US20060193914A1 - Crush resistant delayed-release dosage forms - Google Patents

Crush resistant delayed-release dosage forms Download PDF

Info

Publication number
US20060193914A1
US20060193914A1 US11/348,295 US34829506A US2006193914A1 US 20060193914 A1 US20060193914 A1 US 20060193914A1 US 34829506 A US34829506 A US 34829506A US 2006193914 A1 US2006193914 A1 US 2006193914A1
Authority
US
United States
Prior art keywords
dosage form
optionally
form according
active substance
release
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/348,295
Other languages
English (en)
Inventor
Judy Ashworth
Elisabeth Arkenau Maric
Johannes Bartholomaus
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Gruenenthal GmbH
Original Assignee
Gruenenthal GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=36384542&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=US20060193914(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Gruenenthal GmbH filed Critical Gruenenthal GmbH
Assigned to GRUNENTHAL GMBH reassignment GRUNENTHAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ASHWORTH, JUDY DR., ARKENAU-MARIC, ELISABETH DR., BARTHOLOMAUS, JOHANNES DR.
Priority to US11/462,216 priority Critical patent/US20070048228A1/en
Publication of US20060193914A1 publication Critical patent/US20060193914A1/en
Priority to US12/140,665 priority patent/US8192722B2/en
Priority to US12/140,568 priority patent/US20080311187A1/en
Assigned to GRUENENTHAL GMBH reassignment GRUENENTHAL GMBH ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: ARKENAU-MARIC, ELISABETH, DR., BARTHOLOMAEUS, JOHANNES, DR., ASHWORTH, JUDY, DR., KUGELMANN, HEINRICH
Priority to US12/640,915 priority patent/US20100151028A1/en
Assigned to JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT reassignment JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT CONFIRMATORY GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS (EXCLUSIVELY LICENSED PATENTS) Assignors: ENDO PHARMACEUTICALS INC.
Assigned to MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT reassignment MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS Assignors: ENDO PHARMACEUTICALS INC.
Assigned to ENDO PHARMACEUTICALS INC. reassignment ENDO PHARMACEUTICALS INC. RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS RECORDED AT REEL/FRAME 25456/172 Assignors: JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT
Priority to US13/723,273 priority patent/US20130171075A1/en
Priority to US14/084,162 priority patent/US20140079780A1/en
Priority to US14/138,372 priority patent/US20140170079A1/en
Priority to US14/141,793 priority patent/US20140112984A1/en
Assigned to ENDO PHARMACEUTICALS SOLUTIONS INC. reassignment ENDO PHARMACEUTICALS SOLUTIONS INC. RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT
Assigned to DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT reassignment DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AGENT GRANT OF SECURITY INTEREST IN LICENSED PATENTS Assignors: ENDO PHARMACEUTICALS, INC.
Assigned to ENDO PHARMACEUTICALS INC. reassignment ENDO PHARMACEUTICALS INC. CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF RECEIVING PARTY IN RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS PREVIOUSLY RECORDED ON REEL 032380 FRAME 0157. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS.. Assignors: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT
Priority to US14/324,366 priority patent/US20140322311A1/en
Priority to US14/749,939 priority patent/US20150290138A1/en
Priority to US14/848,457 priority patent/US20150374630A1/en
Priority to US14/875,007 priority patent/US20160022587A1/en
Priority to US14/994,691 priority patent/US20160120810A1/en
Priority to US15/061,252 priority patent/US10675278B2/en
Priority to US15/132,325 priority patent/US9629807B2/en
Priority to US15/459,180 priority patent/US10058548B2/en
Assigned to ENDO PHARMACEUTICALS, INC., ENDO PHARMACEUTICALS SOLUTIONS, INC., ASTORA WOMEN'S HEALTH HOLDINGS, LLC reassignment ENDO PHARMACEUTICALS, INC. RELEASE BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: DEUTSCHE BANK AG NEW YORK BRANCH
Priority to US15/649,880 priority patent/US20170312271A1/en
Priority to US16/016,924 priority patent/US20180369235A1/en
Priority to US16/032,467 priority patent/US20190008849A1/en
Priority to US16/455,813 priority patent/US20190321358A1/en
Priority to US16/797,055 priority patent/US20200215053A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/005Coating of tablets or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/06Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of pills, lozenges or dragees
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61JCONTAINERS SPECIALLY ADAPTED FOR MEDICAL OR PHARMACEUTICAL PURPOSES; DEVICES OR METHODS SPECIALLY ADAPTED FOR BRINGING PHARMACEUTICAL PRODUCTS INTO PARTICULAR PHYSICAL OR ADMINISTERING FORMS; DEVICES FOR ADMINISTERING FOOD OR MEDICINES ORALLY; BABY COMFORTERS; DEVICES FOR RECEIVING SPITTLE
    • A61J3/00Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms
    • A61J3/10Devices or methods specially adapted for bringing pharmaceutical products into particular physical or administering forms into the form of compressed tablets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/13Amines
    • A61K31/135Amines having aromatic rings, e.g. ketamine, nortriptyline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/275Nitriles; Isonitriles
    • A61K31/277Nitriles; Isonitriles having a ring, e.g. verapamil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4418Non condensed pyridines; Hydrogenated derivatives thereof having a carbocyclic group directly attached to the heterocyclic ring, e.g. cyproheptadine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/44221,4-Dihydropyridines, e.g. nifedipine, nicardipine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • A61K31/554Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole having at least one nitrogen and one sulfur as ring hetero atoms, e.g. clothiapine, diltiazem
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2009Inorganic compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2013Organic compounds, e.g. phospholipids, fats
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/2031Organic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyethylene oxide, poloxamers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2022Organic macromolecular compounds
    • A61K9/205Polysaccharides, e.g. alginate, gums; Cyclodextrin
    • A61K9/2054Cellulose; Cellulose derivatives, e.g. hydroxypropyl methylcellulose
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2004Excipients; Inactive ingredients
    • A61K9/2068Compounds of unknown constitution, e.g. material from plants or animals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2072Pills, tablets, discs, rods characterised by shape, structure or size; Tablets with holes, special break lines or identification marks; Partially coated tablets; Disintegrating flat shaped forms
    • A61K9/2086Layered tablets, e.g. bilayer tablets; Tablets of the type inert core-active coat
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/2095Tabletting processes; Dosage units made by direct compression of powders or specially processed granules, by eliminating solvents, by melt-extrusion, by injection molding, by 3D printing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • A61K9/28Dragees; Coated pills or tablets, e.g. with film or compression coating
    • A61K9/2893Tablet coating processes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/4808Preparations in capsules, e.g. of gelatin, of chocolate characterised by the form of the capsule or the structure of the filling; Capsules containing small tablets; Capsules with outer layer for immediate drug release
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P13/00Drugs for disorders of the urinary system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P17/00Drugs for dermatological disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P19/00Drugs for skeletal disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/30Drugs for disorders of the nervous system for treating abuse or dependence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P37/00Drugs for immunological or allergic disorders
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P5/00Drugs for disorders of the endocrine system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/002Methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0011Combinations of extrusion moulding with other shaping operations combined with compression moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0022Combinations of extrusion moulding with other shaping operations combined with cutting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/14Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration
    • B29C48/146Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the particular extruding conditions, e.g. in a modified atmosphere or by using vibration in the die
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/435Sub-screws
    • B29C48/44Planetary screws
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0053Mouth and digestive tract, i.e. intraoral and peroral administration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2793/00Shaping techniques involving a cutting or machining operation
    • B29C2793/009Shaping techniques involving a cutting or machining operation after shaping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/0261Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould using ultrasonic or sonic vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/22Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of indefinite length
    • B29C43/24Calendering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0035Medical or pharmaceutical agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0005Condition, form or state of moulded material or of the material to be shaped containing compounding ingredients
    • B29K2105/0044Stabilisers, e.g. against oxydation, light or heat
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/25Solid
    • B29K2105/251Particles, powder or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0056Biocompatible, e.g. biopolymers or bioelastomers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/753Medical equipment; Accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/772Articles characterised by their shape and not otherwise provided for

