstituted in saline into the major epicardial fat pads of the heart of the patient. 50 U is administered per epicardial fat pad, up to a total of 250 U.
  • the patient is followed by ECG for a four week period following the injection. The incidence of atrial fibrillation is reduced.
  • the following improvements are noted for this patient: the length of hospital stay is reduced, length of stay in ICU is reduced, anticoagulant medication use is reduced, and the need for interventional procedures for Post Operative Atrial fibrillation (POAF) such as ablation, pacemaker implantation, electrical or pharmacologic cardioversion are reduced.
  • POAF Post Operative Atrial fibrillation
  • Example 12 Treatment of Cardiac Arrhythmia with Exemplary Compositions
  • a 66-year-old pensioner undergoing cardiac surgery shows symptoms of cardiac arrhythmia.
  • the surgeon administers a botulinum toxin solution made using the composition shown in Table A reconstituted in saline into the major epicardial fat pads of the heart of the patient. 25 U is administered per epicardial fat pad, up to a total of 125 U.
  • the patient is followed by ECG for a four week period following the injection. The incidence of atrial fibrillation is reduced.
  • the length of hospital stay is reduced, length of stay in ICU is reduced, anticoagulant medication use is reduced, and the need for interventional procedures for Post Operative Atrial fibrillation (POAF) such as ablation, pacemaker implantation, electrical or pharmacologic cardioversion are reduced.
  • POAF Post Operative Atrial fibrillation
  • the present disclosure also includes the following set of articles:
  • a pharmaceutical composition comprising:
  • composition according to article 1 comprising botulinum toxin. 3.
  • the composition according to article 1 or article 2 comprising trehalose. 4.
  • the composition according to any one of articles 1 to 3, comprising poloxamer 188 and/or polysorbate 20. 5.
  • the composition according to any one of articles 1 to 4 comprising one or more of methionine and N-Acetyl-cysteine.
  • the composition according to any one of articles 1 to 5 comprising botulinum toxin, trehalose, one of poloxamer 188 or polysorbate 20, and one of methionine or N-Acetyl-cysteine. 7.
  • composition according to any one of articles 1 to 6, comprising botulinum toxin, trehalose, poloxamer 188, and methionine.
  • composition according to article 7 wherein the relative weight amounts (%, w/w) of trehalose, poloxamer 188, and methionine are within the following ranges:
  • trehalose 1 to 10 polysorbate 20 0.02 to 0.06 methionine 0.1 to 0.3 11.
  • trehalose 1 to 10 poloxamer 188 0.5 to 5 N-Acetyl-cysteine 0.01 to 0.5 13.
  • trehalose 1 to 10 polysorbate 20 0.02 to 0.06 N-Acetyl-cysteine 0.01 to 0.5 15.
  • the present disclosure also includes the following set of embodiments.
  • a pharmaceutical composition comprising:
  • composition according to embodiment 1 comprising botulinum toxin. 3.
  • the composition according to embodiment 1 or embodiment 2 comprising trehalose or sucrose. 4.
  • the composition according to any one of embodiments 1 to 3, comprising poloxamer 188 and/or polysorbate 20. 5.
  • the composition according to any one of embodiments 1 to 4 comprising one or more of methionine and N-Acetyl-cysteine. 6.
  • the composition according to any one of embodiments 1 to 5 comprising botulinum toxin, trehalose or sucrose, one of poloxamer 188 or polysorbate 20, and one of methionine or N-Acetyl-cysteine. 7.
  • composition according to any one of embodiments 1 to 6, comprising botulinum toxin, trehalose or sucrose, poloxamer 188, and methionine.
  • composition according to embodiment 8 wherein the relative weight amounts (%, w/w) of trehalose or sucrose, poloxamer 188, and methionine are:
  • composition according to any one of embodiments 7-9, wherein the composition is a liquid composition, wherein the composition preferably comprises a buffer.
  • the buffer is histidine, wherein the concentration of histidine is preferably 20 mM, wherein the pH is preferably in the range 5-7, and wherein the pH is more preferably in the range 5.5-6.5, and the pH is most preferably in the range 5.5-6. 12.
  • composition according to embodiment 10 wherein the composition consists of trehalose or sucrose, poloxamer 188, methionine, a buffer, and optionally NaCl, and optionally EDTA, wherein the buffer is preferably histidine, wherein the pH is preferably in the range 5-7, the pH is more preferably in the range 5.5-6.5, and wherein the pH is most preferably in the range 5.5-6. 13.
  • composition according to embodiment 13 further comprising a buffer, wherein the buffer is preferably histidine, wherein the histidine is preferably comprised in a relative weight amount of 0.1 to 0.5 (% w/w), more preferably in a relative weight amount of 0.3-0.4% (w/w).
  • the composition according to embodiment 13 or 14 wherein the composition consists of trehalose or sucrose, poloxamer 188, methionine, a buffer, and optionally NaCl, and optionally EDTA.
  • the relative weight amounts (%, w/w) of trehalose or sucrose, polysorbate 20, and methionine are within the following ranges:
  • trehalose or sucrose 1 to 10 polysorbate 20 0.02 to 0.06 methionine 0.1 to 0.3 18.
  • the composition according to embodiment 18, wherein the relative weight amounts (%, w/w) of trehalose or sucrose, poloxamer 188, and N-Acetyl-cysteine are within the following ranges:
  • composition according to embodiment 19 wherein the relative weight amounts (%, w/w) of trehalose or sucrose, poloxamer 188, N-Acetyl-cysteine, and EDTA are:
  • compositions according to any one of embodiments 18-21, wherein the composition is a solid composition, wherein the composition is preferably lyophilised.
  • the composition is a liquid composition, wherein the composition preferably comprises a buffer.
  • the buffer is histidine, wherein the concentration of histidine is preferably 20 mM, wherein the pH is preferably in the range 5-7, and wherein the pH is most preferably 6.
  • composition according to embodiment 25 wherein the composition consists of trehalose or sucrose, poloxamer 188, N-Acetyl-cysteine, a buffer, and optionally EDTA, wherein the buffer is preferably histidine, wherein the pH is preferably in the range 5-7, and wherein the pH is most preferably 6.
  • the composition according to embodiment 28, wherein the relative weight amounts (%, w/w) of trehalose or sucrose, polysorbate 20, and N-Acetyl-cysteine are within the following ranges:
  • a pharmaceutical composition comprising:
  • composition according to embodiment 30 comprising botulinum toxin.
  • the composition according to embodiment 30 or 31, comprising poloxamer 188 and/or polysorbate 20.
  • the composition according to any one of embodiments 30 to 32 comprising one or more of methionine and N-Acetyl-cysteine.
  • the composition according to any one of embodiments 30 to 33 comprising botulinum toxin, one of poloxamer 188 or polysorbate 20, and one of methionine or N-Acetyl-cysteine.
  • the composition according to any one of embodiments 30 to 34 comprising botulinum toxin, poloxamer 188, and methionine.
  • the composition according to embodiment 35 wherein the relative weight amounts (%, w/w) of poloxamer 188, and methionine are within the following ranges:
  • poloxamer 188 0.5 to 5 methionine 0.1 to 0.3.
  • the composition is a liquid composition, wherein the composition preferably comprises a buffer.
  • the buffer is histidine, wherein the concentration of histidine is preferably 20 mM, wherein the pH is preferably in the range 5-7, and wherein the pH is most preferably 6. 40.
  • composition according to embodiment 38 wherein the composition consists of poloxamer 188, methionine, and a buffer, wherein the buffer is preferably histidine, wherein the pH is preferably in the range 5-7, and wherein the pH is most preferably 6.
  • the composition according to any one of embodiments 1 to 10, 12 to 25, 27 to 38, or 40 comprising histidine.
  • the composition according to any previous claim comprising no animal-derived protein.
  • 43. comprising ethylene diamine tetraacetic acid sodium salt (EDTA) or an EDTA analog.
  • EDTA ethylene diamine tetraacetic acid sodium salt
  • 44 The composition according to embodiment 43, wherein the relative weight amount (%, w/w) of EDTA ranges from about 0.01 to 0.10. 45.
  • composition according to any one of embodiments 18, 19, 28, 29, 43 and 44, wherein the composition is a liquid formulation and has a pH of from 5 to 7, wherein the relative weight amount of N-Acetyl-cysteine is 0.1 to 0.5.
  • the diseases, disorders, and conditions are selected from neuromuscular diseases, pain, psychological disorders, urological disorders, inflammation, and skin disorders.
  • 51. The method of embodiment 49, wherein the disorder is depression.
  • the method of embodiment 49, wherein the condition is cardiac arrhythmia.
  • a method of cosmetic treatment comprising the step of administering the pharmaceutical composition of any of embodiments 1 to 48 to a subject in need thereof.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Neurology (AREA)
  • Pain & Pain Management (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Neurosurgery (AREA)
  • Psychiatry (AREA)
  • Urology & Nephrology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rheumatology (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)
US16/332,923 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions Abandoned US20190247476A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/332,923 US20190247476A1 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662394009P 2016-09-13 2016-09-13
PCT/US2017/051369 WO2018053004A2 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions
US16/332,923 US20190247476A1 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2017/051369 A-371-Of-International WO2018053004A2 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US202117230537A Continuation 2016-09-13 2021-04-14

Publications (1)

Publication Number Publication Date
US20190247476A1 true US20190247476A1 (en) 2019-08-15

Family

ID=59974865

Family Applications (8)

Application Number Title Priority Date Filing Date
US16/332,923 Abandoned US20190247476A1 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions
US15/703,527 Active US10369190B2 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions
US16/531,800 Active US10973890B2 (en) 2016-09-13 2019-08-05 Non-protein clostridial toxin compositions
US17/185,312 Abandoned US20210290739A1 (en) 2016-09-13 2021-02-25 Non-protein clostridial toxin compositions
US17/322,195 Abandoned US20210369821A1 (en) 2016-09-13 2021-05-17 Non-protein clostridial toxin compositions
US17/856,121 Abandoned US20230173041A1 (en) 2016-09-13 2022-07-01 Non-protein clostridial toxin compositions
US18/136,090 Pending US20230355724A1 (en) 2016-09-13 2023-04-18 Non-protein clostridial toxin compositions
US18/136,048 Pending US20230355723A1 (en) 2016-09-13 2023-04-18 Non-protein clostridial toxin compositions

Family Applications After (7)

Application Number Title Priority Date Filing Date
US15/703,527 Active US10369190B2 (en) 2016-09-13 2017-09-13 Non-protein clostridial toxin compositions
US16/531,800 Active US10973890B2 (en) 2016-09-13 2019-08-05 Non-protein clostridial toxin compositions
US17/185,312 Abandoned US20210290739A1 (en) 2016-09-13 2021-02-25 Non-protein clostridial toxin compositions
US17/322,195 Abandoned US20210369821A1 (en) 2016-09-13 2021-05-17 Non-protein clostridial toxin compositions
US17/856,121 Abandoned US20230173041A1 (en) 2016-09-13 2022-07-01 Non-protein clostridial toxin compositions
US18/136,090 Pending US20230355724A1 (en) 2016-09-13 2023-04-18 Non-protein clostridial toxin compositions
US18/136,048 Pending US20230355723A1 (en) 2016-09-13 2023-04-18 Non-protein clostridial toxin compositions

Country Status (27)