Definitions

  • the present invention relates to a dosage form for administering a physiologically active substance (A), wherein the dosage form is mechanically stabilised, such that it cannot be comminuted by conventional methods, such as pounding, crushing, grinding in a mortar etc., or at least comminuted only with very great difficulty.
  • the substance (A) is released from the dosage form according to the invention under physiological conditions with an at least partially delayed release profile.
  • delayed-release formulations i.e., in contrast to conventional formulations (for example “immediate release” formulations)
  • release of the substances from these formulations into the body is delayed for a comparatively long period, which often amounts to several hours.
  • Release of the substance from the dosage form, on the one hand, and metabolisation or excretion by the organism; on the other hand, ensure a relatively uniform blood plasma level for the administered substance.
  • the number of dosage units which need to be taken per day by patients can frequently be reduced, intake often being required only once or twice a day.
  • delayed-release formulations may also reduce the extent of side-effects caused by the substance.
  • some pharmaceutical substances produce intensified side-effects if a given limit concentration of the pharmaceutical substance in the blood plasma is exceeded at least transiently.
  • Such pharmaceutical substances are therefore generally unsuitable for “immediate release” formulations, in particular if it is desired to administer said formulations only two or three times daily.
  • Such pharmaceutical substances are therefore conventionally administered as delayed-release formulations, whereby continuous release of the active ingredient is ensured and short-term occurrence of elevated concentrations is prevented.
  • the physiologically active substance is conventionally either embedded in a matrix controlling release and/or the dosage form is coated with a film which controls release.
  • tablette crushers solid dosage forms may be comminuted or pulverised
  • Such apparatuses are used, for example, by the care staff in old people's homes.
  • the dosage forms are then administered to the people being cared for not as tablets etc. but rather as powder, for example to get round the difficulties involved in swallowing tablets.
  • the comminution of dosage forms with such apparatuses is problematic if the dosage forms are delayed-release formulations. As a rule, comminution then results in destruction of the inner structure of the dosage form, which is responsible for the delayed release, so doing away with the delayed-release action. As a result of comminution, the diffusion paths of the physiologically active substances contained therein are shortened and/or the diffusion barriers are removed. For instance, a delayed-release formulation in which delayed release is achieved by means of a film coating exhibits the film coating over only a small percentage of its solid surface after comminution.
  • Delayed-release formulations may also cause problems for small children. For instance, children frequently cannot distinguish solid dosage forms from sweets. If children find such dosage forms, for example because their parents have carelessly left them lying around in the home, there is a risk that the children may think that the dosage forms are sweets and put them in their mouths and chew them. If said dosage forms are delayed-release formulations, which contain a pharmaceutical substance in a dosage intended for adults, the child may in such a case already be at risk of overdose due to the relatively large amount of pharmaceutical substance contained therein.
  • a known way of reducing the risks involved in comminuting delayed-release formulations consists in adding to the dosage form antagonists, i.e. antidotes, or compounds which produce defensive reactions, wherein the physiological action of these additives are as far as possible manifested only if the dosage form has been comminuted prior to administration.
  • This method has the disadvantage, however, that the physiologically active substance is nonetheless administered in non-delayed form and that the organism is additionally exposed to a further physiologically active substance, for example an antidote, or to a defensive reaction, such as for example vomiting.
  • the dosage form should release a physiologically active substance on a delayed-release basis but should reduce the risk of overdose, in particular as a consequence of improper handling of the dosage form, such as chewing, crushing, grinding in a mortar etc.
  • the dosage form exhibits a resistance to crushing of at least 400 N, and in increasingly preferred embodiments of at least 420 N, at least 440 N, at least 460 N, at least 480 N or of at least 500 N, and wherein under physiological conditions the release of the physiologically active substance (A) from the dosage form is at least partially delayed.
  • the dosage form according to the invention exhibits mechanical strength over a wide temperature range, in addition to the resistance to crushing optionally also sufficient hardness and impact strength for it to be virtually impossible to comminute or pulverise by chewing, grinding in a mortar, pounding, etc., even by means of commercially available apparatuses for pulverising conventional dosage forms.
  • This is not necessarily achieved by the hardness of the dosage form.
  • the impact strength of the dosage form according to the invention and its resistance to crushing, respectively may in particular also mean that it may be deformed as a result of external mechanical action, for example using a hammer, but does not crumble into a number of fragments. Comminution is not even successful when the dosage form is initially chilled to increase its brittleness, for example to temperatures below ⁇ 25° C., below ⁇ 40° C. or indeed in liquid nitrogen.
  • the advantageous properties of the dosage form according to the invention may not automatically be achieved by simply processing components (A), (C), optionally (B) and optionally (D) by means of conventional methods for the preparation of dosage forms.
  • suitable apparatuses must be selected for the preparation and critical processing parameters must be adjusted, particularly pressure/force, temperature and time. Only if in the course of the preparation of the dosage form the components are exposed to a sufficient pressure at a sufficient temperature for a sufficient period of time, dosage forms exhibiting the desired properties may be obtained.
  • the process protocols usually must be adapted in order to meet the required criteria.
  • Delayed release is understood according to the invention preferably to mean a release profile in which the physiologically active substance is released over a relatively long period with reduced intake frequency with the purpose of extended therapeutic action. This is achieved in particular with peroral administration.
  • the expression “with at least partially delayed release” covers according to the invention any dosage forms which ensure modified release of the physiologically active substances contained therein.
  • the dosage forms preferably comprise coated or uncoated dosage forms, which are produced with specific auxiliary substances, by particular processes or by a combination of the two possible options in order purposefully to change the release rate or location of release.
  • the release time profile may be modified e.g. as follows: extended release, repeat action release, prolonged release and sustained release.
  • FIG. 1 depicts an ultrasound device used to supply energy for production of the dosage form.
  • FIG. 2 shows a section through a planetary gear extruder.
  • FIG. 3 shows the mode of operation of the planetary gear extruder.
  • FIG. 4 shows a schematic view of the extrudate of the composition.
  • FIGS. 5A and 5B show schematic views of the preferred arrangements of the tubular domain within the dosage form.
  • FIG. 6 shows the measurement of the crush resistance of a tablet.
  • FIG. 7 shows a probe for measurement of the crush resistance.
  • extended release means a product in which the release of active substance is delayed for a finite lag time, after which release is unhindered.
  • peeling action release means a product in which a first portion of active substance is released initially, followed by at least one further portion of active substance being released subsequently.
  • Prolonged release means a product in which the rate of release of active substance from the formulation after administration has been reduced, in order to maintain therapeutic activity, to reduce toxic effects, or for some other therapeutic purpose.
  • sustained release means a way of formulating a medicine so that it is released into the body steadily, over a long period of time, thus reducing the dosing frequency.
  • sustained release means a way of formulating a medicine so that it is released into the body steadily, over a long period of time, thus reducing the dosing frequency.
  • the dosage form after 5 hours under physiological conditions, has released not more than 99%, or not more than 90%, or not more than 75%, or not more than 50%, or not more than 40% or not more than 30% of substance (A). It is particularly preferable for the dosage form in this case to contain neither tramadol hydrochloride, nor oxycodone hydrochloride, or more desirably, no opioid [N02A] (for the meaning of “N02A” see below). Release is determined using the standardised method in the European Pharmacopoeia, preferably under the conditions stated in Example 1.
  • the dosage form according to the invention has released after 30 minutes 0.1 to 75%, after 240 minutes 0.5 to 95%, after 480 minutes 1.0 to 100% and after 720 minutes 2.5 to 100% of substance (A).
  • release profiles 1 to 5 exhibit release profiles 1 to 5 and are summarised in the table here below [all data in wt.-% of released component (A)]: time [h] No. 1 No. 2 No. 3 No. 4 No. 5 1 0-30 0-50 0-50 15-25 20-50 2 0-40 0-75 0-75 25-35 40-75 4 3-55 3-95 10-95 30-45 60-95 8 10-65 10-100 35-100 40-60 80-100 12 20-75 20-100 55-100 55-70 90-100 16 30-88 30-100 70-100 60-75 24 50-100 50-100 >90 36 >80 >80
  • the release properties of the dosage form according to the invention are substantially independent from the pH value of the release medium, i.e. preferably the release profile in artificial intestinal juice substantially corresponds to the release profile in artificial gastric juice.
  • the release profiles deviate from one another by not more than 20%, in increasingly preferred embodiments, the deviation is not more than 15%, or not more than 10%, or not more than 7.5%, or not more than 5.0% or not more than 2.5%.
  • the dosage form according to the invention exhibits an uniform release profile.
  • the release profile of the physiologically active substance (A) is interindividually uniform (i.e. when comparing dosage forms obtained from the same process) and/or uniform within a single dosage form (i.e. when comparing segments of the same dosage form).
  • the total amount of the released active substance for any given time point of the measurement does not deviate by more than 20%, or not more than 15%, or not more than 10%, or not more than 7.5%, or not more than 5.0% or not more than 2.5%.
  • the release profile of the dosage form according to the present invention is stable upon storage, such as upon storage at elevated temperature, e.g. 37° C., for 3 months in sealed containers.
  • “stable” means that when comparing the initial release profile with the release profile after storage, at any given time point the release profiles deviate from one another by not more than 20%, or not more than 15%, or not more than 10%, or not more than 7.5%, or not more than 5.0% or not more than 2.5%, with the later being most preferred.
  • a resistance to crushing is achieved according to the invention for the dosage form of at least 400 N, or of at least 420 N, or of at least 440 N, or of at least 460 N, or of at least 480 N or of at least 500 N (measured as stated in the description; the preferred method for measuring the resistance to crushing according to the invention is a modification of the method disclosed in the European Pharmacopoeia 5.0, page 235, 2.9.8 “Resistance to Crushing of Tablets”). It is thereby possible effectively to prevent comminution, for example pulverisation, of the dosage form using conventional means.
  • “comminution” means pulverisation of the dosage form by the application of force with conventional means, such as for example a pestle and mortar, a hammer, a mallet or other usual means for pulverisation, in particular devices developed for this purpose (tablet crushers), wherein the proportion of fines which may arise (particle size equal to or smaller than 0.3 mm) must not exceed 5 wt. %.
  • conventional means such as for example a pestle and mortar, a hammer, a mallet or other usual means for pulverisation, in particular devices developed for this purpose (tablet crushers), wherein the proportion of fines which may arise (particle size equal to or smaller than 0.3 mm) must not exceed 5 wt. %.
  • the dosage form according to the invention is therefore suitable for preventing overdosing on physiologically active substances, in particular nutritional supplements and pharmaceutical substances, which are provided in delayed-release formulations. It is then possible to dispense with antidotes, irritants etc. In addition to preventing overdoses and the accompanying risks for patients, the dosage forms according to the invention additionally ensure that the other advantages of delayed-release formulation, such as for example uniform release over a relatively long period, are retained and cannot easily be overcome.
  • At least one synthetic, semi-synthetic or natural polymer (C) is used, which contributes considerably to the elevated resistance to crushing of the dosage form.
  • the resistance to crushing of the dosage form amounts to at least 400 N, to at least 420 N, to at least 440 N, to at least 460 N or to at least 480 N, wherein the resistance to crushing is determined using the method stated in the description.
  • the resistance to crushing of the dosage form amounts to at least 500 N, to at least 600 N, to at least 700 N, to at least 800 N, to at least 900 N, to at least 1000 N or even to at least 1100 N.
  • the dosage form according to the invention is preferably featured by further mechanical properties, e.g. its hardness, impact resistance, impact elasticity and/or modulus of elasticity, optionally also at low temperatures (e.g. below ⁇ 24° C., below ⁇ 40° C. or in liquid nitrogen).
  • further mechanical properties e.g. its hardness, impact resistance, impact elasticity and/or modulus of elasticity, optionally also at low temperatures (e.g. below ⁇ 24° C., below ⁇ 40° C. or in liquid nitrogen).
  • the dosage form according to the invention has a density of at least 0.80 or at least 0.85 g/cm 3 , at least 0.90 or at least 0.95 g/cm 3 , at least 1.00, at least 1.05 or at least 1.10 g/cm 3 , in the range from 0.80 to 1.35 g/cm 3 , and in particular in the range from 0.95 to 1.25 g/cm 3 .
  • the dosage form according to the invention is characterized by a comparatively homogeneous distribution of density.
  • the densities of two segments of the dosage form having a volume of 1.0 mm 3 each deviate from one another by not more than ⁇ 10%, or by not more than more than +7.5%, or by not more than ⁇ 5.0%, or by not more than ⁇ 2.5%, and in particular by not more than ⁇ 1.0%.
  • the dosage form according to the invention is characterized by a comparatively homogeneous distribution of the physiologically active substance (A).
  • the content of component (A) in two segments of the dosage form having a volume of 1.0 mm 3 each, deviates from one another by not more than ⁇ 10%, more preferably not more than more than ⁇ 7.5%, still more preferably not more than ⁇ 5.0%, most preferably not more than ⁇ 2.5%, and in particular not more than ⁇ 1.0%.
  • the total weight of the dosage form according to the invention is within the range from 0.01 g to 1.5 g, more preferably 0.05 g to 1.2 g, still more preferably 0.1 g to 1.0 g, most preferably 0.2 g to 0.9 g and in particular 0.25 g to 0.8 g.
  • the dosage form according to the invention preferably contains at least one synthetic, semi-synthetic or natural polymer (C).
  • C synthetic, semi-synthetic or natural polymer
  • high molecular weight polymers with a preferably weight average molecular weight (M w ) or viscosity average molecular weight (M ⁇ ) of at least 0.5 ⁇ 10 6 g/mol, of at least 1.0 ⁇ 10 6 g/mol, of at least 2.5 ⁇ 10 6 g/mol, of at least 5.0 ⁇ 10 6 g/mol, of at least 7.5 ⁇ 10 6 g/mol or of at least 10 ⁇ 10 6 g/mol, preferably 1.0 ⁇ 10 6 g/mol to 15 ⁇ 10 6 g/mol.
  • M w weight average molecular weight
  • M ⁇ viscosity average molecular weight
  • the polymers (C) preferably have a viscosity at 25° C. of 4,500 to 17,600 cP, measured in a 5 wt. % aqueous solution using a model RVF Brookfield viscosimeter (spindle no. 2/rotational speed 2 rpm), of 400 to 4,000 cP, measured on a 2 wt. % aqueous solution using the stated viscosimeter (spindle no. 1 or 3/rotational speed 10 rpm) or of 1,650 to 10,000 cP, measured on a 1 wt. % aqueous solution using the stated viscosimeter (spindle no. 2/rotational speed 2 rpm).
  • polymers may be selected from the group comprising polyalkylene oxide, preferably polymethylene oxide, polyethylene oxide, polypropylene oxide; polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, poly(hydroxy fatty acids), such as for example poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (Biopol®), poly(hydroxyvaleric acid); polycaprolactone, polyvinyl alcohol, polyesteramide, polyethylene succinate, polylactone, polyglycolide, polyurethane, polyvinylpyrrolidone, polyamide, polylactide, polyacetal (for example polysaccharides optionally with modified side chains), polylactide/glycolide, polylactone, polyglycolide, polyorthoester, polyanhydride, block polymers of polyethylene glycol and polybutylene terephthalate (Polyactive®), polyanhydride (Polifeprosan), copolymers thereof, block-
  • Thermoplastic polyalkylene oxides having a weight average molecular weight (M w ) or a viscosity average molecular weight (M ⁇ ) of at least 0.5 ⁇ 10 6 g/mol are particularly preferred, e.g. polyethylene oxides, polypropylene oxides or the (block-)copolymers thereof.
  • component (C) comprises
  • a polyalkylene oxide having a weight average molecular weight (M w ) or viscosity average molecular weight (M ⁇ ) of at least 0.5 ⁇ 10 6 g/mol
  • At least one further polymer in combination with at least one further polymer, preferably also having a weight average molecular weight (M w ) or viscosity average molecular weight (M ⁇ ) of at least 0.5 ⁇ 10 6 g/mol, selected from the group consisting of polyethylene, polypropylene, polyvinyl chloride, polycarbonate, polystyrene, polyacrylate, poly(hydroxy fatty acids), polycaprolactone, polyvinyl alcohol, polyesteramide, polyethylene succinate, polylactone, polyglycolide, polyurethane, polyvinylpyrrolidone, polyamide, polylactide, polyacetal, polylactide/glycolide, polylactone, polyglycolide, polyorthoester, polyanhydride, block polymers of polyethylene glycol and polybutylene terephthalate, polyanhydride and copolymers thereof.
  • M w weight average molecular weight
  • M ⁇ viscosity average molecular weight
  • the content of said further polymer amounts to 1.0 to 25 wt.-%, more preferably 5.0 to 10 wt.-%, based on the total weight of polymer (C).
  • the polymer (C) is preferably used in the form of powder. It may be water-soluble.
  • the polymer (C) is used in a quantity of at least 20 wt. %, preferably at least 30 wt. %, more preferably at least 40 wt. %, most preferably at least 50 wt. % and in particular at least 60 wt. %, relative to the total weight of the dosage form. In a preferred embodiment it is used in a quantity of from about 20 to about 49 wt.-%, relative to the total weight of the dosage form.
  • the dosage form according to the invention is suitable for the administration of a number of physiologically active substances (A) in a single dosage form.
  • the amount of the physiologically active substance (A), based on the total amount of the dosage form, is preferably within the range from 0.01 to 95 wt.-%, more preferably from 0.5 to 80 wt.-%, still more preferably 1.0 to 70 wt.-%, most preferably 5.0 to 60 wt.-% and in particular 10 to 50 wt.-%. In a preferred embodiment it is more than 20 wt.-%.
  • the dosage form according to the invention does not contain a psychotropically acting substance as the physiologically active substance (A).
  • A physiologically active substance
  • substances with a psychotropic action include in particular opioids, stimulants, tranquillisers (e.g. barbiturates and benzodiazepines) and other narcotics.
  • Substances with a psychotropic action preferably comprise substances which, in particular when improperly administered (in particular with the intention of abuse), cause an accelerated increase in active ingredient levels relative to proper oral administration, giving the abuser the desired effect, namely the “kick” or “rush”. This kick is also obtained if the powdered dosage form is administered nasally, i.e. is sniffed.
  • Substances with a psychotropic action are preferably substances which (in the appropriate dose and dosage form and when administered appropriately) influence human mental activity and/or sensory perception in such a way that they are fundamentally suited to abuse.
  • opiates, opioids, tranquillisers or other narcotics are substances with a psychotropic action, i.e. have a potential of abuse, and hence are preferably not contained in the dosage form according to the invention: alfentanil, allobarbital, allylprodine, alphaprodine, alprazolam, amfepramone, amphetamine, amphetaminil, amobarbital, anileridine, apocodeine, barbital, bemidone, benzylmorphine, bezitramide, bromazepam, brotizolam, buprenorphine, butobarbital, butorphanol, camazepam, carfentanil, cathine/D-norpseudoephedrine, chlordiazepoxide, clobazam clofedanol, clonazepam, clonitazene, clorazepate, clotiazep
  • the dosage form according to the invention preferably does not contain a psychotropically acting substance selected from the group consisting of opioids [A07DA, N01AH, N02A, R05DA, R05FA,]; barbiturates [N01AF, N01AG, N03AA]; benzodiazepine derivatives [N03AE]; agents for treating opiate dependency [N07BC]; anxiolytics [N05B]; hypnotics and sedatives [N05C]; psychostimulants, agents for treating attention-deficit/hyperactivity disorder (ADHD) and nootropics [N06B]; antiemetics [A04A]; antiobesity preparations excluding diet products [A08A]; centrally acting muscle relaxants [M03B]; and antidotes [V03AB].
  • a psychotropically acting substance selected from the group consisting of opioids [A07DA, N01AH, N02A, R05DA, R05FA,]; barbiturates [N01
  • analgesics such as aspirin, acetaminophen, deflunisal and the like;
  • anesthetics such as lidocaine, procaine, benzocaine, xylocalne and the like;
  • antiarthritics and anti-inflammatory agents such as phenylbutazone, indomethacin, sulindac, dexamethasone, ibuprofen, allopurinol, oxyphenbutazone probenecid, cortisone, hydrocortisone, betamethasone, dexamethasone, fluocortolone, prednisolone, triamcinolone, indomethacin, sulindac and its salts and corresponding sulfide and the like;
  • antiasthma drugs such as theophylline, ephedrine, beclomethasone dipropionate, epinephrine and the like;
  • urinary tract disinfectives such as sulfarmethoxazole, trimethoprim, nitrofurantoin, norfloxicin, and the like;
  • anticoagulants such as heparin, bishydroxy coumarin, warfarin and the like;
  • anticonvulsants such as diphenylhydantoin, diazepam and the like;
  • antidepressants such as amitriptyline, chlordiazepoxide, perphenazine, protriptyline, imipramine, doxepin and the like;
  • agents useful in the treatment of diabetics and regulation of blood sugar such as insulin, tolbutamide, tolazamide, somatotropin, acetohexamide, chlorpropamide and the like;
  • antipsychotics such as prochlorperazine, lithium carbonate, lithium citrate, thioridazine, molindone, fluphenazine, trifluoperazine, perphenazine, amitriptyline, triflupromazine and the like;
  • antihypertensives such as spironolactone, methyldopa, hydralazine, clonidine, chlorothiazide, deserpidine, timolol, propanolol, metaprotol, prazosin hydrochloride, reserpine and the like;
  • muscle relaxants such as mephalan, danbrolene, cyclobenzaprine, methocarbarnol, diazepam, succinoyl chloride and the like;
  • antiprotozoals such as chloramphenicol, chloroquine, trimethoprim and sulfamethoxazole;
  • spermicidals such as nonoxynol
  • antibacterial substances such as beta-lactam antibiotics, tetracyclines, chloramphenicol, neomycin, cefoxitin, thienamycin, gramicidin, bacitracin, sulfonamides, aminoglycoside antibiotics, tobramycin, nitrofurazone, nalidixic acid und analogs and the antimicrobial combination of fludalanine/pentizidone;
  • antihistamines and decongestants such as perilamine, chlorpheniramine (e.g. chlorpheniramine maleate), tetrahydrozoline und antazoline;
  • antiparasitic compounds such as ivermectin
  • antiviral compounds such as acyclovir and interferon
  • antifungal, amoebicidal, trichomonacidal agents or antiprotozoals such as polyoxyethylene nonylphenol, alkylaryl sulfonate, oxyquinoline sulfate, miconazole nitrate, sulfanil amide, candicidin, sulfisoxazole, nysatidin, clotrimazole, metronidazol and the like; and
  • losoxanthrone theophylline or ⁇ -hydroxyethyl-theophylline (etophylline), diphenhydramine and its hydrochloride, diltiazem and its hydrochlorid, and diphenylethyl(adenosine).
  • the dosage form according to the invention contains no substances which irritate the nasal passages and/or pharynx, i.e. substances which, when administered via the nasal passages and/or pharynx, bring about a physical reaction which is either so unpleasant for the patient that he/she does not wish to or cannot continue administration, for example burning, or physiologically counteracts taking of the corresponding active ingredient, for example due to increased nasal secretion or sneezing.
  • substances which irritate the nasal passages and/or pharynx are those which cause burning, itching, an urge to sneeze, increased formation of secretions or a combination of at least two of these stimuli.
  • Corresponding substances and the quantities thereof which are conventionally to be used are known to the person skilled in the art. Some of the substances which irritate the nasal passages and/or pharynx are accordingly based on one or more constituents or one or more plant parts of a hot substance drug.
  • Corresponding hot substance drugs are known per se to the person skilled in the art and are described, for example, in “Pharmazeutician Biologie—Drogen und Strukturbericht” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart-New York, 1982, pages 82 et seq. The corresponding description is hereby introduced as a reference and is deemed to be part of the disclosure.
  • the dosage form according to the invention furthermore preferably contains no antagonists for the physiologically active substance (A), preferably no antagonists against psychotropic substances, in particular no antagonists against opioids.
  • Antagonists suitable for a given physiologically active substance (A) are known to the person skilled in the art and may be present as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
  • the dosage form according to the invention preferably contains no antagonists selected from among the group comprising naloxone, naltrexone, nalmefene, nalide, nalmexone, nalorphine or naluphine, in each case optionally in the form of a corresponding physiologically acceptable compound, in particular in the form of a base, a salt or solvate; and no neuroleptics, for example a compound selected from among the group comprising haloperidol, promethacine, fluphenazine, perphenazine, levomepromazine, thioridazine, perazine, chlorpromazine, chlorprothixine, zuclopenthixol, flupentixol, prothipendyl, zotepine, benperidol, pipamperone, melperone and bromperidol.
  • no antagonists selected from among the group comprising naloxone, naltrex
  • the dosage form according to the invention furthermore preferably contains no emetic.
  • Emetics are known to the person skilled in the art and may be present as such or in the form of corresponding derivatives, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the salts or solvates thereof.
  • the dosage form according to the invention preferably contains no emetic based on one or more constituents of ipecacuanha (ipecac) root, for example based on the constituent emetine, as are, for example, described in “Pharmazeutician Biologie—Drogen und Hä Kunststoffsstoffe” by Prof. Dr. Hildebert Wagner, 2nd, revised edition, Gustav Fischer Verlag, Stuttgart, New York, 1982.
  • the corresponding literature description is hereby introduced as a reference and is deemed to be part of the disclosure.
  • the dosage form according to the invention preferably also contains no apomorphine as an emetic.
  • the dosage form according to the invention preferably also contains no bitter substance.
  • bitter substances and the quantities effective for use may be found in US-2003/0064099 A1, the corresponding disclosure of which is incorporated herein and mare a part hereof.
  • bitter substances are aromatic oils, such as peppermint oil, eucalyptus oil, bitter almond oil, menthol, fruit aroma substances, aroma substances from lemons, oranges, limes, grapefruit or mixtures thereof, and/or denatonium benzoate.
  • the dosage form according to the invention accordingly preferably contains neither substances with a psychotropic action, nor substances which irritate the nasal passages and/or pharynx, nor antagonists for the physiologically active substance (A), nor emetics, nor bitter substances.
  • the dosage form according to the invention contains a nutritional supplement as the physiologically active substance (A).
  • Nutritional supplements preferably contain one or more nutrients in a concentrated, measured dose form which is atypical of foodstuffs. They are intended to supplement daily food intake in those cases in which intake with the food is inadequate or supplementation is desired.
  • the nutritional supplement is preferably selected from the group consisting of vitamins, minerals, trace elements, enzymes, fatty acids, amino acids and antioxidants.
  • Particularly preferred nutritional supplements are vitamins, provitamins and the derivatives thereof, in particular retinol, calcitriol, tocopherol, phylloquinone, thiamine, riboflavine, folic acid, niacin (in particular nicotinamide), pantothenic acid, pyridoxal, cobalamin, L-ascorbic acid, biocytin, biotin and carotenoids.
  • Pharmaceutical substances which may in principle be considered in the dosage form according to the invention are any known pharmaceutical substances, wherein the pharmaceutical substances may be present in the dosage form according to the invention as such, in the form the derivatives thereof, in particular esters or ethers, or in each case in the form of corresponding physiologically acceptable compounds, in particular in the form of the corresponding salts or solvates thereof, as racemates or in a form enriched in one or more stereoisomers (enantiomers or diastereomers).
  • the dosage form according to the invention contains a substance (A) or two or more substances (A) selected from the group consisting of
  • agents for the treatment and prevention of diseases of the alimentary system and metabolism [A] in particular stomatological preparations [A01], agents for the treatment and prevention of acid-related disorders [A02], agents for the treatment and prevention of functional gastrointestinal tract disorders [A03], serotonin 5HT 3 antagonists [A04AA], antihistamine preparations [A04AB], agents for bile and liver therapy [A05], laxatives [A06], intestinal antiinfectives [A07A], intestinal adsorbents [A07B], electrolytes with carbohydrates [A07C], intestinal antiinflammatory agents [A07E], microbial antidiarrhoeals [A07F], digestives including enzymes [A09], drugs used in diabetes [A10], vitamins [A11], minerals [A12], anabolic agents for systemic applications [A14] and appetite stimulants [A15];
  • agents for the treatment and prevention of diseases of the blood and the blood forming organs [B] in particular antithrombotic agents [B01], antihaemorrhagics [B02], antianaemic preparations [B03] and other haematological agents [B06];
  • agents for the treatment and prevention of diseases of the cardiovascular system [C] in particular agents for cardiac therapy [C01], antihypertensives [C02], diuretics [C03], peripheral vasodilatators [C04], vasoprotectives [C05], antihypotensives [C06A], ⁇ -adrenoceptor antagonists [C07], calcium channel blockers [C08], agents acting on the renin-angiotensin system [C09] and lipid reducing agents [C10];
  • dermatologicals [D] in particular antifungals for systemic use [D01B], antipsoriatics for systemic use [D05B], antiacne preparations for systemic use [D10B];
  • agents for the treatment and prevention of diseases of the genitourinary system and sex hormones [G] in particular gynaecological antiinfectives and antiseptics [G01], oxytocics [G02A], sympathomimetic labour repressants [G02CA], prolactin inhibitors [G02CB], hormonal contraceptives for systemic use [G03] and urologicals [G04];
  • systemic hormone preparations excluding sex hormones and insulins [H]; in particular pituitary and hypothalamic hormones and analogue [H01], corticosteroids for systemic use [H02], thyroid preparations [H03], pancreatic hormones [H04], and agents for regulating calcium homeostatis [H05];
  • antiinfectives for systemic use in particular antibiotics for systemic use [J01], antimycotics for systemic use [J02], antimycobacterials [J04], antivirals for systemic use [J05], immune sera and immunoglobulins [J06], and vaccines [J07]);
  • antineoplastic and immunomodulating agents [L] (in particular antineoplastistic agents [L01], agents for endocrine therapy [L02], immunostimulants [L03] and immunosuppressive agents [L04];
  • agents for the treatment and prevention of diseases of the musculo-skeletal system [M] in particular antiinflammatory and antirheumatic agents [M01], peripherally acting muscle relaxants [M03A], directly acting muscle relaxants [M03C], antigout preparations [M04] and agents for the treatment of bone diseases [M05];
  • agents for the treatment and prevention of diseases of the nervous system [N] in particular salicylic acid the derivatives thereof [N02BA], pyrazolones [N02BB], anilides [N02BE], ergot alkaloids [N02CA], corticosteroid derivatives [N02CB], selective serotonin-5HT 1 agonists [N02CC], hydantoin derivatives [N03AB], oxazolidine derivatives [N03AC], succinimide derivatives [N03AD], carboxamide derivatives [N03AF], fatty acid derivatives [N03AG], antiparkinson drugs [N04]), antipsychotics [N05A], antidepressants [N06A], antidementia drugs [N06D], parasympathomimetics [N07A] and antivertigo preparations [N07C];
  • antiparasitic products, insecticides and repellents [P]; in particular antiprotozoals [P01], anthelmintics [P02] and ectoparasiticides, including scabicides, insecticides and repellents [P03];
  • the dosage form according to the invention preferably contains a substance (A) or two or more substances (A) selected from the group consisting of 4-aminomethylbenzoic acid, abacavir, abamectin, abciximab, abibendan, abrin, acamprosat, acarbose, acebutolol, aceclidine, aceclofenac, acediasulfone, acemetacin, acenocoumarol, acetazolamide, acetoacetic acid, acetyldigoxin, acetylandromedol, acetylcysteine, ⁇ -acetyldigoxin, acetylhistamine, acetylsalicylic acid, acetylthiocholine, aciclovir, acipimox, acitretin, aclarubicin, aconitine, acriflavinium chloride,
  • ibandronic acid ibopamine, ibritumomab tiuxetan, ibuprofen, ibutilide, idarubicin, ifosfamide, iloprost, imatinib, imatinib mesylate, imidapril, imiglucerase, imipenem, imipramine, imiquimod, immunocyanin, indanazoline, indapamide, indinavir, indium chloride [ 111 In], indobufen, indometacin, indoramin, infliximab, inosine, insulin, insulin aspart, insulin detemir, insulin glargine, insulin glulisine, insulin lispro, interferon alfa, interferon alfa-2b, interferon alfacon-1, interferon beta, interferon beta-1a, interferon beta-1b, interferon gamma, iobitridol
  • potassium permanganate potassium permanganate, kallidinogenase, kanamycin, kawain, kebuzone, ketamine, ketoconazole, ketoprofen, ketorolac, ketotifen, collagenase, creosote,
  • labetalol lacidipine, lactitol, lamivudine, lamotrigine, lanreotide, lansoprazole, laronidase, latanoprost, leflunomide, lenograstim, lepirudin, lercanidipine, letrozole, leucine, leuprorelin, levallorphan, levamisole, levetiracetam, levobunolol, levobupivacaine, levocabastine, levocetirizine, levodopa, levofloxacin, levofolinate calcium, levomepromazine, levomethadyl, levonorgestrel, levopropylhexedrine, levosimendan, levothyroxine, lidocaine, lincomycin, lindane, linezolid, liothyronine, lisinopril, lisuride,
  • magaldrate F magnesium pidolate, magnesium L-aspartate, mangafodipir, manidipine, maprotiline, mebendazole, mebeverine, meclofenoxate, mecloxamine, meclozine, medrogestone, medroxyprogesterone, mefenamic acid, mefloquine, megestrol, melagatrane, melitracen, melperol, melperone, melphalan, memantine, menadione, mepacrine, mepartricin, mephenyloin, mepindolol, mepivacaine, mepyramine, mequinol, mercaptamine, mercaptopurine, meropenem, mesalazine, mesna, mesterolone, mesuximide, metaclazepam, metamizole, metamphetamine, metenolone, metenolone acetate, metformin, methanthe
  • nadifloxacin, nadrolon decanonate nadroparin calcium, naftidrofuryl, naftifine, nalbuphine, nalide, nalmefene, nalmexone, naloxone, naltrexone, naluphine, naphazoline, 2naphthol, naproxen, naratriptan, naratriptan, nateglinide, sodium aurothiomalate, sodium phenylbutyrate, sodium fluoride, sodium hyaluronate, sodium iodide [ 131 I], sodium molybdate [ 99 Mo], sodium phenylbutyrate, n-butyl-p-aminobenzoate, N-butylscopolaminium bromide, nebivolol, nedocromil, nefazodone, nefopam
  • obidoxime chloride octafluoropropane, octocog alfa, octodrine, octreotide, odansetron, ofloxacin, olaflur F, olanzapine, olmesartan medoxomil, olopatadine, olsalazine, omeprazole, omoconazole, ondansetron, opipramol, oral cholera vaccine, orciprenaline, orlistat, ornipressin, orphenadrine, oseltamivir, osteogenic protein-1: BMP-7, oxaprozin, oxatomide, oxcarbazepine, oxedrine tartrate, oxetacaine, oxiconazole, oxilofrine, oxitropium, 2-oxo-3-methylbutyric acid, 2-oxo-3-methylvaleric acid, 2-oxo
  • paclitaxel palinavir, palivizumab, palonosetrone, pamidronic acid, pancuronium, pantoprazole, papaverine, paracetamol, paraldehyde, parecoxib, paricalcitol, parnaparin, paromomycin, paroxetine, pefloxacin, pegfilgrastim, peginterferon alfa, pegvisomant, pemetrexed, penbutolol, penciclovir, penfluridol, penicillamine, benperidol, pentaerithrityl tetranitrate, pentamidine, pentetrazol, pentetreotide, pentosan polysulfate sodium, pentoxifylline, pentoxyverine, perazine, perchloric acid, perflenapent, perflisopent, perflutren, pergolide, perindopril, perphenazine,
  • rabeprazole racephedrine, racecadotrile, raloxifene, raltitrexed, ramipril, ranitidine, rasagiline, rasburicase, raubasine, reboxetine, repaglinide, reproterol, reserpine, resorcinol, reteplase, retinol, reviparin, ribavirin, riboflavin, rifabutin, rifampicin, rifamycin, rifaximin, rilmenidine, riluzole, rimexolone, risedronic acid, risperidone, ritonavir, rituximab, rivastigmine, rizatriptan, rocuronium bromide, rofecoxib, ropinirole, ropivacaine, ropivacaine, rosiglitazone, red
  • valaciclovir valdecoxib, valganciclovir, valine, valproic acid, valsartan, vancomycin, vardenafil, vecuronium, vecuronium bromide, venlafaxine, verapamil, verteporfin, vigabatrin, viloxazine, vinblastine, vincamine, vincristine, vindesine, vinorelbine, vinpocetine, viquidil, voriconazole, votumumab,
  • xantinol nicotinate ximelagatrane, xipamide, xylometazoline
  • zalcitabine zaleplon, zanamivir, zidovudine, zinc acetate dihydrate, zinc chloride, zinc citrate, zinc sulfate, ziprasidone, zofenopril, zoledronic acid, zolmitriptan, zolpidem, zolpidem tartrate, zonisamide, zopiclone, zotepine, zucklopantexol, and zuclopenthixol.
  • the dosage form according to the invention contains one physiologically active substance (A) or more physiologically active substances (A) selected from the group consisting of 1,1-(3-dimethylamino-3-phenylpentamethylen)-6-fluor-1,3,4,9-tetrahydropyrano[3,4-b]indole, in particular its hemicitrate; 1,1-[3-dimethylamino-3-(2-thienyl)pentamethylen]-1,3,4,9-tetrahydropyrano[3,4-b]indole, in particular its citrate; and 1,1-[3-dimethylamino-3-(2-thienyl)pentamethylen]-1,3,4,9-tetrahydropyrano[3,4-b]-6-fluoro-indole, in particular its hemicitrate.
  • physiologically active substance A
  • A physiologically active substances
  • At least one natural, semi-synthetic or synthetic wax (D) may be used in order to achieve the necessary breaking strength of the dosage form according to the invention.
  • Preferred waxes are those with a softening point of at least 50° C., or of at least 55° C., or of at least 60° C., or of at least 65° C. or of at least 70° C.
  • Carnauba wax and beeswax are particularly preferred.
  • Carnauba wax is very particularly preferred.
  • Carnauba wax is a natural wax which is obtained from the leaves of the carnauba palm and has a softening point of at least 80° C.
  • the wax component is additionally used, it is used together with at least one polymer (C) in quantities such that the dosage form has a breaking strength of at least 400 N, preferably of at least 500 N.
  • Auxiliary substances (B) which may be used are those known auxiliary substances which are conventional for the formulation of solid dosage forms. These are preferably plasticisers, such as triacetin and polyethylene glycol, preferably a low molecular weight polyethylene glycol, auxiliary substances which influence active ingredient release, preferably hydrophobic or hydrophilic, preferably hydrophilic polymers, very particularly preferably hydroxypropylmethylcellulose, and/or antioxidants. Polymers, particularly preferably cellulose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials.
  • Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials.
  • Suitable antioxidants are ascorbic acid, butylhydroxyanisole (BHA), butylhydroxytoluene (BHT), salts of ascorbic acid, monothioglycerol, phosphorous acid, vitamin C, vitamin E and the derivatives thereof, sodium bisulfite, particularly preferably butylhydroxytoluene or butylhydroxyanisole and ⁇ -tocopherol.
  • the antioxidant is preferably used in quantities of 0.01 to 10 wt. %, preferably of 0.03 to 5 wt. %, relative to the total weight of the dosage form.
  • the dosage forms according to the invention are distinguished in that, by virtue of their resistance to crushing, they cannot be pulverised with the assistance of conventional comminution tools, such as a pestle and mortar. Overdosing is consequently virtually ruled out.
  • the dosage forms according to the invention may contain further resistance-to-crushing-enhancing agents as auxiliary substances (B).
  • the dosage form according to the invention is preferably solid and suitable for taking orally, vaginally or rectally, preferably orally.
  • the dosage form is preferably not in film form.
  • the dosage form according to the invention assumes the form of a tablet, a capsule or the form of an oral osmotic therapeutic system (OROS).
  • the dosage form according to the invention assumes the form of a tablet.
  • the dosage form according to the invention may assume multiparticulate form, preferably the form of microtablets, microcapsules, micropellets, granules, spheroids, beads or pellets, optionally packaged in capsules or press-formed into tablets, preferably for oral administration.
  • the individual particles themselves exhibit a resistance to crushing of at least 400 N, optionally also a tablet obtained therefrom.
  • the multiparticulate forms preferably have a size or size distribution in the range from 0.1 to 3 mm, particularly preferably in the range from 0.5 to 2 mm.
  • conventional auxiliary substances (B) are optionally also used for the formulation of the dosage form.
  • the dosage form according to the invention may be produced by different processes, which are explained in greater detail below; the present invention also relates to dosage forms that are obtainable by any of the processes described here below:
  • the process for the production of the dosage form according to the invention preferably comprises the following steps:
  • step (a) optionally preforming the mixture obtained from step (a), preferably by applying heat and/or force to the mixture obtained from step (a), the quantity of heat supplied preferably not being sufficient to heat component (C) up to its softening point;
  • Heat may be supplied directly or with the assistance of ultrasound. Force may be applied and/or the dosage form may be shaped for example by direct tabletting or with the assistance of a suitable extruder, particularly by means of a screw extruder equipped with two screws (twin-screw-extruder) or by means of a planetary gear extruder.
  • the throughput is too low the extruder is not correctly filled and the material is stressed thereby affecting the viscosity and the release profile of the final product If the throughput is too high, the load of the extruder is higher than 100% and the extruder shuts down automatically; and if the throughput is tolerable but close to the upper limit significant expansion of the extruded strand occurs (also known as “die swelling”).
  • a minimum number of kneading elements is required in order to obtain a homogeneous mixture; if the number is too high, the material is stressed thereby affecting the viscosity and the release profile of the final product.
  • the number and lead of the conveying elements influences the homogeneity of the mixture and its residence time in the extruder and controls the increase of the pressure in front of the die. Mixing elements improve the homogeneity of the mixture; and eccentric screw heads allow for a continuous discharge of the extrudate without density variations.
  • the geometry of the element which merges the extrusion strands in front of the die, and geometry of the die itself, the residence time in said element, and the ratio length of the die to diameter of the die influence the compression of the material thereby affecting the melt pressure.
  • the die pressure depends on revolution, throughput and melt temperature and affects the viscosity and the release profile of the final product.
  • the feeding cylinder should not be heated to prevent the starting material from melting in the feeder and causing an accumulation.
  • the number of cylinders is variable, the longer the extruder the longer the residence time.
  • the temperature of the cylinders destroys the material if it is too high; if too low the material dos not sufficiently melt thereby resulting in an inhomogeneous mixture and degradation. If the die temperature, if separately set too low, causes the “extrusion skin” to not properly form thereby making further processing of the extrudate difficult.
  • the extruder revolution speed is too high the material is stressed thereby affecting the viscosity and the release profile of the final product. If the extruder revolution speed is too low the load of the extruder is higher than 100% and the extruder shuts down automatically; and inter alia the residence time depends on the revolution.
  • the position of feeding cylinder, the length of extruder are important.
  • the degassing should be located close to the feeder in order to avoid air pockets in the product; and if one of the components is thermo-labile it may be separately fed into one of the rear cylinders.
  • Cooling of the engine and control of the temperature of the extrusion cylinders are important parameters.
  • the dosage form according to the invention is preferably produced without using an extruder by preferably mixing components (A), (C), optionally (B) and the optionally present component (D) and, optionally after granulation, shaping the resultant mixture by application of force to yield the dosage form with preceding and/or simultaneous exposure to heat.
  • Components (A), (C), optionally (B) and optionally (D) are mixed in a mixer known to the person skilled in the art.
  • the mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.
  • the resultant mixture is preferably directly shaped into the dosage form according to the invention by application of force with preceding and/or simultaneous exposure to heat.
  • the mixture may, for example, be formed into tablets by direct tabletting.
  • direct tabletting with preceding exposure to heat the material to be pressed is heated immediately prior to tabletting at least to the softening temperature of component (C) and then pressed.
  • the mixture to be press-formed is heated at least to the softening point of polymeric component (C) with the assistance of the tabletting tool, i.e. the bottom punch, top punch and the die, and is so press-formed.
  • a tabletting tool with bottom punch, top punch and die for tablets having a diameter of 10 mm and a radius of curvature of 8 mm e.g. 300 mg of a powder mixture may be compressed at a temperature of e.g. 80° C., the pressure caused by a force of e.g. 2 kN or 4 kN being maintained for e.g. 15 seconds.