Country Link
US (8) US20190247476A1 (da)
EP (4) EP3639848A3 (da)
JP (3) JP7217700B2 (da)
KR (5) KR20240023684A (da)
CN (3) CN109803673A (da)
AU (3) AU2017327369A1 (da)
BR (2) BR112019004929A2 (da)
CA (2) CA3035473A1 (da)
CL (1) CL2019000586A1 (da)
CO (1) CO2019003630A2 (da)
CY (2) CY1122263T1 (da)
DK (2) DK3432916T3 (da)
ES (2) ES2755815T3 (da)
HR (1) HRP20191966T4 (da)
HU (2) HUE046290T2 (da)
IL (2) IL308091A (da)
LT (1) LT3436054T (da)
MX (2) MX2019002835A (da)
PH (1) PH12019500501A1 (da)
PL (2) PL3436054T5 (da)
PT (2) PT3432916T (da)
RS (1) RS59600B2 (da)
RU (2) RU2019110875A (da)
SA (1) SA519401298B1 (da)
SI (2) SI3436054T2 (da)
TW (2) TW202247855A (da)
WO (2) WO2018053021A1 (da)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10973890B2 (en) 2016-09-13 2021-04-13 Allergan, Inc. Non-protein clostridial toxin compositions
US11033625B2 (en) * 2005-10-06 2021-06-15 Allergan, Inc. Method for stabilizing a toxin

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102649069B1 (ko) 2018-05-31 2024-03-19 주식회사 엑소코바이오 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 안면 홍조 개선용 조성물
KR102058961B1 (ko) * 2018-07-28 2019-12-24 주식회사 엑소코바이오 엑소좀의 동결건조 방법
KR102163806B1 (ko) 2018-07-30 2020-10-07 주식회사 엑소코바이오 줄기세포 유래의 엑소좀을 유효성분으로 포함하는 피지분비 감소용 조성물
CN112888454A (zh) * 2018-09-13 2021-06-01 阿勒根公司 梭菌毒素-透明质酸组合物
KR102259423B1 (ko) * 2018-11-30 2021-06-02 주식회사 휴온스바이오파마 보툴리눔 독소의 안정화 액상 조성물
US20240024220A1 (en) * 2019-05-11 2024-01-25 Youngsuk Yi Neurotoxin compositions and methods
AR119101A1 (es) * 2019-06-07 2021-11-24 Nestle Skin Health S A Tratamiento de líneas glabelares y líneas cantales laterales de moderadas a muy graves
US11241479B2 (en) 2019-10-18 2022-02-08 Penland Foundation Treatment methods using botulinum toxins
EP4045073A4 (en) 2019-10-18 2022-12-07 Penland Foundation BOTULINUM TOXIN FOR USE IN A TREATMENT
US11738071B2 (en) 2021-07-12 2023-08-29 Penland Foundation Treatment of acute and chronic kidney disease
US11925677B2 (en) 2021-07-12 2024-03-12 Penland Foundation Treatment of diabetes and chronic pancreatitis using botulinum toxin
US11090371B1 (en) 2019-10-18 2021-08-17 Penland Foundation Treatment of cirrhosis using botulinum toxin
US10973873B1 (en) 2019-10-18 2021-04-13 Penland Foundation Treatment of asthma using botulinum toxin
US10987411B1 (en) 2019-10-18 2021-04-27 Penland Foundation Treatment of chronic obstructive pulmonary disease using botulinum toxin
WO2021231669A1 (en) * 2020-05-15 2021-11-18 Penland Foundation Treatment of cardiac arrhythmia using botulinum toxin
US10960061B1 (en) 2019-10-18 2021-03-30 Penland Foundation Treatment of amyotrophic lateral sclerosis using botulinum toxin
US10960060B1 (en) * 2019-10-18 2021-03-30 Penland Foundation Treatment of cardiac arrhythmia using botulinum toxin
US10967052B1 (en) 2019-10-18 2021-04-06 Penland Foundation Treatment of dyslexia using botulinum toxin
RU2746035C1 (ru) * 2020-06-30 2021-04-06 Государственное бюджетное учреждение Санкт-Петербургский научно-исследовательский институт скорой помощи им. И.И. Джанелидзе Способ купирования болевого синдрома после эндопротезирования молочных желез
WO2024102345A1 (en) 2022-11-07 2024-05-16 Allergan, Inc. Prevention of post-operative atrial fibrillation with a botulinum toxin

Family Cites Families (441)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0779694B2 (ja) 1985-07-09 1995-08-30 カドラント バイオリソ−シズ リミテツド 蛋白質および同類品の保護
US4958257A (en) 1989-03-29 1990-09-18 Hughes Aircraft Company Heat conducting interface for electronic module
US5945098A (en) 1990-02-01 1999-08-31 Baxter International Inc. Stable intravenously-administrable immune globulin preparation
IL101007A (en) 1992-02-18 1997-08-14 Pharmos Ltd Dry stable compositions prepared by lyophilization
ATE213162T1 (de) * 1992-03-13 2002-02-15 Terry R Beardsley Thymus-stammendes, immunverstärkendes agens zur therapeutischen verwendung in einem wirt mit einem angegriffenen immunsystem
CA2138020C (en) 1992-06-23 1999-02-16 Eric A. Johnson Pharmaceutical composition containing botulinum b complex
PT1086702E (pt) 1994-05-09 2005-08-31 William J Binder Neurotoxinas pre-sinapticas para tratamento da dor de cabeca devida a enxaqueca
DK0760681T3 (da) 1994-05-31 2000-03-27 Allergan Inc Modifikation af clostridielle toksiner til anvendelse som transportproteiner
GB9411138D0 (en) 1994-06-03 1994-07-27 Microbiological Res Authority Toxin assay
US5962637A (en) 1994-06-03 1999-10-05 Microbiological Research Authority Toxin assay
US6586006B2 (en) 1994-08-04 2003-07-01 Elan Drug Delivery Limited Solid delivery systems for controlled release of molecules incorporated therein and methods of making same
US5756468A (en) 1994-10-13 1998-05-26 Wisconsin Alumni Research Foundation Pharmaceutical compositions of botulinum toxin or botulinum neurotoxin and methods of preparation
US5512547A (en) 1994-10-13 1996-04-30 Wisconsin Alumni Research Foundation Pharmaceutical composition of botulinum neurotoxin and method of preparation
US5556771A (en) 1995-02-10 1996-09-17 Gen-Probe Incorporated Stabilized compositions of reverse transcriptase and RNA polymerase for nucleic acid amplification
GB9508204D0 (en) 1995-04-21 1995-06-07 Speywood Lab Ltd A novel agent able to modify peripheral afferent function
EP0773788B1 (en) 1995-06-06 2003-05-07 L. Bruce Pearce Improved compositions and methods for chemodenervation using neurotoxins
GB9617671D0 (en) 1996-08-23 1996-10-02 Microbiological Res Authority Recombinant toxin fragments
US8828432B2 (en) 1996-10-28 2014-09-09 General Mills, Inc. Embedding and encapsulation of sensitive components into a matrix to obtain discrete controlled release particles
TW518235B (en) 1997-01-15 2003-01-21 Akzo Nobel Nv A gonadotropin-containing pharmaceutical composition with improved stability on prolong storage
US6777196B2 (en) 1997-02-18 2004-08-17 Genentech, Inc. Neurturin receptor
CA2505930C (en) 1997-07-15 2008-01-29 Richard A. Schmidt Use of botulinum toxin in the preparation of a pharmaceutical composition for treating urinary retention
US9066943B2 (en) 1997-07-15 2015-06-30 The Regents Of The University Of Colorado Use of botulinum toxin therapy for treatment of urological neurological conditions
US6638621B2 (en) 2000-08-16 2003-10-28 Lyotropic Therapeutics, Inc. Coated particles, methods of making and using
CN1073626C (zh) 1997-10-18 2001-10-24 卫生部兰州生物制品研究所 A型肉毒结晶毒素的生产工艺及生产该毒素所需的冻干保护液
SE510813C2 (sv) 1997-12-08 1999-06-28 Arla Ekonomisk Foerening Bakteriestam av arten Lactobacillus Paracasei subsp. paracasei, sammansättning därav för användning i livsmedel, samt produkt innehållande stammen
GB9818548D0 (en) 1998-08-25 1998-10-21 Microbiological Res Authority Treatment of mucas hypersecretion
TW574036B (en) 1998-09-11 2004-02-01 Elan Pharm Inc Stable liquid compositions of botulinum toxin
US20050147690A1 (en) 1998-09-25 2005-07-07 Masters David B. Biocompatible protein particles, particle devices and methods thereof
SI1031347T1 (en) 1999-01-27 2002-10-31 Idea Ag Transnasal transport/immunisation with highly adaptable carriers
EP1031346B1 (en) 1999-01-27 2002-05-02 Idea Ag Noninvasive vaccination through the skin
US6776990B2 (en) 1999-04-08 2004-08-17 Allergan, Inc. Methods and compositions for the treatment of pancreatitis
US6573244B1 (en) 1999-05-17 2003-06-03 The United States Of America As Represented By The Secretary Of The Army Previns as specific inhibitors and therapeutic agents for Botulinum toxin B and Tetanus neurotoxins
DE19925739A1 (de) 1999-06-07 2000-12-21 Biotecon Ges Fuer Biotechnologische Entwicklung & Consulting Mbh Therapeutikum mit einem Botulinum-Neurotoxin
WO2001014570A1 (en) 1999-08-25 2001-03-01 Allergan Sales, Inc. Activatable recombinant neurotoxins
US20030180289A1 (en) 1999-09-23 2003-09-25 Foster Keith Alan Inhibition of secretion from non-neuronal cells
WO2001026681A2 (en) 1999-10-13 2001-04-19 Chiron Corporation Method of obtaining cellular immune responses from proteins
IL149778A0 (en) 1999-11-22 2002-11-10 Universal Preservation Technologies Inc Preservation of sensitive biological material
US6500436B2 (en) 2000-01-19 2002-12-31 Allergan, Inc. Clostridial toxin derivatives and methods for treating pain
US8632785B2 (en) 2000-02-08 2014-01-21 Allergan, Inc. Clostridial toxin pharmaceutical composition containing a gelatin fragment
US20060269575A1 (en) 2000-02-08 2006-11-30 Allergan, Inc. Botulinum toxin pharmaceutical compositions formulated with recombinant albumin
WO2001058472A2 (en) 2000-02-08 2001-08-16 Allergan, Inc. Botulinum toxin pharmaceutical compositions
US20030118598A1 (en) 2000-02-08 2003-06-26 Allergan, Inc. Clostridial toxin pharmaceutical compositions
US7780967B2 (en) 2000-02-08 2010-08-24 Allergan, Inc. Reduced toxicity Clostridial toxin pharmaceutical compositions
US20030138460A1 (en) 2000-02-08 2003-07-24 Allergan, Inc Methods of treating animals with botulinum toxin pharmaceutical compositions
US20040033241A1 (en) 2000-06-02 2004-02-19 Allergan, Inc. Controlled release botulinum toxin system
US6306423B1 (en) 2000-06-02 2001-10-23 Allergan Sales, Inc. Neurotoxin implant
US7491799B2 (en) 2000-07-21 2009-02-17 Allergan, Inc. Modified botulinum neurotoxins
US6653062B1 (en) 2000-07-26 2003-11-25 Wisconsin Alumni Research Foundation Preservation and storage medium for biological materials
US6630330B1 (en) 2000-08-02 2003-10-07 Biopolo S.C.A.R.L. Ascorbic acid production from yeast
WO2002036110A2 (en) 2000-10-31 2002-05-10 Boehringer Ingelheim Pharmaceuticals, Inc. Oral self-emulsifying formulations of pyranone protease inhibitors
US7223577B2 (en) 2000-11-17 2007-05-29 Allergan, Inc. Post-translational modifications and Clostridial neurotoxins
US7273722B2 (en) 2000-11-29 2007-09-25 Allergan, Inc. Neurotoxins with enhanced target specificity
US7255865B2 (en) 2000-12-05 2007-08-14 Allergan, Inc. Methods of administering botulinum toxin
ITUD20010002A1 (it) 2001-01-05 2002-07-05 Univ Degli Studi Udine Uso della tossina botulinica per la soluzione di patologie articolari, in particolare della coxartrosi, della epicondilite e della patolo
US20060134140A1 (en) 2001-04-12 2006-06-22 Dana Lasko Compositions and methods for treating tumor spreading
US7442686B2 (en) 2001-04-12 2008-10-28 Bioaxone Therapeutique Inc. Treatment of macular degeneration with ADP-ribosyl transferase fusion protein therapeutic compositions
US9157875B2 (en) 2001-05-16 2015-10-13 Benjamin P. Warner Drug development and manufacturing
US8022172B2 (en) 2001-08-28 2011-09-20 Allergan, Inc. Luminescence resonance energy transfer (LRET) assays for clostridial toxin activity
US7208285B2 (en) 2001-08-28 2007-04-24 Allergan, Inc. Fret protease assays for botulinum serotype A/E toxins
US7332567B2 (en) 2001-08-28 2008-02-19 Allergan, Inc. Fret protease assays for clostridial toxins
US20030104996A1 (en) 2001-08-30 2003-06-05 Tiansheng Li L-methionine as a stabilizer for NESP/EPO in HSA-free formulations
US7214660B2 (en) 2001-10-10 2007-05-08 Neose Technologies, Inc. Erythropoietin: remodeling and glycoconjugation of erythropoietin
US20050215472A1 (en) 2001-10-23 2005-09-29 Psma Development Company, Llc PSMA formulations and uses thereof
US20040161776A1 (en) 2001-10-23 2004-08-19 Maddon Paul J. PSMA formulations and uses thereof
MXPA01011542A (es) 2001-11-13 2003-05-22 Alcon Inc Regeneracion del cartilago articular da°ado por la osteoartritis de grado i y ii, mediante la aplicacion intra-articular de una mezcla de hialuronato de sodio y de condroitin sulfato en un vehiculo de gel.
US7691394B2 (en) 2002-05-28 2010-04-06 Botulinum Toxin Research Associates, Inc. High-potency botulinum toxin formulations
US20040009180A1 (en) 2002-07-11 2004-01-15 Allergan, Inc. Transdermal botulinum toxin compositions
US7183066B2 (en) 2002-09-27 2007-02-27 Allergan, Inc. Cell-based fluorescence resonance energy transfer (FRET) assays for clostridial toxins
AU2003287105A1 (en) 2002-10-10 2004-05-04 Verenium Corporation Proteases, nucleic acids encoding them and methods for making and using them
ES2532906T5 (es) 2002-10-25 2022-03-23 Foamix Pharmaceuticals Ltd Espuma cosmética y farmacéutica
US20040086532A1 (en) 2002-11-05 2004-05-06 Allergan, Inc., Botulinum toxin formulations for oral administration
WO2004043534A1 (en) 2002-11-12 2004-05-27 Collegium Pharmaceutical, Inc. Inertial drug delivery system
US20060074014A1 (en) 2002-11-18 2006-04-06 Vicuron Pharmaceuticals Inc. Dalbavancin compositions for treatment of bacterial infections
US20060002862A1 (en) 2002-12-17 2006-01-05 Medimmune Vaccines, Inc. High pressure spray-dry of bioactive materials
EP1594523B1 (en) 2002-12-20 2009-03-25 Botulinum Toxin Research Associates, Inc. Pharmaceutical compositions comprising botulinum toxin and human serum albumin
GB0300427D0 (en) 2003-01-09 2003-02-05 Univ Strathclyde Pharmaceutical composition
SG170617A1 (en) 2003-01-16 2011-05-30 Acadia Pharm Inc Selective serotonin 2a/2c receptor inverse agonists as therapeutics for neurodegenerative diseases
US20060153876A1 (en) 2003-02-24 2006-07-13 Ira Sanders Cell membrane translocation of regulated snare inhibitors, compositions therefor, and methods for treatment of disease
PL2405015T3 (pl) 2003-03-05 2016-09-30 Rozpuszczalna glikoproteina o aktywności hialuronizady (sHASEGP), sposób jej wytwarzania, jej zastosowania i zawierające ją kompozycje farmaceutyczne
US7871607B2 (en) 2003-03-05 2011-01-18 Halozyme, Inc. Soluble glycosaminoglycanases and methods of preparing and using soluble glycosaminoglycanases
US20040214753A1 (en) 2003-03-20 2004-10-28 Britten Nancy Jean Dispersible pharmaceutical composition for treatment of mastitis and otic disorders
WO2004093870A1 (en) 2003-03-20 2004-11-04 Pharmacia Corporation Treatment and prevention of otic disorders
US9006388B2 (en) 2003-03-26 2015-04-14 Sudhir Paul Covalent attachment of ligands to nucleophilic proteins guided by non-covalent
WO2005030119A2 (en) 2003-04-11 2005-04-07 Allergan, Inc. Botulinum toxin a peptides and methods of predicting and reducing immunoresistance to botulinum toxin therapy
US7396535B2 (en) 2003-04-25 2008-07-08 Ackerman Alan H Therapy for obsessive compulsive head banging
US7393537B2 (en) 2003-04-25 2008-07-01 Allergan, Inc. Botulinum toxin for treatment of obsessive compulsive finger biting disorder