  • the resultant mixture of components (A), (C), optionally (B) and optionally component (D) may also first be granulated and then, with preceding and/or simultaneous exposure to heat, be shaped into the dosage form according to the invention by application of force.
  • Granulation may be performed in known granulators by wet granulation or melt granulation.
  • the dosage form according to the invention is produced by thermoforming with the assistance of an extruder, without there being any observable consequent discoloration of the extrudate.
  • the color of the mixture of starting components of which the dosage form consists is first determined without addition of a color-imparting component, such as for example a coloring pigment or an intrinsically coloured component (for example ⁇ -tocopherol).
  • a color-imparting component such as for example a coloring pigment or an intrinsically coloured component (for example ⁇ -tocopherol).
  • This composition is then thermoformed according to the invention, wherein all process steps, including cooling of the extrudate, are performed under an inert gas atmosphere.
  • the same composition is produced by the same process, but without an inert gas atmosphere.
  • the color of the dosage form produced according to the invention from the starting composition and of the dosage form produced by way of comparison is determined. The determination is performed with the assistance of “Munsell Book of Color” from Munsell Color Company Baltimore, Md., USA, 1966 edition.
  • thermoforming is classed as being “without discoloration”. If the dosage form has a color with the identification no. 5Y 9/2 or greater, as determined according to the Munsell Book of Color, the thermoforming is classed as being “with discoloration”.
  • the dosage forms according to the invention exhibit no discoloration classed in accordance with the above classification, if the entire production process is performed under an inert gas atmosphere, preferably under a nitrogen atmosphere with the assistance of an extruder for thermoforming.
  • the resultant mixture is heated in the extruder at least up to the softening point of component (C) and extruded through the outlet orifice of the extruder by application of force,
  • process steps y) and x) and optionally process steps z) and w) are performed under an inert gas atmosphere, preferably a nitrogen atmosphere.
  • Mixing of the components according to process step z) may also proceed in the extruder.
  • Components (A), (C), optionally (B) and optionally (D) may also be mixed in a mixer known to the person skilled in the art.
  • the mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.
  • component (C) and the optionally present component (D) is preferably provided according to the invention with an antioxidant. This may proceed by mixing the two components, (C) and the antioxidant, preferably by dissolving or suspending the antioxidant in a highly volatile solvent and homogeneously mixing this solution or suspension with component (C) and the optionally present component (D) and removing the solvent by drying, preferably under an inert gas atmosphere.
  • The, preferably molten, mixture which has been heated in the extruder at least up to the softening point of component (C) is extruded from the extruder through a die with at least one bore.
  • the process according to the invention requires the use of suitable extruders, preferably screw extruders. Screw extruders which are equipped with two screws (twin-screw-extruders) are particularly preferred.
  • the extrusion is preferably performed so that the expansion of the strand due to extrusion is not more than 50%, i.e. that when using a die with a bore having a diameter of e.g. 6 mm, the extruded strand should have a diameter of not more than 9 mm. More preferably, the expansion of the strand is not more than 40%, still more preferably not more than 35%, most preferably not more than 30% and in particular not more than 25%. It has been surprisingly found that if the extruded material in the extruder is exposed to a mechanical stress exceeding a certain limit, a significant expansion of the strand occurs thereby resulting in undesirable irregularities of the properties of the extruded strand, particularly its mechanical properties.
  • the extruder preferably comprises at least two temperature zones, with heating of the mixture at least up to the softening point of component (C) proceeding in the first zone, which is downstream from a feed zone and optionally mixing zone.
  • the throughput of the mixture is preferably from 2.0 kg to 8.0 kg/hour.
  • the molten mixture is conveyed with the assistance of the screws, further homogenised, compressed or compacted such that, immediately before emerging from the extruder die, it exhibits a minimum pressure of 5 bar, preferably of at least 10 bar, and is extruded through the die as an extruded strand or strands, depending on the number of bores which the die comprises.
  • the die geometry or the geometry of the bores is freely selectable.
  • the die or the bores may accordingly exhibit a round, oblong or oval cross-section, wherein the round cross-section preferably has a diameter of 0.1 mm to 15 mm and the oblong cross-section preferably has a maximum lengthwise extension of 21 mm and a crosswise extension of 10 mm.
  • the die or the bores have a round cross-section.
  • the casing of the extruder used according to the invention may be heated or cooled. The corresponding temperature control, i.e.
  • the mixture to be extruded exhibits at least an average temperature (product temperature) corresponding to the softening temperature of component (C) and does not rise above a temperature at which the physiologically active substance (A) to be processed may be damaged.
  • the temperature of the mixture to be extruded is adjusted to below 180° C., preferably below 150° C., but at least to the softening temperature of component (C).
  • the extrudates are preferably singulated. This singulation may preferably be performed by cutting up the extrudates by means of revolving or rotating knives, water jet cutters, wires, blades or with the assistance of laser cutters.
  • An inert gas atmosphere is not necessary for intermediate or final storage of the optionally singulated extrudate or the final shape of the dosage form according to the invention.
  • the singulated extrudate may be pelletised with conventional methods or be press-formed into tablets in order to impart the final shape to the dosage form. It is, however, also possible not to singulate the extruded strands and, with the assistance of contrarotating calender rolls comprising opposing recesses in their outer sleeve, to form them into the final shape, preferably a tablet, and to singulate these by conventional methods.
  • an inert gas atmosphere preferably a nitrogen atmosphere, should be provided and must be maintained during heating of the stored extrudate up until plasticisation and definitive shaping to yield the dosage form.
  • the application of force in the extruder onto the at least plasticised mixture is adjusted by controlling the rotational speed of the conveying device in the extruder and the geometry thereof and by dimensioning the outlet orifice in such a manner that the pressure necessary for extruding the plasticised mixture is built up in the extruder, preferably immediately prior to extrusion.
  • the extrusion parameters which, for each particular composition, are necessary to give rise to a dosage form with a resistance to crushing of at least 400 N, preferably of at least 500 N, may be established by simple preliminary testing.
  • extrusion may be performed by means of a twin-screw-extruder type Micro 27 GL 40 D (Leistritz, Love, Germany), screw diameter 18 mm. Screws having eccentric ends may be used. A heatable die with a round bore having a diameter of 8 mm may be used. The entire extrusion process should be performed under nitrogen atmosphere.
  • the extrusion parameters may be adjusted e.g. to the following values: rotational speed of the screws: 100 Upm; delivery rate: 4 kg/h; product temperature: 125° C.; and jacket temperature: 120° C.
  • energy is applied to a mixture of the components by means of ultrasonication.
  • Further auxiliary substances such as for example fillers, plasticisers, slip agents or dyes, may also be incorporated into this mixture.
  • a low molecular weight polyethylene glycol is preferably used as plasticiser.
  • Mixing may be performed with the assistance of conventional mixers.
  • suitable mixers are roll mixers, which are also known as tumbler, drum or rotary mixers, container mixers, barrel mixers (drum hoop mixers or tumbling mixers) or shaking mixers, shear mixers, compulsory mixers, plough bar mixers, planetary kneader-mixers, Z kneaders, sigma kneaders, fluid mixers or high-intensity mixers.
  • Selection of the suitable mixer is determined inter alia by the flowability and cohesiveness of the material to be mixed.
  • the mixture is then subjected to shaping.
  • the mixture is preferably shaped during or after ultrasonication, preferably by compaction.
  • An ultrasound device as shown in FIG. 1 is preferably used in the process according to the invention.
  • FIG. 1 denotes the press, with which the necessary force is applied, ( 2 ) the converter, ( 3 ) the booster, ( 4 ) the sonotrode, ( 5 ) the shaping die, ( 6 ) the bottom punch, ( 7 ) the base plate, ( 8 ) and ( 9 ) the ultrasound generator and device controller.
  • the reference numerals used relate solely to FIG. 1 .
  • a frequency of 1 kHz to 2 MHz, preferably of 15 to 40 kHz, should be maintained during ultrasonication. Ultrasonication should be performed until softening of the polymer (C) is achieved. This is preferably achieved within a few seconds, particularly preferably within 0.1 to 5 seconds, preferably 0.5 to 3 seconds.
  • Ultrasonication and the application of force ensure uniform energy transfer, so bringing about rapid and homogeneous sintering of the mixture.
  • dosage forms are obtained which have a resistance to crushing of at least 400 N, preferably of at least 500 N, and thus cannot be pulverised.
  • the mixture Before shaping is performed, the mixture may be granulated after the mixing operation, after which the resultant granules are shaped into the dosage form with ultrasonication and application of force.
  • Granulation may be performed in machinery and apparatus known to the person skilled in the art.
  • granulation is performed as wet granulation
  • water or aqueous solutions such as for example ethanol/water or isopropanol/water, may be used as the granulation liquid.
  • the mixture or the granules produced therefrom may also be subjected to melt extrusion for further shaping, wherein the mixture is converted into a melt by ultrasonication and exposure to force and then extruded through a dies.
  • the strands or strand obtained in this manner may be singulated to the desired length using known apparatus.
  • the formed articles singulated in this manner may optionally furthermore be converted into the final shape with ultrasonication and application of force.
  • the above-described formed articles may also be produced with a calendering process by initially plasticising the mixture or the granules produced therefrom by means of ultrasonication and application of force and performing extrusion through an appropriate die. These extrudates are then shaped into the final shape between two contrarotating shaping rolls, preferably with application of force.
  • shaping to yield the final shape of the dosage form by using a mixture comprising substance (A) and the polymer(C) with a resistance to crushing of at least 400 N, preferably of at least 500 N proceeds preferably in powder form by direct compression with application of force, wherein ultrasonication of this mixture is provided before or during the application of force.
  • the force is at most the force which is conventionally used for shaping dosage forms, such as tablets, or for press-forming granules into the corresponding final shape.
  • the tablets produced according to the invention may also be multilayer tablets.
  • At least the layer which contains substance (A) should be ultrasonicated and exposed to force.
  • Shaping of the dosage forms preferably proceeds by direct press-forming of a pulverulent mixture of the components of the dosage form or corresponding granules formed therefrom, wherein ultrasonication preferably proceeds during or before shaping. Such exposure continues until the polymer (C) has softened, which is conventionally achieved in less than 1 second to at most 5 seconds.
  • a suitable press is e.g. a Branson WPS, 94-003-A, pneumatical (Branson Ultraschall, Dietzenbach, Germany) having a plain press surface.
  • a suitable generator (2000 W) is e.g. a Branson PG-220A, 94-001-A analogue (Branson Ultraschall) with a sonotrode having a diameter of 12 mm.
  • a die having a diameter of 12 mm may be used, the bottom of the die being formed by a bottom punch having a plain press-surface and a diameter of 12 mm.
  • Suitable parameters for plastification are frequency: 20 kHz; amplitude: 50%; force: 250 N.
  • the effect of ultrasound and force by means of the sonotrode may be maintained for e.g. 0.5 seconds, and preferably both effects take place simultaneously.
  • components (A), (C), optionally present auxiliary substances (B), such as antioxidants, plasticisers and/or delayed-release auxiliary substances, and optionally component (D), are processed with the assistance of a planetary-gear extruder to yield the dosage form according to the invention.
  • FIG. 2 shows a section through a planetary-gear extruder
  • FIG. 3 shows the mode of operation of the planetary-gear extruder.
  • FIG. 2 shows a planetary-gear extruder which may be used in the process according to the invention.
  • This extruder substantially comprises a shaft 1 , which, relative to the transport direction of the mixture of the components listed above to be extruded, is initially constructed as a feed screw 5 and subsequently as the central spindle 3 of the planetary-gear extruder.
  • the central spindle 3 there are preferably arranged three to seven planetary spindles 4 , which are in turn surrounded by a casing in the form of a housing 6 .
  • extrusion of the composition used in the process according to the invention for the production of a pharmaceutical dosage form preferably proceeds as follows, with reference to FIG. 2 .
  • the components to be extruded are apportioned by the apportioning unit 7 in the area of the feed screw 5 and conveyed by the rotation thereof (drive not shown) in the direction of the central spindle 3 .
  • the person skilled in the art will understand that it is possible to mix the starting materials (components) in the area of the feed screw. However, it is also possible to premix the components of the dosage form and to apportion this mixture via the apportioning unit 7 in the area of the feed screw 5 .
  • the mixture is conveyed into the feed zone of the planetary-gear extruder.
  • component (C) By heating at least to the softening point of component (C), the mixture is melted and the molten mixture is conveyed into the area of the central spindle, i.e. the extrusion zone, by the interaction of the central spindle 3 and the planetary spindles 4 , further homogenised, compressed or compacted and extruded through the die 8 as an extruded strand or extruded strands, depending on how many bores the die comprises.
  • the die geometry or the geometry of the bores is freely selectable.
  • the die or the bores may exhibit a round, oblong or oval cross-section, wherein the round cross-section preferably has a diameter of 0.1 mm to 15 mm and the oblong cross-section preferably has a maximum lengthwise extension of 21 mm and a crosswise extension of 10 mm.
  • the extrusion die may also take the form of a slot die.
  • the die or the bores have a round, oval or oblong cross-section.
  • the mixture to be extruded exhibits an average temperature corresponding to the softening temperature of component (C) and does not rise above a temperature at which the substance (A) to be processed may be damaged.
  • the temperature of the mixture to be extruded is adjusted to below 180° C., preferably below 150° C., but at least to the softening temperature of component (C).
  • the reference numerals used relate solely to FIGS. 2 and 3 .
  • the extrudates are singulated (not shown in FIG. 2 ). This singulation may preferably be performed by cutting up the extrudates by means of revolving or rotating knives, water jet cutters, wires, blades or with the assistance of laser cutters.
  • singulated extrudates which are preferably present in the form of disks, they are optionally re-shaped into the final shape of the dosage form, wherein they may be exposed to heat again if necessary.
  • This shaping for example into tablets may proceed in that the plastic extrudate is shaped with press-forming with the assistance of two contrarotating rolls preferably with mutually opposing recesses for plastification in the roll sleeve, the construction of which recesses determines the tablet shape.
  • the tablets from the singulated extrudates in each case with the assistance of an optionally heated die and at least one shaping punch.
  • the cylindrical granules obtained after singulation of the extruded strand may preferably be used.
  • these granules or other multiparticulate shapes obtained, such as pellets or spheroids, may also be packaged into capsules in order to be used as a dosage form produced according to the invention.
  • the extruded strands extruded through a plurality of bores in the extrusion die may, after cooling thereof, optionally be brought together by interlacing or wrapping in the manner of rope production to yield a thicker strand than the individual extruded strands.
  • This strand may optionally be further processed by solvent attack with a suitable solvent or by heating to the softening point of the polymer (C) and optionally removing the solvent in accordance with the above-stated singulation and shaping of an individual strand.
  • FIG. 3 shows a cross-section through the planetary-gear extruder.
  • the rotating central spindle 3 there are arranged at least three, in the case illustrated 6 , planetary spindles 4 , whose flanks 41 interact on the one hand with the flank 31 of the central spindle 4 and on the other hand with the flanks 61 of the casing 6 of the planetary-gear extruder.
  • the planetary spindles 4 Through rotation of the central spindle 3 and rolling of the respective flanks over one another, the planetary spindles 4 each rotate around their own axis, as shown by arrow 42 , and around the central spindle 4 , as shown by arrow 43 . In this way, the compression or compaction sought according to the invention of the component mixture used according to the invention of the dosage forms produced according to the invention is achieved.
  • the reference numerals used relate solely to FIGS. 2 and 3 .
  • the planetary-gear extruder used may comprise not only an extrusion zone but also at least one further zone, so that the mixture to be extruded may optionally also be degassed.
  • the process according to the invention may be performed discontinuously or continuously, preferably continuously.
  • a suitable extruder for example, is a planetary gear extruder type BCG 10 (LBB Bohle, Ennigerloh, Germany) having four planetary spindles and an extrusion die with bores having a diameter of 8 mm.
  • a gravimetrical dosing of 3.0 kg/h is suitable.
  • the extrusion may be performed, for example, at a rotational speed of 28.6 rmp and a product temperature of about 88° C.
  • This variant for the production of the dosage form according to the invention is performed by processing at least the components (A), (C), optionally present auxiliary substances (B), such as antioxidants, plasticisers and/or delayed-release auxiliary substances, and optionally component (D), with addition of a solvent for component (C), i.e. for the polymer or polymers (C), to yield the dosage form.
  • components (A), (C), optionally (B) and the optionally present component (D) are mixed and, after addition of the solvent and optionally after granulation, the resultant formulation mixture is shaped to yield the dosage form.
  • Components (A), (C), optionally (B) and optionally (D) are mixed in a mixer known to the person skilled in the art.
  • the mixer may, for example, be a roll mixer, shaking mixer, shear mixer or compulsory mixer.
  • the solvent for the polymer (C) is added at least in such quantities that the formulation mixture is uniformly moistened.
  • Solvents which are suitable for the polymer (C) are preferably aqueous solvents, such as water, mixtures of water and aliphatic alcohols, preferably C1 to C6 alcohols, esters, ethers, hydrocarbons, particularly preferably distilled water, short-chain alcohols, such as methanol, ethanol, isopropanol, butanol or aqueous alcohol solutions.
  • aqueous solvents such as water, mixtures of water and aliphatic alcohols, preferably C1 to C6 alcohols, esters, ethers, hydrocarbons, particularly preferably distilled water, short-chain alcohols, such as methanol, ethanol, isopropanol, butanol or aqueous alcohol solutions.
  • the solvent is preferably added with stirring.
  • the uniformly moistened composition is then dried. Drying preferably proceeds with exposure to heat at temperatures at which it is possible to rule out any discoloration of the composition. This temperature may be established by simple preliminary testing.
  • the composition Before or after drying, the composition may be divided into sub-portions which preferably in each case correspond to the mass of a unit of the dosage form. The corresponding dried portions are then shaped to yield the dosage form.
  • the formulation mixture may also be moistened in such a manner that, before addition of the solvent, the formulation mixture is divided, preferably in moulds, into sub-portions, is dispersed in a liquid dispersant with stirring and then the solvent is added.
  • Component (C) is not soluble in the dispersant, which must be miscible with the solvent.
  • Suitable dispersants are preferably hydrophilic solvents, such as aliphatic alcohols, ketones, esters. Short-chain alcohols are preferably used.
  • the formulation mixture may also be moistened in such a manner that the solvent is incorporated into the formulation mixture as a foam.
  • a foam of the solvent is preferably produced with the assistance of a high-speed mixer, preferably with the addition of conventional foam stabilisers.
  • Suitable stabilisers are, for example, hydrophilic polymers such as for example hydroxypropylmethylcellulose.
  • the foam is also preferably incorporated into the formulation mixture with stirring, a granulated composition so preferably being obtained.
  • the granulated composition Before or after being divided into sub-portions, which preferably correspond to the mass of a unit of the dosage form, the granulated composition is dried and then shaped into the dosage form.
  • Drying and shaping may preferably proceed as described above.
  • the process according to the invention may also be performed in such a manner that solvent is added to the formulation mixture in such a quantity that a shapeable paste is obtained.
  • such a paste Before or after being dried, which may proceed as explained above, such a paste may be divided into sub-portions and the dried portions, after further division in each case into a portion corresponding to the mass of a unit of the dosage form, are shaped or converted to yield the dosage form.
  • the sub-portions in the form of strands, which may be produced with the assistance of a screen or a strand former.
  • the dried strands are preferably singulated and shaped to yield the dosage form.
  • This shaping preferably proceeds with the assistance of a tablet press, using shaping rollers or shaping belts equipped with rollers.
  • the paste is advantageously processed with an extruder, wherein, depending on the configuration of the extrusion, strands or planar structures articles are produced, which are singulated by chopping, cutting or stamping.
  • the singulated sub-portions may be shaped, formed or stamped as described above to yield the dosage form.
  • Corresponding apparatuses are known to the person skilled in the art.
  • the process according to the invention may here be performed continuously or discontinuously.
  • Such a solution or dispersion/suspension is preferably converted into a planar structure, an extruder with a flat die preferably being used or the solution being cast onto a planar support.
  • the dosage forms may be obtained from the planar structures by stamping or calendering. It is also possible, as stated above, to convert the solution into strands and to singulate these, preferably after they have been dried, and shape them to yield the dosage form.