KR20060037320A (ko) 2003-07-02 2006-05-03 알자 코포레이션 미세돌출부 어레이 면역화 패치 및 방법
DE10333317A1 (de) 2003-07-22 2005-02-17 Biotecon Therapeutics Gmbh Formulierung für Proteinarzneimittel ohne Zusatz von humanem Serumalbumin (HSA)
US20050042775A1 (en) 2003-08-21 2005-02-24 Nicholas Pomato Botulinum antitoxin compositions and methods
EP1660013A4 (en) 2003-08-26 2011-07-20 Gel Del Technologies Inc BIOMATERIAL AND PROTEIN BIOCOACERVATES, METHODS OF MAKING AND USING THEM
US7148041B2 (en) 2003-09-25 2006-12-12 Allergan, Inc. Animal product free media and processes for obtaining a botulinum toxin
US7160699B2 (en) 2003-09-25 2007-01-09 Allergan, Inc. Media for clostridium bacterium and processes for obtaining a clostridial toxin
BRPI0416132A (pt) 2003-10-31 2007-01-02 Alza Corp sistema e método para liberação de vacina transdérmica
AU2004292953A1 (en) 2003-11-21 2005-06-09 Alza Corporation Ultrasound assisted transdermal vaccine delivery method and system
GB0328060D0 (en) 2003-12-04 2004-01-07 Sod Conseils Rech Applic Botulinum toxin treatment
AU2004296851A1 (en) 2003-12-08 2005-06-23 Gel-Del Technologies, Inc. Mucoadhesive drug delivery devices and methods of making and using thereof
KR101154351B1 (ko) 2003-12-23 2012-06-15 인피니티 디스커버리, 인코포레이티드 암 치료를 위한 벤조퀴논-함유 안사마이신의 유사체
CA2552754A1 (en) 2004-01-09 2005-08-04 Alza Corporation Frequency assisted transdermal agent delivery method and system
FR2865131B1 (fr) 2004-01-15 2007-08-24 Gattefosse Ets Sa Utilisation d'un extrait d'acmella oleracea pour son effet botox like dans une composition cosmetique anti-rides
US7598027B2 (en) 2004-02-24 2009-10-06 Allergan, Inc. Botulinum toxin screening assays
US9078892B2 (en) 2004-02-26 2015-07-14 Allergan, Inc. Methods for treating pain and for treating a medication overuse disorder
US20100266638A1 (en) 2004-02-26 2010-10-21 Allergan, Inc. Headache treatment method
US20050191321A1 (en) 2004-02-26 2005-09-01 Allergan, Inc. Methods for treating headache
PT1729821E (pt) 2004-03-03 2013-10-23 Revance Therapeutics Inc Composições e métodos para aplicação tópica e administração transdérmica de toxinas botulínicas
US9211248B2 (en) 2004-03-03 2015-12-15 Revance Therapeutics, Inc. Compositions and methods for topical application and transdermal delivery of botulinum toxins
US7674454B2 (en) 2004-03-06 2010-03-09 Innovata Limited Enzyme-prodrug therapy for prosthetic joint repair
US20050214325A1 (en) 2004-03-26 2005-09-29 Vvii Newco 2003, Inc. Compositions and methods to increase the effect of a neurotoxin treatment
MXPA06011429A (es) 2004-04-01 2007-04-25 Johnson & Johnson Aparato y metodo para el suministro transdermico de la vacuna contra la influenza.
KR101255016B1 (ko) 2004-04-09 2013-04-17 와이어쓰 엘엘씨 소포성 구내염 바이러스의 상승적 감쇠, 그의 벡터 및 그의 면역원성 조성물
AU2005235990A1 (en) 2004-04-13 2005-11-03 Alza Corporation Apparatus and method for transdermal delivery of multiple vaccines
CA2565678C (fr) 2004-05-05 2013-07-09 Pharmaleads Substrats peptidiques reconnus par la toxine botulique de type a, bont/a et leurs utilisations
US7591806B2 (en) 2004-05-18 2009-09-22 Bai Xu High-aspect-ratio microdevices and methods for transdermal delivery and sampling of active substances
EP1747672A4 (en) 2004-05-19 2010-02-17 Alza Corp METHOD AND FORMULATION OF TRANSDERMAL DELIVERY OF IMMUNOLOGICALLY ACTIVE AGENTS
DE102004026152A1 (de) 2004-05-28 2005-12-15 Basf Ag Fermentative Herstellung von Feinchemikalien
WO2005123120A1 (en) 2004-06-16 2005-12-29 Smart Drug Systems Inc. Sustained release vaccine composition
US20090181083A1 (en) 2004-06-28 2009-07-16 Lifebycle Pharmas A/S Porous tablets as carriers for liquid formulations
US7514088B2 (en) 2005-03-15 2009-04-07 Allergan, Inc. Multivalent Clostridial toxin derivatives and methods of their use
EP1761558A1 (en) 2004-06-30 2007-03-14 Allergan, Inc. Optimizing expression of active botulinum toxin type e
US20060004185A1 (en) 2004-07-01 2006-01-05 Leese Richard A Peptide antibiotics and peptide intermediates for their prepartion
GB2416122A (en) 2004-07-12 2006-01-18 Ipsen Ltd Botulinum neurotoxin composition
EA011652B1 (ru) 2004-07-26 2009-04-28 Мерц Фарма Гмбх Унд Ко. Кгаа Терапевтические композиции с нейротоксином ботулина
PT2813239T (pt) 2004-08-04 2017-06-09 Ipsen Biopharm Ltd Composição farmacêutica contendo a neurotoxina botulínica a2
GB2419527A (en) 2004-10-28 2006-05-03 Ipsen Ltd Pharmaceutical composition containing botulinum neurotoxin
JP2008508886A (ja) 2004-08-04 2008-03-27 アラーガン、インコーポレイテッド 活性ボツリヌス毒素a型の発現の最適化
US7892565B2 (en) 2004-09-01 2011-02-22 Allergan, Inc. Degradable clostridial toxins
US7560100B2 (en) 2004-09-09 2009-07-14 Yeda Research And Development Co., Ltd. Mixtures of polypeptides, compositions containing and processes for preparing same, for treating neurodegenerative diseases
CA2518650A1 (en) 2004-09-10 2006-03-10 Dimitrios Dimitrakoudis Clostridium botulinum toxin formulation and method for reducing weight
US7399607B2 (en) 2004-09-22 2008-07-15 Allergan, Inc. Fluorescence polarization assays for determining clostridial toxin activity
JP5682991B2 (ja) 2004-10-01 2015-03-11 ラムズコア, インコーポレイテッド 便利に移植可能な徐放性薬物処方物
WO2006042149A2 (en) 2004-10-06 2006-04-20 Allergan, Inc. Determining and reducing immunoresistance to botulinum toxin therapy using botulinum toxin a peptides
US7205018B2 (en) 2004-10-07 2007-04-17 Next Proteins, Inc. Carbonated protein drink and method of making
CA2586611A1 (en) 2004-11-02 2006-05-11 Gangagen Life Sciences Inc. Encapsulated bacteriophage formulation
CA2598204C (en) 2004-11-09 2015-01-13 Board Of Regents, The University Of Texas System Stabilized hme composition with small drug particles
AU2005311098B2 (en) 2004-12-01 2011-08-11 Allergan, Inc. Non-cytotoxic protein conjugates
GB0426394D0 (en) 2004-12-01 2005-01-05 Health Prot Agency Fusion proteins
WO2006059093A2 (en) 2004-12-01 2006-06-08 Health Protection Agency Fusion proteins
WO2006073410A1 (en) 2005-01-03 2006-07-13 Botulinum Toxin Research Associates, Inc. Compositions, methods and devices for preparing less painful botulinum toxin formulations
US7838011B2 (en) 2005-02-14 2010-11-23 Pankaj Modi Stabilized protein compositions for topical administration and methods of making same
US7727537B2 (en) 2005-02-14 2010-06-01 Dpm Therapeutics Corp. Stabilized compositions for topical administration and methods of making same
JP5006803B2 (ja) 2005-03-03 2012-08-22 アラーガン、インコーポレイテッド クロストリジウム・バクテリアの培地およびクロストリジウム毒素を得るための方法
EP1861112A4 (en) 2005-03-03 2009-07-22 Revance Therapeutics Inc COMPOSITIONS AND METHODS FOR TOPICAL APPLICATION AND TRANSDERMAL DELIVERY OF BOTULINUM TOXINS
EP1861419B1 (en) 2005-03-15 2011-06-29 Allergan, Inc. Modified clostridial toxins with enhanced targeting capabilities for endogenous clostridial toxin receptor systems
EP2270226B1 (en) 2005-03-31 2016-05-18 Two Cells Co., Ltd Method for distinguishing mesenchymal stem cell using molecular marker and use thereof
ATE470857T1 (de) 2005-04-05 2010-06-15 Allergan Inc Lipophile, farbstoffbasierte fret-assays für die clostridientoxinaktivität
US20070029252A1 (en) 2005-04-12 2007-02-08 Dunson James B Jr System and process for biomass treatment
US20090214466A1 (en) 2005-05-09 2009-08-27 Levin Bruce H Methods of Alleviating Disorders and Their Associated Pain
US8926991B2 (en) 2005-06-14 2015-01-06 Botulinum Toxin Research Associates, Inc. Botulinum toxin and the treatment of primary disorders of mood and affect
US8329184B2 (en) 2005-06-27 2012-12-11 Glaxosmithkline Biologicals S.A. Process for manufacturing vaccines
US8323666B2 (en) 2005-08-01 2012-12-04 Allergan, Inc. Botulinum toxin compositions
CA2618974C (en) 2005-08-09 2014-01-28 Nanobio Corporation Nanoemulsion compositions having anti-inflammatory activity
PT1954308E (pt) 2005-09-16 2011-11-03 Merial Ltd Estabilizadores para vacinas liofilizadas
ATE463506T1 (de) 2005-09-19 2010-04-15 Allergan Inc Mit clostriedientoxin aktivierbare clostridientoxine
US8168206B1 (en) 2005-10-06 2012-05-01 Allergan, Inc. Animal protein-free pharmaceutical compositions
CN101175478A (zh) * 2005-10-06 2008-05-07 阿勒根公司 非蛋白稳定的梭菌毒素药物组合物
AU2013202329B2 (en) * 2005-10-06 2016-04-14 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
US8137677B2 (en) * 2005-10-06 2012-03-20 Allergan, Inc. Non-protein stabilized clostridial toxin pharmaceutical compositions
WO2007044809A2 (en) 2005-10-11 2007-04-19 Botulinum Toxin Research Associates, Inc. Albumin-free botulinum toxin based pharmaceutical compositions containing a hyaluronidase and methods of use
DE102005051789B4 (de) 2005-10-28 2014-08-07 Toxogen Gmbh Der Botulinus Neurotoxin A Proteinrezeptor und seine Anwendungen
US9486408B2 (en) 2005-12-01 2016-11-08 University Of Massachusetts Lowell Botulinum nanoemulsions
US8158360B2 (en) 2005-12-08 2012-04-17 Novartis Ag Effects of inhibitors of FGFR3 on gene transcription
AU2006334020B2 (en) 2005-12-30 2012-07-05 Mor Research Applications Ltd. Device and method for treating the anal sphincter
CN101395164A (zh) 2006-01-10 2009-03-25 罗伊·J·于 N-(膦酰基烷基)-氨基酸、其衍生物和组合物以及使用方法
RU2464973C2 (ru) 2006-01-24 2012-10-27 НексБио, Инк. Технология изготовления макромолекулярных микросфер
US7666912B2 (en) 2006-03-23 2010-02-23 Massachusetts Eye And Ear Infirmary Compositions and methods for reducing body fat
EP2105500A1 (de) 2008-03-26 2009-09-30 Pharmazell GmbH Neue 12alpha-Hydroxysteroiddehydrogenasen, deren Herstellung und deren Verwendung
US7473559B2 (en) 2006-04-05 2009-01-06 Charles Lee Method for measuring the content of a botulinum toxin in a formulation
US7309602B2 (en) 2006-04-13 2007-12-18 Ambrozea, Inc. Compositions and methods for producing fermentation products and residuals
ITTO20060282A1 (it) 2006-04-14 2007-10-15 Univ Degli Studi Torino Mezzo di coltura e composizione farmaceutica per la rigenerazione del tessuto cartilagineo relativo procedimento relativi usi e prodotti
EP2041162A2 (en) 2006-07-11 2009-04-01 Allergan, Inc. Modified clostridial toxins with enhanced translocation capability and enhanced targeting activity
US7993656B2 (en) 2006-07-11 2011-08-09 Allergan, Inc. Modified clostridial toxins with enhanced translocation capabilities and altered targeting activity for clostridial toxin target cells
DE102006035618A1 (de) 2006-07-31 2008-02-07 Curevac Gmbh Nukleinsäure der Formel (I): GlXmGn, insbesondere als immunstimulierendes Adjuvanz
TW200824678A (en) 2006-08-11 2008-06-16 Combinatorx Inc Methods and compositions for the treatment of neurodegenerative disorders
US9061025B2 (en) 2006-08-31 2015-06-23 Allergan, Inc. Methods for selecting headache patients responsive to botulinum toxin therapy
US8043845B2 (en) 2006-09-20 2011-10-25 American Sterilizer Company Sterilization indicator
WO2008127291A2 (en) 2006-10-10 2008-10-23 Los Alamos National Security, Llc Advanced drug development and manufacturing
EP1917971A1 (en) 2006-10-27 2008-05-07 Société de Conseils de Recherches et d'Applications Scientifiques ( S.C.R.A.S.) Substained release formulations comprising very low molecular weight polymers