  • the solution may also be divided into portions such that, after drying, they each correspond to the mass of a unit of the dosage form, with moulds which already correspond to the shape of the unit of the dosage form preferably being used for this purpose.
  • the portions may, after drying, optionally be combined again and be shaped to form the dosage form, being for example packaged in a capsule or press-formed to form a tablet.
  • the formulation mixtures combined with solvent are preferably processed at temperatures of 20° C. to 40° C., wherein, apart from during drying to remove the solvent and the optionally present dispersant, no higher temperatures are used.
  • the drying temperature must be selected below the decomposition temperature of the components. After shaping to yield the dosage form, further drying corresponding to the above-described drying may optionally be performed.
  • Process variants 2 and 4 as described above involve the extrusion of a composition comprising components (A), (C), optionally (B) and optionally (D).
  • extrusion is performed by means of twin-screw-extruders or planetary-gear-extruders, twin-screw extruders being particularly preferred.
  • extrudates exhibiting an advantageous morphology are obtainable by means of planetary-gear-extruders and twin-screw-extruders. It has been found that under suitable conditions the extrudate is surrounded by a shell which may be denoted as “extrusion skin”. Said extrusion skin can be regarded as a collar-like or tubular structure forming a circumferential section of the extrudate about its longitudinal extrusion axis so that the outer surface of said collar-like or tubular structure forms the closed shell of the extrudate. Usually, only the front faces of the extrudate are not covered by said extrusion skin.
  • the extrusion skin surrounds the core of the extrudate in a collar-like or tubular arrangement and preferably is connected therewith in a seamless manner.
  • the extrusion skin differs from said core in its morphology.
  • the extrusion skin is visible with the naked eye in the cross-section of the extrudate, optionally by means of a microscope, since due to the different morphology of the material forming the extrusion skin and the material forming the core, the optical properties differ as well. It seems that during extrusion the material forming the extrusion skin is exposed to mechanical and thermal conditions differing from the conditions the core of the extrudate is exposed to. In consequence, a heterogeneous morphology of the extruded strand is obtained, which e.g.
  • the material forming the extrusion skin and the material forming the core are usually distinguished by their morphology, preferably, however, not by their composition, particularly not by the relative content of components (A), (C), optionally (B) and optionally (D).
  • the extrusion skin covers the entire shell of the extrudate like a one-piece collar, independently of what geometry has been chosen for the extrusion die. Therefore, the extrudate may assume circular, elliptic or other cross-sections.
  • the extrusion skin is preferably characterized by a unitary thickness.
  • the thickness of the extrusion skin is within the range from 0.1 to 4.0 mm, or, in increasing order of preference 0.15 to 3.5 mm, 0.2 to 3.0 mm, 0.2 to 2.5 mm or 0.2 to 2.0 mm.
  • the thickness of the extrusion skin in the sum over both opposing sides amounts to 0.5 to 50%, or in increasing order of preference 1.0 to 40%, 1.5 to 35%, 2.0 to 30% or 2.5 to 25% of the diameter of the extrudate.
  • FIG. 4 shows a schematic view of extrudate ( 71 ) having a collar-like extrusion skin ( 72 ) entirely surrounding the core ( 73 ) about the longitudinal extrusion axis ( 74 ).
  • the outer surface of extrusion skin ( 72 ) forms the shell ( 75 ) of the extrudate ( 71 ).
  • extrudates having an extrusion skin exhibit beneficial mechanical properties. They are particularly suitable as intermediates in the production of the dosage forms according to the invention, because they may be advantageously processed, in particular by singulating and/or forming.
  • the dosage forms according to the invention are prepared by means of extrusion processes which lead to intermediates having an extrusion skin as described above, the dosage forms obtained therefrom are preferably also characterized by a particular morphology.
  • those regions, which have formed the extrusion skin in the extruded intermediate are still visible with the naked eye, optionally by means of a microscope, in the cross-section of the dosage form. This is because usually by further processing the extrudate, particularly by singulating and/or shaping, the different nature and thereby also the different optical properties of the material forming the extrusion skin and the material forming the core are maintained.
  • tubular domain that domain of the dosage forms which has emerged from the extrusion skin in the course of further processing the extruded intermediate.
  • the dosage form according to the invention comprises a tubular domain and a core located therein.
  • the tubular domain is connected with the core in a seamless manner.
  • the tubular domain as well as the core have substantially the same chemical composition, i.e. substantially the same relative content of components (A), (C), optionally (B) and optionally (D).
  • the material forming the tubular domain has a morphology differing from the material forming the core. Usually, this different morphology is also expressed in terms of different optical properties, so that the tubular domain and the core are visible with the naked eye in the cross-section of the dosage form.
  • the tubular domain is located between the film coating and the core. Since the dosage form according to the invention may be obtained in different ways from the extrudate containing the extrusion skin (intermediate), the tubular domain may take different arrangements and extensions within the dosage form according to the invention. All arrangements have in common, however, that the tubular domain partially covers the surface of the core, but usually not its entire surface. Preferably, two opposing surfaces of the core are not, or at least not fully covered by the tubular domain. In other words, preferably the tubular domain has two openings/blanks on opposing sides.
  • the thickness of the tubular domain may be uniform. It is also possible, however, that in the course of the processing, i.e. due to the subsequent shaping (e.g. press-forming) of the extrudate, various sections of the extrusion skin are expanded or compressed differently thereby leading to a variation of the thickness of the tubular domain within the dosage form.
  • the thickness of the tubular domain is within the range from 0.1 to 4.0 mm, or in increasing order of preference 0.15 to 3.5 mm, 0.2 to 3.0 mm, 0.2 to 2.5 mm or 0.2 to 2.0 mm.
  • FIGS. 5A and 5B show schematic views of preferred arrangements of the tubular domain within the dosage form according to the invention.
  • the dosage forms ( 81 ) contain a tubular domain ( 82 ) partially surrounding the core ( 83 ).
  • the process for the preparation of the dosage form according to the invention is preferably performed continuously.
  • the process involves the extrusion of a homogeneous mixture of components (A), (C), optionally (B) and optionally (D).
  • the obtained intermediate e.g. the strand obtained by extrusion, exhibits uniform properties.
  • Particularly desirable are uniform density, uniform distribution of the active substance, uniform mechanical properties, uniform porosity, uniform appearance of the surface, etc. Only under these circumstances the uniformity of the pharmacological properties, such as the stability of the release profile, may be ensured and the amount of rejects can be kept low.
  • the process according to the present invention may be performed with less than 25% rejects, more preferably less than 20%, most preferably less than 15% and in particular less than 10% rejects, wherein the criteria for rejection are the FDA standards regarding the intervariability of the content of component (A), its release profile and/or the density of the dosage form when comparing two dosage forms, preferably taken from the same batch.
  • the criteria for rejection are the FDA standards regarding the intervariability of the content of component (A), its release profile and/or the density of the dosage form when comparing two dosage forms, preferably taken from the same batch.
  • twin-screw-extruders and planetary-gear-extruders, twin-screw-extruders being particularly preferred.
  • the process according to the invention preferably involves the extrusion of a mixture of components (A), (C), optionally (B) and optionally (D), preferably by means of a planetary-gear-extruder or a twin-screw-extruder. After extrusion the extrudate is preferably singulated, shaped and optionally coated in order to obtain the final dosage form.
  • shaping is performed in the plasticized state of the mixture of components (A), (C), optionally (B) and optionally (D).
  • certain polymers (C) particular of high molecular weight polyethylene oxides, yields intermediates exhibiting some kind of memory effect: when the singulated extrudates are shaped at ambient temperature, e.g. by press-forming, dosage forms are obtained which tend to regain their original outer form upon storage under stressed storage conditions, i.e. they return to the form they had prior to shaping.
  • the shape of the dosage form upon storage at stressed conditions may also be unstable for other reasons.
  • the memory effect significantly deteriorates the storage stability of the dosage form, as by regaining its outer form several properties of the dosage form are changed. The same applies to any changes of the outer form due to other reasons.
  • shaping of the singulated extrudate is performed at increased temperature, i.e. in the plasticized state of the mixture of components (A), (C), optionally (B) and optionally (D).
  • shaping is performed at a pressure of at least 1 kN, more preferably within the range from 2 kN to 50 kN, e.g. by means of a tablet press.
  • shaping is performed at a temperature which preferably is about 40° C., more preferably about 30° C. and in particular about 25° C. below the melting range of the mixture of components (A), (C), optionally (B) and optionally (D).
  • the melting range of a given mixture may be determined by conventional methods, preferably by DSC (e.g. with a DSC model 2920 (TA Instruments, New Castle) and ultrahigh pure nitrogen as purge gas at a flow rate of 150 ml/min; approximate sample weight of 10-20 mg, sealed in nonhermetic aluminium pans; temperature ramp speed 10° C./min).
  • DSC e.g. with a DSC model 2920 (TA Instruments, New Castle) and ultrahigh pure nitrogen as purge gas at a flow rate of 150 ml/min; approximate sample weight of 10-20 mg, sealed in nonhermetic aluminium pans; temperature ramp speed 10° C./min).
  • the outer shape of the dosage form according to the invention does not substantially change when being stored for at least 12 h, preferably for at least 24 h, at 40° C. and 75% RH, preferably in an open container.
  • the volume of the dosage form according to the invention increases by not more than 20% or 17.5%, more preferably not more than 15% or 12.5%, still more preferably not more than 10% or 7.5%, most preferably not more than 6.0%, 5.0% or 4.0% and in particular not more than 3.0%, 2.0% or 1.0% when being stored for at least 12 h, preferably for at least 24 h, at a temperature of 20° C. below the melting range of the mixture of components (A), (C), optionally (B) and optionally (D), optionally at a temperature of 40° C. and 75% RH.
  • the dosage form according to the invention exhibits controlled release of the active ingredient. It is preferably suitable for twice daily administration to patients.
  • the dosage form according to the invention may comprise one or more substances (A) at least in part in a further delayed-release form, wherein delayed release may be achieved with the assistance of conventional materials and processes known to the person skilled in the art, for example by embedding the substance in a delayed-release matrix or by applying one or more delayed-release coatings. Substance release must, however, be controlled such that addition of delayed-release materials does not impair the necessary hardness.
  • Controlled release from the dosage form according to the invention is preferably achieved by embedding the substance in a matrix.
  • the auxiliary substances acting as matrix materials control release.
  • Matrix materials may, for example, be hydrophilic, gel-forming materials, from which release proceeds mainly by diffusion, or hydrophobic materials, from which release proceeds mainly by diffusion from the pores in the matrix.
  • hydrophobic materials which are known to the person skilled in the art may be used as matrix materials.
  • Polymers particularly preferably cellulose ethers, cellulose esters and/or acrylic resins are preferably used as hydrophilic matrix materials.
  • Ethylcellulose, hydroxypropylmethylcellulose, hydroxypropylcellulose, hydroxymethylcellulose, poly(meth)acrylic acid and/or the derivatives thereof, such as the salts, amides or esters thereof are very particularly preferably used as matrix materials.
  • Matrix materials prepared from hydrophobic materials such as hydrophobic polymers, waxes, fats, long-chain fatty acids, fatty alcohols or corresponding esters or ethers or mixtures thereof are also preferred.
  • Mono- or diglycerides of C12-C30 fatty acids and/or C12-C30 fatty alcohols and/or waxes or mixtures thereof are particularly preferably used as hydrophobic materials.
  • Component (C) and the optionally present component (D), which serve to achieve the resistance to crushing of at least 400 N which is necessary according to the invention, may furthermore themselves serve as additional matrix materials.
  • the dosage form according to the invention may also preferably comprise a coating which is resistant to gastric juices and dissolves as a function of the pH value of the release environment.
  • a coating which is resistant to gastric juices preferably dissolves at a pH value of between 5 and 7.5.
  • the invention relates to a method for the prophylaxis and/or the treatment of a disorder comprising the administration of the dosage form according to the invention, thereby preventing an overdose of the physiologically active substance (A), particularly due to comminution of the dosage form by mechanical action.
  • the mechanical action is selected from the group consisting of chewing, grinding in a mortar, pounding, and using apparatuses for pulverising conventional dosage forms.
  • the resistance to crushing of the dosage forms obtained according to the invention is determined by the stated measurement method, with dosage forms other than tablets also being tested.
  • the resistance to crushing of the dosage form according to the invention may be determined by producing dosage forms, preferably tablets, with a diameter of 10 mm and a height of 5 mm.
  • the resistance to crushing of the dosage form is determined in accordance with the method for determining the resistance to crushing of tablets, published in the European Pharmacopoeia 1997, page 143, 144, method no. 2.9.8. using the apparatus stated below.
  • FIG. 6 shows the measurement of the resistance to crushing of a tablet, in particular the tablet ( 4 ) adjustment device ( 6 ) used for this purpose before and during the measurement.
  • the tablet ( 4 ) is held between the upper pressure plate ( 1 ) and the lower pressure plate ( 3 ) of the force application apparatus (not shown) with the assistance of two 2-part clamping devices, which are in each case firmly fastened (not shown) with the upper and lower pressure plate once the spacing ( 5 ) necessary for accommodating and centring the tablet to be measured has been established.
  • the spacing ( 5 ) may be established by moving the 2-part clamping devices horizontally outwards or inwards in each case on the pressure plate on which they are mounted.
  • the reference numerals used relate solely to FIG. 6 .
  • the resistance to crushing may be alternatively be determined by means of two pressure plates, such as depicted e.g. in FIG. 7 .
  • FIG. 7 shows a probe ( 12 ), e.g. a pellet, which is placed between a top pressure plate ( 10 ) and a bottom pressure plate ( 11 ). Force is effected to the probe by means of the two pressure plates. The result of the measurement is analysed analogously to the method that has been described above in connection with FIG. 6 .
  • the tablets deemed to be resistant to crushing under a specific load include not only those which have not broken but also those which may have suffered plastic deformation under the action of the force.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature (concavity) of 8 mm was heated to 80° C. in a heating cabinet. Portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • oblong tablets having a width of 9 mm and a lengthwise extension of 20 mm were produced with the following composition: per complete Components tablet batch verapamil HCl 240.0 mg 1920 mg polyethylene oxide, NF, MW 7 000 000 411.4 mg 3291.2 mg (Polyox WSR 303, Dow Chemicals) total weight 651.4 mg 4.2112 g
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • nifedipine was used as the active ingredient (substance (A):
  • Tablets having the following composition were produced: per complete content components tablet batch [%] nifedipine 20 mg 2 g 10 polyethylene oxide 900 000 180 mg 18 g 90 (Polyox WSR 1105 Dow Chemicals)
  • Nifedipine and polyethylene oxide were mixed in a free-fall mixer.
  • the mixture was compressed on an excentric tablet press (model EK 0, Korsch) to circular tablets having a weight of 200 mg, a diameter of 8 mm and a radius of curvature of 8 mm.
  • the tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 100° C. in a heating cabinet. Once again the tablets were compressed by means of the heated tool, wherein pressure was maintained for at least 15 seconds.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • Tablets having the following composition were produced as described in Example 4: per complete content Components tablet batch [%] Nifedipine 20 mg 2 g 10 polyethylene oxide 600 000 180 mg 18 g 90 (Polyox WSR 205 Dow Chemicals)
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • Tablets having the following composition were produced as described in Example 4: per complete content Components tablet batch [%] Nifedipine 20 mg 2 g 10 polyethylene oxide 5 000 000 180 mg 18 g 90 (Polyox WSR Coagulant Dow Chemicals)
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • Tablets having the following composition were produced as described in Example 4: per complete content Components tablet batch [%] Nifedipine 20 mg 2 g 10 polyethylene oxide 100 000 20 mg 2 g 10 (Polyox WSR N 10 Dow Chemicals) polyethylene oxide 5 000 000 160 mg 160 g 80 (Polyox WSR Coagulant Dow Chemicals)
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • tramadol hydrochloride and oxycodone hydrochloride were used as active ingredients (substance (A)).
  • Tramadol hydrochloride and polyethylene oxide powder were mixed in a free-fall mixer.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablet could not be comminuted using a hammer, nor with the assistance of a mortar and pestle.
  • Tramadol hydrochloride and the above-stated components were mixed in a free-fall mixer.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 7 mm was heated to 80° C. in a heating cabinet.
  • 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer.
  • a tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature (concavity) of 8 mm was heated to 80° C. in a heating cabinet. 300 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets did suffer a little plastic deformation.
  • Tramadol hydrochloride, xanthan and polyethylene oxide were mixed in a free-fall mixer.
  • a tabletting tool with a top punch, bottom punch and die for oblong tablets 10 mm in length and 5 mm in width was heated to 90° C. in a heating cabinet.
  • 150 mg portions of the powder mixture were pressed with the heated tool, wherein pressure was maintained for at least 15 seconds by clamping the tabletting tool in a vice.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • the tablets did suffer a little plastic deformation.
  • a tablet with the following composition was produced as described in Example 8: per per Components tablet batch oxycodone HCl 20.0 mg 0.240 g Xanthan, NF 20.0 mg 0.240 g polyethylene oxide, NF, MFI 110.0 mg 1.320 g (190° C. at 21.6 kg/10 min) ⁇ 0.5 g MW 7 000 000 (Polyox WSR 303, Dow Chemicals) total weight 150.0 mg 1.800 g
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not break when exposed to a force of 500 N.
  • Tablets having the following composition were produced: per complete content components tablet batch [%] tramadol HCl 100 mg 10 g 20 polyethylene oxide 7 000 000 375 mg 37.5 g 75 (Polyox WSR 303, Dow Chemicals) Carnauba wax 25 mg 2.5 g 5.0
  • Tramadol hydrochloride polyethylene oxide and Carnauba wax were mixed in a free-fall mixer.
  • the mixture was compressed on an excentric tablet press (model EK 0, Korsch) to circular tablets having a weight of 500 mg, a diameter of 10 mm and a radius of curvature of 8 mm.
  • the tabletting tool with top punch, bottom punch and die for tablets with a diameter of 10 mm and a radius of curvature of 8 mm was heated to 130° C. in a heating cabinet. Once again the tablets were compressed by means of the heated tool, wherein pressure was maintained for at least 15 seconds.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • Example 14 Tablets having the following composition were produced as described in Example 14: per complete content Components tablet batch [%] tramadol HCl 100 mg 10 g 20 polyethylene oxide 5 000 000 375 mg 37.5 g 75 (Polyox WSR Coagulant Dow Chemicals) Carnauba wax 25 mg 2.5 g 5.0
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • Tablets having the following composition were produced: per complete content Components tablet batch [%] tramadol HCl 100.0 mg 1490 g 29.8 polyethylene oxide 7 000 000 151.0 mg 2250 g 45.0 (Polyox WSR 303, Dow Chemicals) Hypromellose (Metholose 90 33.6 mg 500 g 10.0 SH 100 000 cP, ShinEtsu) Eudragit E Granulate (Röhm) 16.8 mg 250 g 5.0 PEG 6000 33.6 mg 500 g 10.0 ⁇ -tocopherol 0.1 mg 5 g 0.1 Aerosil (highly disperse SiO 2 ) 0.1 mg 5 g 0.1
  • a homogeneous mixture of 50 g of the polyethylene oxide, 5 g of ⁇ -tocopherol and Aerosil was prepared in a mortar. Said homogeneous mixture was mixed with the further components in a free-fall mixer for 15 minutes. Subsequently, the mixtures was extruded by means of a planetary-gear extruder, type BCG 10, LBB Bohle (Ennigerloh). 4 spindles were used. The die diameter was 8 mm. The dosing of the powder was performed gravimetrically, 10 kg per hour. The following parameters were adjusted for extrusion: rotation speed: 50 UpM; cover temperature: 100° C.; temperature of the central spindle: 100° C.; temperature of the jet heating: 120° C.
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. This could not be achieved with the assistance of a pestle and mortar either.
  • Tablets having the following composition were produced as described in Example 16: per complete content components tablet batch [%] tramadol HCl 100.0 mg 1490 g 29.8 polyethylene oxide 7 000 000 151.0 mg 2250 g 45.0 (Polyox WSR 303, Dow Chemicals) Hypromellose (Metholose 90 33.6 mg 500 g 10.0 SH 100 000 cP, ShinEtsu) Stamylan LD 1965 (SABIC ® 16.8 mg 250 g 5.0 LDPE 1965T) (Sabic Europetrochemicals) PEG 6000 33.6 mg 500 g 10.0 ⁇ -tocopherol 0.1 mg 5 g 0.1 Aerosil (highly disperse SiO 2 ) 0.1 mg 5 g 0.1
  • the resistance to crushing of the tablets was determined with the stated apparatus in accordance with the stated method.
  • the tablets did not crush when exposed to a force of 500 N.
  • the tablet could not be comminuted with a hammer. Nor could this be achieved with the assistance of a pestle and mortar.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Mechanical Engineering (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Emergency Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Neurology (AREA)
  • Diabetes (AREA)
  • Neurosurgery (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Pain & Pain Management (AREA)
  • Immunology (AREA)
  • Dermatology (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Psychiatry (AREA)
  • Addiction (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Endocrinology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Medicinal Preparation (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
US11/348,295 2003-08-06 2006-02-06 Crush resistant delayed-release dosage forms Abandoned US20060193914A1 (en)