EP1921149A1 (en) 2006-11-13 2008-05-14 AEterna Zentaris GmbH Microorganisms as carriers of nucleotide sequences coding for antigens and protein toxins, process of manufacturing and uses thereof
JP2010528981A (ja) 2006-12-01 2010-08-26 アンテリオス, インコーポレイテッド 両親媒性実体ナノ粒子
TWI433674B (zh) 2006-12-28 2014-04-11 Infinity Discovery Inc 環杷明(cyclopamine)類似物類
GB0700523D0 (en) 2007-01-11 2007-02-21 Insense Ltd The Stabilisation Of Proteins
CA2681567C (en) 2007-03-22 2016-07-19 The Regents Of The University Of Colorado, A Body Corporate Method of preparing an immunologically-active adjuvant-bound dried vaccine composition
WO2008133884A2 (en) 2007-04-23 2008-11-06 Combinatorx, Incorporated Methods and compositions for the treatment of neurodegenerative disorders
EP1985276A1 (en) 2007-04-26 2008-10-29 Merz Pharma GmbH & Co. KGaA Treatment of movement disorders by a combined use of a chemodenervating agent and automated movement therapy
US8617568B2 (en) 2007-07-10 2013-12-31 Medy-Tox, Inc. Pharmaceutical liquid composition of botulinum toxin with improved stability
EP3124044A1 (en) 2007-09-14 2017-02-01 Sanofi Pasteur Biologics, LLC Pharmaceutical compositions containing clostridium difficile toxoids a and b
US8486467B1 (en) 2007-09-20 2013-07-16 Albert G. Prescott Dermal filler and method of using same
EP2620157A3 (en) 2007-10-12 2013-10-16 Massachusetts Institute of Technology Vaccine nanotechnology
KR20190045414A (ko) 2007-11-30 2019-05-02 애브비 바이오테크놀로지 리미티드 단백질 제형 및 이의 제조방법
US8883146B2 (en) 2007-11-30 2014-11-11 Abbvie Inc. Protein formulations and methods of making same
US20110151534A1 (en) 2007-11-30 2011-06-23 Voigt Christopher A Industrial production of organic compounds using recombinant organisms expressing methyl halide transferase
US9161970B2 (en) 2007-12-12 2015-10-20 Allergan, Inc. Dermal filler
US9044477B2 (en) 2007-12-12 2015-06-02 Allergan, Inc. Botulinum toxin formulation
EP2247277A2 (en) 2008-01-25 2010-11-10 B & T S.r.l. Use of transesterified olive oil in the cosmetic field
KR101483715B1 (ko) 2008-01-31 2015-01-19 큐어백 게엠바하 면역증강제/애주번트인 화학식(NuGlXmGnNv)a를 포함하는 핵산 및 이의 유도체
US9107815B2 (en) 2008-02-22 2015-08-18 Allergan, Inc. Sustained release poloxamer containing pharmaceutical compositions
SI3031825T1 (sl) 2008-03-14 2019-12-31 Allergan, Inc. Preizkusi aktivnosti serotipa A botulin toksina na podlagi imunosti
KR101604515B1 (ko) 2008-03-14 2016-03-17 알러간, 인코포레이티드 면역-기반 보툴리눔 독소 세로타입 a 활성 검정
CA2719637C (en) 2008-03-27 2014-10-28 Agigma, Inc. Methods and compositions for the delivery of agents
US8617571B2 (en) 2008-04-03 2013-12-31 Allergan, Inc. Suture line administration technique using botulinum toxin
US9119866B2 (en) 2008-04-08 2015-09-01 Huiru Wang Glycan-based drugs, therapies and biomarkers
WO2009128644A2 (ko) 2008-04-14 2009-10-22 한국과학기술원 게놈 수준에서의 부탄올 생산 미생물의 대사 네트워크 모델 및 이를 이용한 부탄올 생성 미생물의 대사특성분석 및 결실 표적 스크리닝 방법
NZ714365A (en) 2008-04-30 2017-08-25 Xyleco Inc Producing modified saccharides by processing biomass
KR20090120222A (ko) 2008-05-19 2009-11-24 (주)메디톡스 식물 유래 성분 함유 배지 및 가요성 폐쇄 용기를 이용하여클로스트리디움 보툴리눔 독소를 생산하는 방법
US9415006B2 (en) 2008-05-23 2016-08-16 The Regents Of The University Of Michigan Immunogenic compositions comprising nanoemulsion and hepatitis B virus immunogen and methods of using the same
US20110212157A1 (en) 2008-06-26 2011-09-01 Anterios, Inc. Dermal delivery
US8697155B2 (en) 2008-07-22 2014-04-15 Mayo Foundation For Medical Education And Research Treatment of obesity and related disorders
US10369204B2 (en) 2008-10-02 2019-08-06 Dako Denmark A/S Molecular vaccines for infectious disease
CN103725717A (zh) 2008-10-17 2014-04-16 焦耳无限科技公司 微生物的乙醇生产
US9072688B2 (en) 2008-10-31 2015-07-07 The Invention Science Fund I, Llc Compositions and methods for therapeutic delivery with frozen particles
MX359674B (es) 2008-11-10 2018-10-05 Alnylam Pharmaceuticals Inc Lipidos y composiciones novedosas para el suministro de terapeuticos.
CA2745657C (en) 2008-12-04 2022-06-21 Botulinum Toxin Research Associates, Inc. Extended length botulinum toxin formulation for human or mammalian use
WO2010090677A1 (en) * 2008-12-10 2010-08-12 Allergan, Inc. Clostridial toxin pharmaceutical compositions
JP2012511519A (ja) 2008-12-10 2012-05-24 アンフイ ジョンレン テクノロジー コーポレイション,リミテッド 制御放出組成物
WO2010071817A2 (en) 2008-12-19 2010-06-24 Momenta Pharmaceuticals, Inc. Characterization of o-linked glycans
KR101753242B1 (ko) 2008-12-31 2017-07-20 레반스 테라퓨틱스, 아이엔씨. 주사용 보툴리눔 독소 제제
CN102365109B (zh) 2009-01-29 2015-06-03 弗赛特影像4股份有限公司 后段给药
US9744237B2 (en) 2009-01-29 2017-08-29 Kambiz Thomas Moazed Method and system for effecting changes in pigmented tissue
US9447175B2 (en) 2009-02-19 2016-09-20 Merz Pharma Gmbh & Co. Kgaa Means and methods for manufacturing highly pure neurotoxin
PL2406371T3 (pl) 2009-03-13 2018-11-30 Allergan, Inc. Komórki pomocne w testach do oznaczania aktywności toksyny botulinowej o serotypie a, opartych na immunologii
KR101923847B1 (ko) 2009-03-13 2018-11-29 알러간, 인코포레이티드 면역 기반 재표적화된 엔도펩티다제 활성 검정
DK2413947T3 (da) 2009-04-01 2020-06-02 Revance Therapeutics Inc Fremgangsmåder og sammensætninger til behandling af hudtilstande forbundet med vaskulær hyperreaktivitet
EP2248518B1 (en) 2009-04-17 2013-01-16 Merz Pharma GmbH & Co. KGaA Formulation for stabilizing proteins, peptides or mixtures thereof.
RU2490935C2 (ru) 2009-04-24 2013-08-27 Нестек С.А. Кисломолочные продукты длительного хранения и способы их получения
US20180027833A1 (en) 2009-04-24 2018-02-01 Nestec S.A. Shelf-stable fermented dairy products and methods of making same
US9539233B2 (en) 2009-05-04 2017-01-10 Aridis Pharmaceuticals Inc. Gallium formulation for the treatment and prevention of infectious diseases
JP5769701B2 (ja) 2009-05-05 2015-08-26 テクミラ ファーマシューティカルズ コーポレイションTekmira Pharmaceuticals Corporation 脂質組成物
WO2013170052A1 (en) 2012-05-09 2013-11-14 Sio2 Medical Products, Inc. Saccharide protective coating for pharmaceutical package
KR102205886B1 (ko) 2009-06-10 2021-01-21 알닐람 파마슈티칼스 인코포레이티드 향상된 지질 조성물
WO2010146591A2 (en) 2009-06-18 2010-12-23 Rdd Pharma Ltd. Methods and devices for delivery of pharmaceutical agents within orifices of the body
WO2011005577A1 (en) 2009-06-24 2011-01-13 Soparkar Charles N S Zinc supplementation to increase responsiveness to metalloprotease therapy
WO2011002179A2 (ko) 2009-06-30 2011-01-06 (주)아모레퍼시픽 복분자 추출물을 함유하는 피부 주름 개선용 화장료 조성물
MX366344B (es) * 2009-06-25 2019-07-05 Revance Therapeutics Inc Formulaciones de toxina botulinica libres de albumina.
US9458536B2 (en) 2009-07-02 2016-10-04 Sio2 Medical Products, Inc. PECVD coating methods for capped syringes, cartridges and other articles
US8129139B2 (en) 2009-07-13 2012-03-06 Allergan, Inc. Process for obtaining botulinum neurotoxin
EP2456878A4 (en) 2009-07-24 2013-01-02 Univ California METHODS AND COMPOSITIONS FOR IMPROVING SUGAR TRANSPORT, FERMENTATION OF MIXED SUGARS AND PRODUCTION OF BIOFUELS
BR112012002963A2 (pt) 2009-08-12 2017-10-24 Sigmoid Pharma Ltd composições imunomoduladoras compreendendo uma matriz de polímero e uma fase oleosa
US8821879B2 (en) 2009-09-04 2014-09-02 Xoma Technology Ltd. Anti-botulism antibody coformulations
WO2011028962A1 (en) 2009-09-04 2011-03-10 Xoma Technology Ltd. Antibody coformulations
US8685684B2 (en) 2009-09-14 2014-04-01 Gs Caltex Corporation Process for the production of bio-fuels and/or bio-chemicals from biomass fermentation
CA2783432A1 (en) 2009-12-15 2011-06-23 Stratley Ag Method for recovery of organic components from dilute aqueous solutions
CN102933200B (zh) 2009-12-18 2015-11-25 莱迪杜德制药公司 包含磷脂的单相凝胶组合物
US10471150B2 (en) 2010-01-20 2019-11-12 Urogen Pharma Ltd. Material and method for treating internal cavities
ES2732150T3 (es) 2010-01-20 2019-11-20 Urogen Pharma Ltd Material y método para tratar cavidades internas
WO2011103465A2 (en) 2010-02-20 2011-08-25 Alexey Gennadievich Zdanovsky Botulinum neurotoxin antigenic compositions and methods
GB201004072D0 (en) 2010-03-11 2010-04-28 Turzi Antoine Process, tube and device for the preparation of wound healant composition
US9327105B2 (en) 2010-03-26 2016-05-03 Itrace Biomedical Inc. Active transdermal drug delivery system and the method thereof
US8940308B2 (en) 2010-03-30 2015-01-27 Allergan, Inc. Methods for treating depression
AU2011258156B2 (en) 2010-05-26 2016-11-24 Selecta Biosciences, Inc. Multivalent synthetic nanocarrier vaccines
BRPI1002601E2 (pt) 2010-06-01 2020-06-30 Embrapa Pesquisa Agropecuaria composição nanoestruturada de uso veterinário para administração de fármacos
KR101209266B1 (ko) 2010-06-30 2012-12-06 한국과학기술연구원 생분해성 및 온도 감응성 폴리포스파젠계 자성 고분자, 그의 제조 방법 및 용도
LT3434346T (lt) 2010-07-30 2020-12-28 Medimmune, Llc Išgryninti veiklūs polipeptidai ar imunokonjugatai
JP5990176B2 (ja) 2010-10-12 2016-09-07 メルツ ファーマ ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディト ゲゼルシャフト アウフ アクティーン タンパク質の安定化に好適な哺乳動物性賦形剤非含有製剤
US8685381B2 (en) 2010-10-23 2014-04-01 Joel Schlessinger Topical base and active agent-containing compositions, and methods for improving and treating skin
EP2633074A1 (en) 2010-10-27 2013-09-04 Quantibact A/s Capture of target dna and rna by probes comprising intercalator molecules
US9284566B2 (en) 2010-11-03 2016-03-15 The Regents Of The University Of California Biofuel and chemical production by recombinant microorganisms via fermentation of proteinaceous biomass
FR2967913A1 (fr) 2010-11-29 2012-06-01 Vetalis Composition galenique adaptee a l'administration a un animal non-humain, utilisations de celle-ci et methodes associees
HUE035057T2 (en) 2011-01-07 2018-05-02 Revance Therapeutics Inc Topical preparation containing Botulinum toxin and colorant
SG10201804552WA (en) 2011-01-24 2018-07-30 Anterios Inc Nanoparticle compositions, formulations thereof, and uses therefor
EP3527222B1 (en) 2011-02-15 2021-04-07 Vaxiion Therapeutics, LLC Therapeutic compositions and methods for antibody and fc-containing targeting molecule-based targeted delivery of bioactive molecules by bacterial minicells
WO2012116209A1 (en) 2011-02-23 2012-08-30 Ams Research Corporation Drug releasing pelvic treatment system and method
US20120222979A1 (en) 2011-03-04 2012-09-06 Elwha LLC, a limited liability company of the State of Delaware Glassy compositions
SG193389A1 (en) * 2011-03-10 2013-10-30 Xeris Pharmaceuticals Inc Stable formulations for parenteral injection of peptide drugs
RU2013148525A (ru) 2011-03-31 2015-05-10 Нестек С.А. Питательные композиции для увеличения уровней аргинина и способы их применения
EP2692350B2 (en) * 2011-03-31 2023-06-28 Medy-Tox Inc. Lyophilized preparation of botulinum toxin
US9512495B2 (en) 2011-04-07 2016-12-06 Virdia, Inc. Lignocellulose conversion processes and products
CN103458888A (zh) 2011-04-12 2013-12-18 雀巢产品技术援助有限公司 用于改善肠屏障功能的包含支链脂肪酸的营养组合物
RU2013151085A (ru) 2011-04-18 2015-05-27 Нестек С.А. ПИТАТЕЛЬНЫЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ α-ГИДРОКСИИЗОКАПРОНОВУЮ КИСЛОТУ(α-HICA), И СПОСОБЫ ИХ ПРИМЕНЕНИЯ
PL2707031T3 (pl) 2011-05-08 2020-01-31 Legochem Biosciences, Inc. Koniugaty białko-środek czynny i sposoby i ch wytwarzania
US20130309273A1 (en) 2012-05-17 2013-11-21 Kimberly Hassett Thermostable Vaccine Compositions and Methods of Preparing Same
CN107625958A (zh) 2011-05-17 2018-01-26 索利吉尼克斯公司 热稳定性疫苗组合物及其制备方法
BR112013032396A2 (pt) 2011-06-17 2016-11-22 Halozyme Inc formulações estáveis de aplicações relacionadas à enzima de degradação de ácido hialurônico
US8586020B2 (en) 2011-06-30 2013-11-19 Korea Institute Of Science And Technology Poly(organophosphazene) composition for biomaterials
US8951996B2 (en) 2011-07-28 2015-02-10 Lipocine Inc. 17-hydroxyprogesterone ester-containing oral compositions and related methods
US20130053792A1 (en) 2011-08-24 2013-02-28 Ablative Solutions, Inc. Expandable catheter system for vessel wall injection and muscle and nerve fiber ablation
KR20130022923A (ko) 2011-08-26 2013-03-07 삼성전자주식회사 가상 시점 합성 예측을 이용한 부호화/복호화 장치 및 부호화/복호화 방법
US9241869B2 (en) 2011-10-25 2016-01-26 Corning Incorporated Delamination resistant pharmaceutical glass containers containing active pharmaceutical ingredients
CA3119789A1 (en) 2011-10-27 2013-05-02 Massachusetts Institute Of Technology Amino acid derivatives functionalized on the n-terminal capable of forming drug encapsulating microspheres
US9283217B2 (en) 2011-11-10 2016-03-15 Allergan, Inc. Pharmaceutical compositions comprising 7-(1 H-imidazol-4-ylmethyl)-5,6,7,8-tetrahydro-quinoline for treating skin diseases and conditions
EP2776603B1 (en) 2011-11-11 2019-03-06 SiO2 Medical Products, Inc. PASSIVATION, pH PROTECTIVE OR LUBRICITY COATING FOR PHARMACEUTICAL PACKAGE, COATING PROCESS AND APPARATUS
WO2013087918A1 (en) 2011-12-15 2013-06-20 Nestec S.A. Cohesive thin liquids to promote safe swallowing in dysphagic patients
AU2012351533B2 (en) 2011-12-15 2016-09-22 Société des Produits Nestlé S.A. Extensional viscosity to promote safe swallowing of food boluses
RS59703B1 (sr) 2011-12-30 2020-01-31 Halozyme Inc Varijante ph20 polipeptida, njihove formulacije i upotrebe
EP2634190A1 (en) 2012-03-01 2013-09-04 Lead Discovery Center GmbH Pyrazolo-triazine derivatives as selective cyclin-dependent kinase inhinitors
ES2875010T3 (es) 2012-04-26 2021-11-08 Adisseo France Sas Procedimiento de producción de ácido 2,4-dihidroxibutírico
CN104582751B (zh) 2012-06-29 2017-11-14 西托索尔本茨公司 使用聚合物的方法
CN106170582A (zh) 2012-07-03 2016-11-30 Sio2医药产品公司 药物包装的SiOx 阻隔物和涂布方法
US20150297800A1 (en) 2012-07-03 2015-10-22 Sio2 Medical Products, Inc. SiOx BARRIER FOR PHARMACEUTICAL PACKAGE AND COATING PROCESS
BR112015000167B1 (pt) 2012-07-06 2021-11-23 Genmab B.V. Proteína dimérica, proteína, composição, kit de partes e seus usos, bem como método para aumentar a oligomerização em solução de uma proteína dimérica compreendendo um primeiro e segundo polipeptídeo, cada um compreendendo pelo menos as regiões ch2 e ch3 de uma cadeia pesada de igg1 humana e proteína dimérica variante
ITBO20120368A1 (it) 2012-07-06 2014-01-07 Alfa Wassermann Spa Composizioni comprendenti rifaximina e amminoacidi, cristalli di rifaximina derivanti da tali composizioni e loro uso.
US9561194B2 (en) 2012-07-31 2017-02-07 Nestec S.A. Nutritional composition for promoting musculoskeletal health in patients with inflammatory bowel disease (IBD)
DK2880168T3 (da) 2012-08-05 2017-04-18 Absci Llc Inducerbar co-ekspressionssystem
US10894062B2 (en) 2012-08-10 2021-01-19 Aquavit Pharmaceuticals, Inc. Vitamin supplement compositions for injection
WO2015020982A2 (en) 2013-08-04 2015-02-12 Aquavit Pharmaceuticals, Inc. Direct application system and method for the delivery of bioactive compositions and formulations
US10980865B2 (en) 2012-08-10 2021-04-20 Aquavit Pharmaceuticals, Inc. Direct application system and method for the delivery of bioactive compositions and formulations
FR2996855B1 (fr) 2012-10-16 2016-11-11 Lesaffre & Cie Souches de levures pour la production de biomasse sur un substrat comprenant un sucre en c5, leurs procedes d'obtention et utilisations de la biomasse produite
WO2014066916A2 (en) * 2012-10-28 2014-05-01 Revance Therapeutics, Inc. Compositions and methods for safe treatment of rhinitis
GB201219602D0 (en) 2012-10-31 2012-12-12 Syntaxin Ltd Recombinant clostridium botulinum neurotoxins
CA2880897C (en) 2012-11-21 2020-01-14 Syntaxin Limited Methods for the manufacture of proteolytically processed polypeptides
BR112015012123A8 (pt) 2012-11-26 2018-01-23 Borody Thomas J composições para a recuperação de uma microbiota fecal e métodos para produzir e usar as mesmas.
PT2939025T (pt) 2012-12-28 2018-07-31 Cellestis Ltd Ensaio de resposta imune mediada por célula
MX369359B (es) 2013-01-11 2019-11-06 Impossible Foods Inc Replica no lactea de queso ricotta.
US9956287B2 (en) 2013-02-06 2018-05-01 Perosphere Inc. Stable glucagon formulations
US9650608B2 (en) 2013-02-22 2017-05-16 Medivet America, Llc Activating adipose-derived stem cells for transplantation
US9662450B2 (en) 2013-03-01 2017-05-30 Sio2 Medical Products, Inc. Plasma or CVD pre-treatment for lubricated pharmaceutical package, coating process and apparatus
US9937099B2 (en) 2013-03-11 2018-04-10 Sio2 Medical Products, Inc. Trilayer coated pharmaceutical packaging with low oxygen transmission rate
CN105392916B (zh) 2013-03-11 2019-03-08 Sio2医药产品公司 涂布包装材料
CN110105434A (zh) 2013-03-13 2019-08-09 哈佛大学的校长及成员们 钉合且缝合的多肽及其用途
US9603799B2 (en) 2013-03-15 2017-03-28 Htd Biosystems Inc. Liposomal vaccine adjuvants and methods of making and using same
DK2970389T3 (da) 2013-03-15 2020-10-26 Rhythm Pharmaceuticals Inc Farmaceutiske forbindelser
AU2014238377A1 (en) 2013-03-15 2015-09-10 Nusirt Sciences, Inc. Treatment of pets with sirtuin activators
CA2902828A1 (en) 2013-03-15 2014-09-25 Nusirt Sciences, Inc. Compositions, methods, and kits for treatment of pets
US20140294788A1 (en) 2013-03-26 2014-10-02 Nestec S.A. Methods for enhancing muscle protein synthesis following concurrent training
WO2014165617A1 (en) 2013-04-02 2014-10-09 Stc.Unm Mesoporous alum nanoparticles as universal platform for antigen adsorption, presentation, and delivery
CN105377045A (zh) 2013-04-16 2016-03-02 雀巢产品技术援助有限公司 架藏稳定的发酵乳制品及其制造方法
RU2535115C1 (ru) 2013-05-15 2014-12-10 Бости Трейдинг Лтд Фармацевтический состав, содержащий нейротоксин ботулина
WO2014186754A2 (en) 2013-05-16 2014-11-20 Board Of Regents The University Of Texas System Dry solid aluminum adjuvant-containing vaccines and related methods thereof
CN103257233B (zh) 2013-05-31 2015-08-05 南京祥中生物科技有限公司 一种同时可视化检测多种抗生素、非法添加剂及生物毒素的生物芯片及方法
SG10201710601YA (en) 2013-07-02 2018-02-27 Austrianova Singapore Pte Ltd A method of freeze-drying encapsulated cells, freeze-dried encapsulated cells, compositions containing freeze-dried encapsulated cells and uses of such cells and compositions
FI3033413T4 (fi) 2013-08-15 2023-08-31 Menetelmiä tuotesaannon ja tuotannon parantamiseksi mikro-organismissa glyserolikierrätyksellä
US9480731B2 (en) * 2013-12-12 2016-11-01 Medy-Tox, Inc. Long lasting effect of new botulinum toxin formulations
CN103705913A (zh) * 2013-12-27 2014-04-09 柳州市工人医院 A型肉毒毒素在制备治疗雷诺综合征药物的应用
JP2017500896A (ja) 2014-01-02 2017-01-12 トレリス, インコーポレイテッド 水素資化微生物におけるアミノ酸の生物学的産生のための組成物および方法
US10260111B1 (en) 2014-01-20 2019-04-16 Brett Eric Etchebarne Method of detecting sepsis-related microorganisms and detecting antibiotic-resistant sepsis-related microorganisms in a fluid sample
EP3099301B1 (en) 2014-01-29 2019-12-18 Vyome Therapeutics Limited Besifloxacin for the treatment of resistant acne
KR102327754B1 (ko) 2014-02-06 2021-11-17 엑스에리스 파머수티클스, 인크. 안정한 펩티드 제형물 및 제조 방법
BR112016018283A2 (pt) 2014-02-14 2017-08-08 Vesale Pharma Sa Composição que compreende bifidobacterium animalis ssp. lactis
TW201613864A (en) 2014-02-20 2016-04-16 Takeda Pharmaceutical Novel compounds
US9389162B2 (en) 2014-04-10 2016-07-12 City University Of Hong Kong Detection of analyte using coffee-ring effect
RU2711485C2 (ru) 2014-04-11 2020-01-17 МЕДИММЬЮН, ЭлЭлСи Конъюгированные соединения, содержащие сконструированные с цистеином антитела
EP3132022A4 (en) 2014-04-15 2017-12-13 Industrial Microbes, Inc. Synthetic methanotrophic and methylotrophic microorganisms
GB201407525D0 (en) 2014-04-29 2014-06-11 Syntaxin Ltd Manufacture of recombinant clostridium botulinum neurotoxins
EP3137053B1 (en) * 2014-04-30 2020-06-17 Allergan, Inc. Formulations of biologics for intravesical instillation
EP3149187B1 (en) 2014-05-30 2020-04-29 Braskem S.A. Modified microorganisms comprising an optimized system for oligosaccharide utilization and methods of using same
US9901627B2 (en) 2014-07-18 2018-02-27 Revance Therapeutics, Inc. Topical ocular preparation of botulinum toxin for use in ocular surface disease
US11484580B2 (en) 2014-07-18 2022-11-01 Revance Therapeutics, Inc. Topical ocular preparation of botulinum toxin for use in ocular surface disease
WO2016014750A1 (en) 2014-07-23 2016-01-28 Landy Toth Precision chemical ablation and treatment of tissues
EP3179870B1 (en) 2014-08-13 2023-10-04 Akeso Biomedical Inc. Antimicrobial compounds and compositions, and uses thereof
US10913736B2 (en) 2014-08-22 2021-02-09 University Of Washington Specific inhibitors of methionyl-tRNA synthetase
US10729896B2 (en) 2014-09-23 2020-08-04 Avidas Pharmaceuticals Llc Delivery and induction of therapeutic agents and uses thereof
US10357157B2 (en) 2014-10-21 2019-07-23 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for conditions associated with functional features
US10381112B2 (en) 2014-10-21 2019-08-13 uBiome, Inc. Method and system for characterizing allergy-related conditions associated with microorganisms
US10325685B2 (en) 2014-10-21 2019-06-18 uBiome, Inc. Method and system for characterizing diet-related conditions
US10366793B2 (en) 2014-10-21 2019-07-30 uBiome, Inc. Method and system for characterizing microorganism-related conditions
US9710606B2 (en) 2014-10-21 2017-07-18 uBiome, Inc. Method and system for microbiome-derived diagnostics and therapeutics for neurological health issues
US10410749B2 (en) 2014-10-21 2019-09-10 uBiome, Inc. Method and system for microbiome-derived characterization, diagnostics and therapeutics for cutaneous conditions
US9107906B1 (en) 2014-10-28 2015-08-18 Adma Biologics, Inc. Compositions and methods for the treatment of immunodeficiency
BR102014028009B1 (pt) 2014-11-10 2023-04-18 Universidade Federal De Pelotas Composições filmogênicas para bioadesivos anestésicos tópicos (bats) para liberação controlada de princípios ativos e bioadesivos anestésicos tópicos
GB201421013D0 (en) 2014-11-26 2015-01-07 Turzi Antoine New standardizations & medical devices for the preparation of platelet rich plasma (PRP) or bone marrow centrate (BMC)
US9956194B2 (en) 2014-12-03 2018-05-01 Velicept Therapeutics, Inc. Compositions and methods of using modified release solabegron for lower urinary tract symptoms
SG11201704699YA (en) 2014-12-08 2017-07-28 JJSK R&D Pte Ltd Carrier molecule compositions and related methods
WO2016105510A2 (en) 2014-12-26 2016-06-30 Conjugon, Inc. Methods and compositions for growth, storage, and use of bacterial preparations for wound and surface treatments