Priority Applications (21)

Application Number Priority Date Filing Date Title
US11/462,216 US20070048228A1 (en) 2003-08-06 2006-08-03 Abuse-proofed dosage form
US12/140,665 US8192722B2 (en) 2003-08-06 2008-06-17 Abuse-proof dosage form
US12/140,568 US20080311187A1 (en) 2005-02-04 2008-06-17 Crush resistan delayed-release dosage form
US12/640,915 US20100151028A1 (en) 2005-02-04 2009-12-17 Crush resistant delayed-release dosage forms
US13/723,273 US20130171075A1 (en) 2003-08-06 2012-12-21 Abuse-proofed dosage form
US14/084,162 US20140079780A1 (en) 2005-02-04 2013-11-19 Crush resistant delayed-release dosage forms
US14/138,372 US20140170079A1 (en) 2003-08-06 2013-12-23 Abuse-proofed dosage form
US14/141,793 US20140112984A1 (en) 2005-02-04 2013-12-27 Crush resistant delayed-release dosage forms
US14/324,366 US20140322311A1 (en) 2005-02-04 2014-07-07 Crush resistan delayed-release dosage form
US14/749,939 US20150290138A1 (en) 2005-02-04 2015-06-25 Crush resistant delayed-release dosage forms
US14/848,457 US20150374630A1 (en) 2005-02-04 2015-09-09 Crush resistant delayed-release dosage forms
US14/875,007 US20160022587A1 (en) 2003-08-06 2015-10-05 Abuse-proofed dosage form
US14/994,691 US20160120810A1 (en) 2005-02-04 2016-01-13 Crush resistant delayed-release dosage forms
US15/061,252 US10675278B2 (en) 2005-02-04 2016-03-04 Crush resistant delayed-release dosage forms
US15/132,325 US9629807B2 (en) 2003-08-06 2016-04-19 Abuse-proofed dosage form
US15/459,180 US10058548B2 (en) 2003-08-06 2017-03-15 Abuse-proofed dosage form
US15/649,880 US20170312271A1 (en) 2005-02-04 2017-07-14 Crush resistant delayed-release dosage forms
US16/016,924 US20180369235A1 (en) 2005-02-04 2018-06-25 Crush resistant delayed-release dosage forms
US16/032,467 US20190008849A1 (en) 2003-08-06 2018-07-11 Abuse-proofed dosage form
US16/455,813 US20190321358A1 (en) 2003-08-06 2019-06-28 Abuse-proofed dosage form
US16/797,055 US20200215053A1 (en) 2003-08-06 2020-02-21 Abuse-proofed dosage form