US11040022B2 (en) 2015-02-05 2021-06-22 William H. Cross, III Compositions and methods for pain relief
EA201792006A1 (ru) 2015-03-11 2018-04-30 Мелинта Терапьютикс, Инк. Антимикробные соединения и способы их получения и их применение
SG10202101108RA (en) 2015-03-13 2021-03-30 Evolve Biosystems Inc Compositions that metabolize or sequester free sugar monomers and uses thereof
JP7362249B2 (ja) 2015-03-20 2023-10-17 チルドレンズ ナショナル メディカル センター ナイーブt細胞集団からのウイルスまたは他の抗原に特異的なt細胞の生成
JP7094533B2 (ja) 2015-04-10 2022-07-04 プレジデント アンド フェローズ オブ ハーバード カレッジ 免疫細胞捕捉デバイスおよびその製造および使用方法
RU2017134547A (ru) 2015-04-23 2019-04-09 Калейдо Байосайенсиз, Инк. Регуляторы микробиома и соответствующие варианты их применения
MA43362A (fr) 2015-05-26 2018-10-10 Advaxis Inc Immunothérapie à base de vecteurs d'administration personnalisés, et leurs utilisations
PL3334440T3 (pl) 2015-08-11 2021-11-02 Akeso Biomedical, Inc. Kompozycje hamujące tworzenie biofilmu wspierające przyrost masy ciała u zwierząt gospodarskich
WO2017031399A1 (en) 2015-08-20 2017-02-23 Genomatica, Inc. Compositions and multiplexed systems for coupled cell-free transcription-translation and protein synthesis and methods for using them
WO2017051254A1 (en) 2015-09-25 2017-03-30 Legochem Biosciences, Inc. Compositions and methods related to anti-egfr antibody drug conjugates
WO2017066121A1 (en) 2015-10-12 2017-04-20 Toth, Landy Controlled and precise treatment of cardiac tissues
CN112451682A (zh) 2015-11-25 2021-03-09 乐高化学生物科学股份有限公司 包含自降解基团的缀合物及其相关方法
US11173214B2 (en) 2015-11-25 2021-11-16 Legochem Biosciences, Inc. Antibody-drug conjugates comprising branched linkers and methods related thereto
EP3380125A4 (en) 2015-11-25 2019-08-28 LegoChem Biosciences, Inc. CONJUGATES WITH PEPTIDE GROUPS AND RELATED METHODS
CN105363018B (zh) 2015-12-02 2019-08-30 南京碧迪可医药科技有限公司 一种硫肽环素的新用途
WO2017123367A1 (en) 2016-01-11 2017-07-20 Siemens Aktiengesellschaft Program randomization for cyber-attack resilient control in programmable logic controllers
BR112018014146A2 (pt) 2016-01-21 2018-12-11 Selux Diagnostics Inc métodos de teste rápido de suscetibilidade antimicrobiana
US20170209553A1 (en) 2016-01-22 2017-07-27 Transderm, Inc. Delivery of botulinum with microneedle arrays
CN109526227A (zh) 2016-01-25 2019-03-26 生物辐射欧洲有限公司 数字微生物学
US11771752B2 (en) 2016-03-09 2023-10-03 Prime Bio, Inc. Composition for oral or nasal delivery of tetanus, diphtheria, and pertussis vaccine alone or in combination using neurotoxin associated proteins
EP4349803A2 (en) 2016-03-16 2024-04-10 Spogen Biotech Inc. Methods for promoting plant health using free enzymes and microorganisms that overexpress enzymes
MX2018011079A (es) 2016-03-16 2018-11-22 Spogen Biotech Inc Proteínas de fusión, bacterias recombinantes y fragmentos de exosporio para salud animal y acuicultura.
EP3442488A4 (en) 2016-04-12 2020-03-25 Illustris Pharmaceuticals, Inc. COMPOSITIONS FOR TOPICAL APPLICATION OF COMPOUNDS
WO2017179775A1 (en) 2016-04-12 2017-10-19 Hugel Inc. Microstructure formulation techniques for botulinum toxin
EP3448399A4 (en) 2016-04-25 2020-05-13 Ubiome, Inc. SKIN CONDITION CHARACTERIZATION METHOD AND SYSTEM
KR102423739B1 (ko) 2016-05-27 2022-07-21 입센 바이오팜 리미티드 트립토판 또는 타이로신으로 안정화된 액체 신경독 제형
US20170348263A1 (en) 2016-06-03 2017-12-07 Velicept Therapeutics, Inc. Compositions and methods of using modified release solabegron for lower urinary tract symptoms
TWI737742B (zh) 2016-06-22 2021-09-01 德商梅茲製藥有限兩合公司 肉毒桿菌毒素的預填充式注射器系統、具有其之套組以及其之使用
RU2760290C1 (ru) 2016-07-08 2021-11-23 Метаболик Эксплорер Способ ферментативной продукции целевых молекул микроорганизмами, включающими гены, кодирующие фосфотрансферазную систему (фтс) сахаров
ES2917248T3 (es) 2016-08-26 2022-07-07 Sk Joint Ventures Ii Llc Formulaciones de polímeros biodegradables para aumentar la eficacia de la toxina botulínica
WO2018038585A1 (ko) 2016-08-26 2018-03-01 주식회사 에이비바이오 보툴리눔 독소 및 안정화제를 포함하는 액상 제형 및 이의 제조방법
WO2018038301A1 (en) 2016-08-26 2018-03-01 Hugel Inc. Stabilized liquid formulation of botulinum toxin and preparation method thereof
US11554108B2 (en) 2016-08-29 2023-01-17 Xeropedix, Inc. Methods and compositions for treating cutaneous fungal infections
CN109803673A (zh) 2016-09-13 2019-05-24 阿勒根公司 非蛋白质梭菌毒素组合物
KR102463881B1 (ko) 2016-10-04 2022-11-07 (주)메디톡스 보툴리눔 독소 함유 용액으로부터 보툴리눔 독소를 분리하는 방법
AU2017351950A1 (en) 2016-10-26 2019-05-02 Oxy Solutions As Formulations
WO2018083692A1 (en) 2016-11-01 2018-05-11 Tamar Levin Novel methods for modulating protein expression in microorganisms
US20210308277A1 (en) 2016-11-14 2021-10-07 Hangzhou Dac Biotech Co., Ltd. Conjugation linkers, cell binding molecule-drug conjugates containing the linkers, methods of making and uses such conjugates with the linkers
US20180147357A1 (en) 2016-11-29 2018-05-31 Amir Marashi Delivery method for preparation and administration of pharmaceutical compositions
US11040090B2 (en) 2016-12-08 2021-06-22 Prime Bio, Inc Botulinum neurotoxin compositions
US20190321355A1 (en) 2016-12-15 2019-10-24 Sharon Anavi-Goffer Treatment of mental, movement and behavioral disorders
EP3768851A4 (en) 2016-12-15 2022-03-09 Psomagen, Inc. METHOD AND SYSTEM FOR CHARACTERIZING DIET-RELATED CONDITIONS
WO2018125891A1 (en) 2016-12-27 2018-07-05 IMB Inc. Processing human milk for generating compositions of fortified human milk products
CN108322936B (zh) 2017-01-16 2023-06-02 中兴通讯股份有限公司 数据重传的方法及装置
US20190345436A1 (en) 2017-01-17 2019-11-14 White Dog Labs, Inc. Proteinic biomass preparation comprising a non-native organism of the clostridia class
EP3570856A2 (en) 2017-01-18 2019-11-27 Evelo Biosciences, Inc. Methods of treating cancer
KR101744900B1 (ko) 2017-01-20 2017-06-08 주식회사 대웅 보툴리눔 독소를 포함하는 안정한 액상 조성물
KR101776659B1 (ko) 2017-02-27 2017-09-11 주식회사 쿼드메디슨 마이크로 니들 및 이의 제조방법
WO2018175899A1 (en) 2017-03-24 2018-09-27 The Regents Of The University Of Colorado, A Body Corporate Targeted nanogels for urinary bladder therapies
CN110709093A (zh) 2017-04-17 2020-01-17 加利福尼亚大学董事会 工程化细菌和使用方法
JOP20190245A1 (ar) 2017-04-20 2019-10-15 Novartis Ag أنظمة توصيل إطلاق مستدام تتضمن روابط بلا أثر لنقطة الربط
EP3622289B1 (de) 2017-05-11 2023-08-23 Immundiagnostik AG Verfahren und testbesteck zur quantitativen bestimmung von biomarkern in fäkalproben
RU2734159C1 (ru) 2017-05-24 2020-10-13 ЭйТиДжиСи КО., ЛТД. Фармацевтическая композиция для лечения болевого синдрома в стопе, включающая ботулинический токсин и гиалуроновую кислоту, и способ лечения болевого синдрома в стопе с ее использованием
KR20200011499A (ko) 2017-05-31 2020-02-03 알레간 인코포레이티드 멜라닌세포 과다활성 및/또는 과량의 멜라닌과 연관된 장애 치료를 위한 보툴리눔 신경독소
FR3067928B1 (fr) 2017-06-23 2020-02-28 Fondation Mediterranee Infection Procede de conservation d'un echantillon de bacteries
AU2018290765A1 (en) 2017-06-26 2020-01-23 Bonti, Inc. Clostridial neurotoxin formulations and use
AU2018298087A1 (en) 2017-07-05 2020-01-23 Evelo Biosciences, Inc. Compositions and methods of treating cancer using bifidobacterium animalis ssp. lactis
US20190050534A1 (en) 2017-08-14 2019-02-14 uBiome, Inc. Disease-associated microbiome characterization process
US20210162026A1 (en) 2017-08-28 2021-06-03 Revance Therapeutics, Inc. Transmucosal botulinum toxin compositions, kits, and methods for treating bladder disorders
US20210228649A1 (en) 2017-08-30 2021-07-29 Aobiome Llc Ammonia oxidizing microorganisms for the treatment of diaper rash, athlete?s foot, contact dermatitis, perspiration, and body odor
KR20200053532A (ko) 2017-09-08 2020-05-18 에벨로 바이오사이언시즈, 인크. 프레보텔라로부터의 세포외 소포
US10849960B2 (en) 2017-09-08 2020-12-01 The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Synergistic combination of IL-4, interferon gamma, and interferon alpha in treating ovarian cancer
CN111148531A (zh) 2017-09-08 2020-05-12 伊夫罗生物科学公司 细菌胞外囊泡
CN111278436A (zh) 2017-10-03 2020-06-12 克里蒂泰克公司 局部递送抗肿瘤颗粒与全身递送免疫治疗剂相结合用于治疗癌症
US10525111B2 (en) 2017-10-12 2020-01-07 Hugel, Inc. Microstructure formulation techniques for botulinum toxin
WO2019075452A1 (en) 2017-10-13 2019-04-18 Evelo Biosciences, Inc. IDENTIFICATION OF BACTERIA FOR CANCER THERAPY
JP2021502422A (ja) 2017-11-13 2021-01-28 エクストレモチェム・エルディーエー.Extremochem,Lda. 生体分子の安定剤としての中性のグリコシル化されたアミド及びジアニオン性のグルクロン酸化された酸
EP3710023A1 (en) 2017-11-14 2020-09-23 Evelo Biosciences, Inc. Compositions and methods for treating disease using a blautia strain
EP3716768A4 (en) 2017-11-22 2021-08-25 Aobiome LLC TOPICAL USE AND ADMINISTRATION OF MICROORGANISMS OXIDIZING AMMONIA
EP3713420A4 (en) 2017-11-22 2021-08-25 Aobiome LLC TOPICAL USE AND DELIVERY OF AMMONIA COXIDIZING MICRO-ORGANISMS
US11918646B2 (en) 2017-12-11 2024-03-05 Board Of Regents, The University Of Texas System Dry adjuvanted immune stimulating compositions and use thereof for mucosal administration
CN108205008B (zh) 2017-12-28 2020-04-21 深圳大学 一种基于有机光电化学晶体管的毒素传感器及其制备方法
IL275855B2 (en) 2018-01-07 2023-11-01 Avraham Amir Needles with high carrying capacity and compounds to improve skin appearance
JP7416722B2 (ja) 2018-01-24 2024-01-17 オムニゲン リサーチ エルエルシー 動物への投与のためのバチルス菌の組み合わせ
US20210052669A1 (en) 2018-01-31 2021-02-25 Evelo Biosciences, Inc. Compositions and methods for treating immune disorders using lachnospiraceae bacteria
CA3089896A1 (en) 2018-02-06 2019-08-15 Regen Lab Sa Cross-linked hyaluronic acids and combinations with prp/bmc
KR20200118100A (ko) 2018-02-06 2020-10-14 에벨로 바이오사이언시즈, 인크. 베일로넬라 박테리아를 이용한 암 및 면역 장애를 치료하기 위한 조성물 및 방법
KR102063475B1 (ko) 2018-02-22 2020-01-09 주식회사 에이비바이오 보툴리눔 독소, 안정화제, 및 국소마취제를 포함하는 액상 제형 및 이의 제조방법
WO2019166514A1 (en) 2018-02-28 2019-09-06 C-Lecta Gmbh Enzymatic in-situ fortification of food with functional carbohydrates
WO2019178055A1 (en) 2018-03-12 2019-09-19 Evelo Biosciences, Inc. Extracellular vesicles from burkholderia
WO2019178359A1 (en) 2018-03-15 2019-09-19 Adepthera Llc Gel-forming polypeptides
CN110269867B (zh) 2018-03-14 2022-06-21 必康生技(香港)有限公司 用于生物流体净化的组合物
WO2019178487A2 (en) 2018-03-15 2019-09-19 Evelo Biosciences, Inc. Compositions and methods for treating disease using klebsiella quasipneumoniae subsp. similipneumoniae
WO2019178494A1 (en) 2018-03-15 2019-09-19 Evelo Biosciences, Inc. Compositions and methods for treating cancer and inflammation using tyzzerella nexilis
WO2019178490A1 (en) 2018-03-15 2019-09-19 Evelo Biosciences, Inc. Compositions and methods for treating cancer and inflammation using klebsiella oxytoca
US20190321427A1 (en) 2018-04-18 2019-10-24 G&S Laboratories, Inc. Compositions to Treat Anal Fissures
EP4295902A2 (en) 2018-05-03 2023-12-27 Crigasseni AG Probiotic bacterial strains producing antimicrobial proteins and compositions comprising these for use in the treatment of clostridium difficile infection
WO2019226599A1 (en) 2018-05-22 2019-11-28 Alkalidx, Inc. Diagnostics and treatments of anesthetic insensitive subjects
US11464858B2 (en) 2018-06-23 2022-10-11 University Of Wyoming Magnetic nanoparticle delivery system for pain therapy
CN112888454A (zh) 2018-09-13 2021-06-01 阿勒根公司 梭菌毒素-透明质酸组合物