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005005446A DE102005005446A1 (de) 2005-02-04 2005-02-04 Bruchfeste Darreichungsformen mit retardierter Freisetzung
DE102005005446.3 2005-02-04

Related Parent Applications (2)

Application Number Title Priority Date Filing Date
US10/718,112 Continuation US8114383B2 (en) 2003-08-06 2003-11-20 Abuse-proofed dosage form
US10/718,112 Continuation-In-Part US8114383B2 (en) 2003-08-06 2003-11-20 Abuse-proofed dosage form

Related Child Applications (5)

Application Number Title Priority Date Filing Date
US11/349,544 Continuation US8075872B2 (en) 2003-08-06 2006-02-06 Abuse-proofed dosage form
US11/349,544 Continuation-In-Part US8075872B2 (en) 2003-08-06 2006-02-06 Abuse-proofed dosage form
US11/462,216 Continuation-In-Part US20070048228A1 (en) 2003-08-06 2006-08-03 Abuse-proofed dosage form
US12/140,568 Division US20080311187A1 (en) 2005-02-04 2008-06-17 Crush resistan delayed-release dosage form
US12/640,915 Division US20100151028A1 (en) 2005-02-04 2009-12-17 Crush resistant delayed-release dosage forms

Publications (1)

Publication Number Publication Date
US20060193914A1 true US20060193914A1 (en) 2006-08-31

Family

ID=36384542

Family Applications (16)

Application Number Title Priority Date Filing Date
US11/348,295 Abandoned US20060193914A1 (en) 2003-08-06 2006-02-06 Crush resistant delayed-release dosage forms
US12/140,568 Abandoned US20080311187A1 (en) 2005-02-04 2008-06-17 Crush resistan delayed-release dosage form
US12/640,915 Abandoned US20100151028A1 (en) 2005-02-04 2009-12-17 Crush resistant delayed-release dosage forms
US14/084,162 Abandoned US20140079780A1 (en) 2005-02-04 2013-11-19 Crush resistant delayed-release dosage forms
US14/141,793 Abandoned US20140112984A1 (en) 2005-02-04 2013-12-27 Crush resistant delayed-release dosage forms
US14/324,366 Abandoned US20140322311A1 (en) 2005-02-04 2014-07-07 Crush resistan delayed-release dosage form
US14/749,939 Abandoned US20150290138A1 (en) 2005-02-04 2015-06-25 Crush resistant delayed-release dosage forms
US14/848,457 Abandoned US20150374630A1 (en) 2005-02-04 2015-09-09 Crush resistant delayed-release dosage forms
US14/994,691 Abandoned US20160120810A1 (en) 2005-02-04 2016-01-13 Crush resistant delayed-release dosage forms
US15/061,252 Active US10675278B2 (en) 2005-02-04 2016-03-04 Crush resistant delayed-release dosage forms
US15/459,180 Expired - Lifetime US10058548B2 (en) 2003-08-06 2017-03-15 Abuse-proofed dosage form
US15/649,880 Abandoned US20170312271A1 (en) 2005-02-04 2017-07-14 Crush resistant delayed-release dosage forms
US16/016,924 Abandoned US20180369235A1 (en) 2005-02-04 2018-06-25 Crush resistant delayed-release dosage forms
US16/032,467 Abandoned US20190008849A1 (en) 2003-08-06 2018-07-11 Abuse-proofed dosage form
US16/455,813 Abandoned US20190321358A1 (en) 2003-08-06 2019-06-28 Abuse-proofed dosage form
US16/797,055 Abandoned US20200215053A1 (en) 2003-08-06 2020-02-21 Abuse-proofed dosage form

Family Applications After (15)

Application Number Title Priority Date Filing Date
US12/140,568 Abandoned US20080311187A1 (en) 2005-02-04 2008-06-17 Crush resistan delayed-release dosage form
US12/640,915 Abandoned US20100151028A1 (en) 2005-02-04 2009-12-17 Crush resistant delayed-release dosage forms
US14/084,162 Abandoned US20140079780A1 (en) 2005-02-04 2013-11-19 Crush resistant delayed-release dosage forms
US14/141,793 Abandoned US20140112984A1 (en) 2005-02-04 2013-12-27 Crush resistant delayed-release dosage forms
US14/324,366 Abandoned US20140322311A1 (en) 2005-02-04 2014-07-07 Crush resistan delayed-release dosage form
US14/749,939 Abandoned US20150290138A1 (en) 2005-02-04 2015-06-25 Crush resistant delayed-release dosage forms
US14/848,457 Abandoned US20150374630A1 (en) 2005-02-04 2015-09-09 Crush resistant delayed-release dosage forms
US14/994,691 Abandoned US20160120810A1 (en) 2005-02-04 2016-01-13 Crush resistant delayed-release dosage forms
US15/061,252 Active US10675278B2 (en) 2005-02-04 2016-03-04 Crush resistant delayed-release dosage forms
US15/459,180 Expired - Lifetime US10058548B2 (en) 2003-08-06 2017-03-15 Abuse-proofed dosage form
US15/649,880 Abandoned US20170312271A1 (en) 2005-02-04 2017-07-14 Crush resistant delayed-release dosage forms
US16/016,924 Abandoned US20180369235A1 (en) 2005-02-04 2018-06-25 Crush resistant delayed-release dosage forms
US16/032,467 Abandoned US20190008849A1 (en) 2003-08-06 2018-07-11 Abuse-proofed dosage form
US16/455,813 Abandoned US20190321358A1 (en) 2003-08-06 2019-06-28 Abuse-proofed dosage form
US16/797,055 Abandoned US20200215053A1 (en) 2003-08-06 2020-02-21 Abuse-proofed dosage form

Country Status (28)

Country Link
US (16) US20060193914A1 (fr)
EP (2) EP2478896B1 (fr)
JP (1) JP5202963B2 (fr)
KR (1) KR101299928B1 (fr)
CN (1) CN101175482B (fr)
AR (2) AR054328A1 (fr)
AU (1) AU2006210145B9 (fr)
BR (1) BRPI0606145C1 (fr)
CA (1) CA2595954C (fr)
CY (2) CY1118914T1 (fr)
DE (1) DE102005005446A1 (fr)
DK (2) DK1845956T3 (fr)
ES (2) ES2651016T3 (fr)
HR (2) HRP20170746T1 (fr)
HU (2) HUE032099T2 (fr)
IL (1) IL185018A (fr)
LT (2) LT1845956T (fr)
MX (1) MX2007009393A (fr)
NO (1) NO342922B1 (fr)
NZ (1) NZ560203A (fr)
PE (1) PE20061087A1 (fr)
PL (2) PL2478896T3 (fr)
PT (2) PT1845956T (fr)
RU (2) RU2399371C2 (fr)
SI (2) SI1845956T1 (fr)
TW (1) TWI381860B (fr)
WO (1) WO2006082099A1 (fr)
ZA (1) ZA200705836B (fr)

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031546A1 (en) * 2003-08-06 2005-02-10 Johannes Bartholomaus Abuse-proffed dosage form
US20070243276A1 (en) * 2005-11-09 2007-10-18 Universidade Do Minho Laboratorial extrusion line for the production of conventional and bi-oriented tubular film, with simple commutation between the two techniques
US20080020032A1 (en) * 2006-07-21 2008-01-24 Michael Crowley Hydrophobic abuse deterrent delivery system for hydromorphone
WO2008033523A1 (fr) 2006-09-15 2008-03-20 Cima Labs Inc. Préparation médicamenteuse empêchant l'utilisation abusive
US20080220079A1 (en) * 2007-03-02 2008-09-11 Farnam Companies, Inc. Sustained release compositions using wax-like materials
US20080280981A1 (en) * 2004-03-04 2008-11-13 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations
US20090005408A1 (en) * 2003-12-24 2009-01-01 Grunenthal Gmbh Process for the production of an abuse-proofed dosage form
US20090017114A1 (en) * 2003-07-31 2009-01-15 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations with reduced adverse effects
US20090052818A1 (en) * 2007-07-10 2009-02-26 Jason Matthew Mitmesser Hybrid bearing
US20090081290A1 (en) * 2006-08-25 2009-03-26 Purdue Pharma L.P. Tamper resistant dosage forms
US20090209646A1 (en) * 2004-03-04 2009-08-20 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations
US20090214644A1 (en) * 2003-07-31 2009-08-27 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations with reduced adverse effects
US20100015223A1 (en) * 2006-03-01 2010-01-21 Ethypharm Sa Crush-Resistant Tablets Intended to Prevent Accidental Misuse and Unlawful Diversion
WO2010044842A1 (fr) * 2008-10-16 2010-04-22 University Of Tennessee Research Foundation Formes pharmaceutiques orales inviolables contenant un agent embolisant
US20100209498A1 (en) * 2007-04-20 2010-08-19 Girish Kumar Jain Pharmaceutical compositions of duloxetine
US20100280117A1 (en) * 2009-04-30 2010-11-04 Xanodyne Pharmaceuticals, Inc. Menorrhagia Instrument and Method for the Treatment of Menstrual Bleeding Disorders
US20110038930A1 (en) * 2009-07-22 2011-02-17 Grunenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US20110099815A1 (en) * 2009-10-21 2011-05-05 Eveready Battery Company, Inc. Lubrication Box For A Wet Shaving Implement
US7947739B2 (en) 2004-03-04 2011-05-24 Ferring B.V. Tranexamic acid formulations
US20110165248A1 (en) * 2008-09-18 2011-07-07 Meridith Lee Machonis Pharmaceutical dosage forms comprising poly(e-caprolactone)
US20110230559A1 (en) * 2004-03-04 2011-09-22 Ferring B.V. Tranexamic Acid Formulations
US20110237615A1 (en) * 2008-12-12 2011-09-29 Paladin Labs Inc. Narcotic Drug Formulations with Decreased Abuse Potential
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
US8114384B2 (en) 2004-07-01 2012-02-14 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US8192722B2 (en) 2003-08-06 2012-06-05 Grunenthal Gmbh Abuse-proof dosage form
WO2012085657A2 (fr) 2010-12-23 2012-06-28 Purdue Pharma L.P. Formes pharmaceutiques solides à usage oral résistant à la contrefaçon
US20120202838A1 (en) * 2010-11-04 2012-08-09 Abbott Laboratories Drug formulations
US8273795B2 (en) 2004-03-04 2012-09-25 Ferring B.V. Tranexamic acid formulations
US8383152B2 (en) * 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US8808745B2 (en) 2001-09-21 2014-08-19 Egalet Ltd. Morphine polymer release system
US8877241B2 (en) 2003-03-26 2014-11-04 Egalet Ltd. Morphine controlled release system
US20140356428A1 (en) * 2013-05-29 2014-12-04 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9005660B2 (en) 2009-02-06 2015-04-14 Egalet Ltd. Immediate release composition resistant to abuse by intake of alcohol
US9023394B2 (en) 2009-06-24 2015-05-05 Egalet Ltd. Formulations and methods for the controlled release of active drug substances
US9044402B2 (en) 2012-07-06 2015-06-02 Egalet Ltd. Abuse-deterrent pharmaceutical compositions for controlled release
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US9289416B2 (en) 2010-08-04 2016-03-22 Gruenenthal Gmbh Pharmaceutical dosage forms comprising 6′-fluoro-(N-methyl- or N,N-dimethyl-)-4-phenyl-4′,9′-dihydro-3′H-spiro[cyclohexane-1,1′-pyrano[3,4,b]indol]-4-amine
RU2582390C2 (ru) * 2010-08-04 2016-04-27 Грюненталь Гмбх ЛЕКАРСТВЕННАЯ ДОЗИРОВАННАЯ ФОРМА, КОТОРАЯ СОДЕРЖИТ 6'-ФТОР-(N-МЕТИЛ-ИЛИ N,N-ДИМЕТИЛ-)-4-ФЕНИЛ-4', 9'-ДИГИДРО-3'Н-СПИРО[ЦИКЛОГЕКСАН-1,1'-ПИРАНО[3,4,b]ИНДОЛ]-4-АМИН
US9579285B2 (en) 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US9642809B2 (en) 2007-06-04 2017-05-09 Egalet Ltd. Controlled release pharmaceutical compositions for prolonged effect
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US9694080B2 (en) 2001-09-21 2017-07-04 Egalet Ltd. Polymer release system
US9744136B2 (en) 2010-12-22 2017-08-29 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9757338B2 (en) 2010-03-01 2017-09-12 Dexcel Pharma Technologies Ltd. Sustained-release donepezil formulation
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US20180153845A1 (en) * 2014-11-19 2018-06-07 Biogen Ma Inc. Pharmaceutical bead formulations comprising dimethyl fumarate
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US10064826B2 (en) * 2013-03-15 2018-09-04 Navinta, Llc Direct compression and dry granulation processes for preparing carglumic acid tablets having less impurities than those produced by wet granulation process
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US11090759B2 (en) 2016-09-02 2021-08-17 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasonic vibration system having an amplitude transformer mounted on the lateral surface
US11186011B2 (en) * 2017-02-24 2021-11-30 Entex Rust & Mitschke Gmbh Method for producing thermally crosslinkable polymers in a planetary roller extruder
CN113939286A (zh) * 2019-03-25 2022-01-14 道格拉斯制药有限公司 缓释药物制剂
US11679413B2 (en) 2016-09-02 2023-06-20 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasonic vibration system having a lateral surface mounting
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form

Families Citing this family (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7201920B2 (en) 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
KR20080007357A (ko) * 2005-05-10 2008-01-18 노파르티스 아게 압축성이 열등한 치료학적 화합물을 갖는 조성물을제조하는 압출방법
MY148074A (en) * 2005-05-10 2013-02-28 Novartis Ag Pharmaceutical compositions comprising imatinib and a release retardant
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
DE102007012105A1 (de) * 2007-03-13 2008-09-18 Add Advanced Drug Delivery Technologies Ltd. Pellets enthaltend pharmazeutische Substanz, Verfahren zu deren Herstellung und deren Verwendung
DE102007025858A1 (de) 2007-06-01 2008-12-04 Grünenthal GmbH Verfahren zur Herstellung einer Arzneimitteldarreichungsform
DE102007039043A1 (de) 2007-08-17 2009-02-19 Grünenthal GmbH Sternverteiler
US7735763B2 (en) 2007-09-17 2010-06-15 First Wave Products Group, Llc Pill crusher with pill holder verification and safety features
WO2011027322A1 (fr) * 2009-09-03 2011-03-10 Ranbaxy Laboratories Limited Forme galénique à libération prolongée contenant de l'olopatadine pour une administration orale
EP2488029B1 (fr) 2009-09-30 2016-03-23 Acura Pharmaceuticals, Inc. Procédés et compositions de dissuasion d'abus
EP2600838B1 (fr) * 2010-08-04 2015-09-16 Grünenthal GmbH Forme galénique pharmaceutique comprenant 6'-fluoro-(n-méthyl- or n,n-diméthyl-)-4-phényl-4',9'-dihydro-3'h-spiro[cyclohexane-1,1'-pyrano[3,4,b]indol]-4-amine
DK2600846T3 (en) * 2010-08-04 2016-01-11 Gruenenthal Gmbh PHARMACEUTICAL DOSAGE FORM COMPRISING 6'-fluoro- (N-methyl or N, N-dimethyl -) - 4-phenyl-4 ', 9'-dihydro-3'H-spiro [cyclohexane-1,1'-pyrano [3 , 4, b] indole] -4-amine
EP2611428B1 (fr) 2010-09-02 2015-01-14 Grünenthal GmbH Forme pharmaceutique inviolable comportant un polymere anionique
WO2012061780A1 (fr) 2010-11-04 2012-05-10 Abbott Gmbh & Co. Kg Procédé de fabrication de comprimés monolithiques
RU2449779C1 (ru) * 2010-12-20 2012-05-10 Государственное образовательное учреждение высшего профессионального образования "БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ" Драже с оксиметилурацилом и нетилмицином для лечения инфекционных заболеваний кишечника
RU2453308C1 (ru) * 2010-12-20 2012-06-20 Государственное образовательное учреждение высшего профессионального образования "БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ МЕДИЦИНСКИЙ УНИВЕРСИТЕТ ФЕДЕРАЛЬНОГО АГЕНТСТВА ПО ЗДРАВООХРАНЕНИЮ И СОЦИАЛЬНОМУ РАЗВИТИЮ" Драже с оксиметилурацилом и мебеверина гидрохлоридом для лечения функциональных заболеваний желудочно-кишечного тракта
RU2483712C2 (ru) * 2011-07-25 2013-06-10 Еврофарм (ЮК) Ко. Лтд Фармацевтическая композиция, обладающая гепатопротекторным, гиполипидемическим, иммуностимулирующим и нормализующим деятельность почек действием, и способ ее получения
CA2839126A1 (fr) 2011-07-29 2013-02-07 Grunenthal Gmbh Comprime anti-manipulation permettant une liberation immediate de medicament
AR088250A1 (es) 2011-10-06 2014-05-21 Gruenenthal Gmbh Forma de dosificacion farmaceutica oral resistente a alteracion comprendiendo agonista opioide y antagonista opioide
KR20140096062A (ko) 2011-11-17 2014-08-04 그뤼넨탈 게엠베하 약리학적 활성 성분, 오피오이드 길항제 및/또는 혐오제, 폴리알킬렌 옥사이드 및 음이온성 중합체를 포함하는 탬퍼-저항성 경구 약제학적 투여형
TW201336529A (zh) * 2011-12-09 2013-09-16 Purdue Pharma Lp 包含聚(ε-己內酯)和聚氧化乙烯之藥物劑量型
EP2819657A1 (fr) 2012-02-28 2015-01-07 Grünenthal GmbH Forme pharmaceutique inviolable comprenant un tensioactif non ionique
PL2838516T3 (pl) 2012-04-18 2019-05-31 SpecGx LLC Zapobiegające nadużywaniu kompozycje farmaceutyczne o natychmiastowym uwalnianiu
MX357783B (es) 2012-05-11 2018-07-25 Gruenenthal Gmbh Forma de dosificacion farmaceutica termoconformada, resistente al uso indebido, que contiene zinc.
MX362838B (es) 2012-07-12 2019-02-19 SpecGx LLC Composiciones farmacéuticas de liberación prolongada para disuadir el abuso de opioides que comprenden un plastómero, un elastómero y un plastificante delicuescente.
AU2013352162B2 (en) 2012-11-30 2018-08-16 Acura Pharmaceuticals, Inc. Self-regulated release of active pharmaceutical ingredient
ES2681952T3 (es) 2013-03-15 2018-09-17 SpecGx LLC Forma farmacéutica sólida disuasoria del abuso de liberación inmediata con puntaje funcional
CA3042642A1 (fr) 2013-08-12 2015-02-19 Pharmaceutical Manufacturing Research Services, Inc. Comprime extrude anti-abus a liberation immediate
TW201521794A (zh) * 2013-11-12 2015-06-16 Daiichi Sankyo Co Ltd 錠劑
WO2015091352A1 (fr) 2013-12-16 2015-06-25 Grünenthal GmbH Forme galénique inviolable ayant un profil de libération bimodal et fabriqué par coextrusion
WO2015095391A1 (fr) 2013-12-17 2015-06-25 Pharmaceutical Manufacturing Research Services, Inc. Comprimé extrudé anti-abus à libération prolongée
US9492444B2 (en) 2013-12-17 2016-11-15 Pharmaceutical Manufacturing Research Services, Inc. Extruded extended release abuse deterrent pill
EP2899195A1 (fr) * 2014-01-28 2015-07-29 ROTOP Pharmaka AG Forme stabilisée de tétrofosmine et son utilisation
WO2015120201A1 (fr) 2014-02-05 2015-08-13 Kashiv Pharma, Llc Formulations de médicament résistantes aux abus avec protection intégrée contre le surdosage
AU2015237723B2 (en) 2014-03-26 2018-04-26 Sun Pharma Advanced Research Company Ltd. Abuse deterrent immediate release biphasic matrix solid dosage form
HUE065006T2 (hu) 2014-07-03 2024-04-28 SpecGx LLC Nem-cellulóz poliszacharidokat tartalmazó, visszaélés-gátló, azonnali felszabadulású készítmények
EP3169315B1 (fr) 2014-07-17 2020-06-24 Pharmaceutical Manufacturing Research Services, Inc. Forme posologique remplie de liquide anti-abus à libération immédiate
CA2964628A1 (fr) 2014-10-20 2016-04-28 Pharmaceutical Manufacturing Research Services, Inc. Forme galenique anti-abus de remplissage de liquide a liberation prolongee
WO2016124530A1 