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11033625B2 (en) * 2005-10-06 2021-06-15 Allergan, Inc. Method for stabilizing a toxin
US11147878B2 (en) 2005-10-06 2021-10-19 Allergan, Inc. Animal protein-free pharmaceutical compositions
US11285216B2 (en) 2005-10-06 2022-03-29 Allergan, Inc. Animal protein-free pharmaceutical compositions
US11446382B2 (en) 2005-10-06 2022-09-20 Allergan, Inc. Animal protein-free pharmaceutical compositions
US11524075B2 (en) 2005-10-06 2022-12-13 Allergan, Inc. Animal protein-free pharmaceutical compositions
US10973890B2 (en) 2016-09-13 2021-04-13 Allergan, Inc. Non-protein clostridial toxin compositions

Also Published As

Publication number Publication date
PT3432916T (pt) 2019-11-20
AU2021282546A1 (en) 2022-01-06
US20190351034A1 (en) 2019-11-21
US20230355723A1 (en) 2023-11-09
IL265109B2 (en) 2024-05-01
AU2017326253A1 (en) 2019-04-11
ES2755815T3 (es) 2020-04-23
WO2018053004A2 (en) 2018-03-22
PL3432916T3 (pl) 2020-04-30
US20230173041A1 (en) 2023-06-08
RS59600B2 (sr) 2022-10-31
US10973890B2 (en) 2021-04-13
KR102480965B1 (ko) 2022-12-26
IL265109B1 (en) 2024-01-01
HUE046449T2 (hu) 2020-03-30
SI3432916T1 (sl) 2020-01-31
CO2019003630A2 (es) 2019-06-28
PT3436054T (pt) 2019-11-19
MX2023004911A (es) 2023-05-16
KR20190053884A (ko) 2019-05-20
US20210369821A1 (en) 2021-12-02
DK3436054T3 (da) 2019-11-11
HUE046290T2 (hu) 2020-02-28
CN117959415A (zh) 2024-05-03
SI3436054T1 (sl) 2020-01-31
DK3436054T4 (da) 2022-08-29
TWI773686B (zh) 2022-08-11
PL3436054T5 (pl) 2023-01-30
JP7217700B2 (ja) 2023-02-03
KR102558892B1 (ko) 2023-07-21
AU2017326253B2 (en) 2021-10-21
JP2022179500A (ja) 2022-12-02
RU2019110875A (ru) 2020-10-15
KR20240023684A (ko) 2024-02-22
KR20190053214A (ko) 2019-05-17
EP3436054B1 (en) 2019-08-14
SI3436054T2 (sl) 2022-09-30
US20180071361A1 (en) 2018-03-15
SA519401298B1 (ar) 2021-12-21
EP3436054B2 (en) 2022-07-27
KR102444230B1 (ko) 2022-09-19
CY1122263T1 (el) 2020-11-25
AU2017327369A1 (en) 2019-05-02
US20230355724A1 (en) 2023-11-09
BR112019004929A2 (pt) 2019-06-04
HRP20191966T4 (hr) 2022-09-16
CL2019000586A1 (es) 2019-07-26
RU2019110875A3 (da) 2021-01-12
PL3436054T3 (pl) 2020-06-15
CN109803672A (zh) 2019-05-24
PH12019500501A1 (en) 2019-05-27
TW201822786A (zh) 2018-07-01
BR112019004935A2 (pt) 2019-06-04
US20210290739A1 (en) 2021-09-23
LT3436054T (lt) 2019-11-25
CA3035473A1 (en) 2018-03-22
WO2018053004A3 (en) 2018-04-26
MX2019002835A (es) 2019-09-04
WO2018053021A1 (en) 2018-03-22
CY1122276T1 (el) 2020-11-25
EP3639848A3 (en) 2020-12-16
TW202247855A (zh) 2022-12-16
US10369190B2 (en) 2019-08-06
RU2019110912A3 (da) 2020-11-30
CN109803673A (zh) 2019-05-24
RU2762607C2 (ru) 2021-12-21
RU2019110912A (ru) 2020-10-15
KR20220132013A (ko) 2022-09-29
KR102635959B1 (ko) 2024-02-14
JP2019526611A (ja) 2019-09-19
ES2755816T5 (es) 2022-10-24
EP3626259A1 (en) 2020-03-25
EP3639848A2 (en) 2020-04-22
EP3432916A1 (en) 2019-01-30
EP3436054A2 (en) 2019-02-06
CA3036095A1 (en) 2018-03-22
JP2019526609A (ja) 2019-09-19
EP3432916B1 (en) 2019-08-14
IL308091A (en) 2023-12-01
RS59600B1 (sr) 2020-01-31
DK3432916T3 (da) 2019-11-11
IL265109A (da) 2019-04-30
KR20230004945A (ko) 2023-01-06
ES2755816T3 (es) 2020-04-23
HRP20191966T1 (hr) 2020-01-24

Similar Documents

Publication Publication Date Title
US10973890B2 (en) Non-protein clostridial toxin compositions
US20230158129A1 (en) Clostridial toxin - hyaluronic acid compositions
NZ792036A (en) Stabilized non-protein clostridial toxin compositions

Legal Events

Date Code Title Description
STPP Information on status: patent application and granting procedure in general

Free format text: APPLICATION DISPATCHED FROM PREEXAM, NOT YET DOCKETED

STPP Information on status: patent application and granting procedure in general

Free format text: DOCKETED NEW CASE - READY FOR EXAMINATION

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STPP Information on status: patent application and granting procedure in general

Free format text: RESPONSE TO NON-FINAL OFFICE ACTION ENTERED AND FORWARDED TO EXAMINER

STPP Information on status: patent application and granting procedure in general

Free format text: NON FINAL ACTION MAILED

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION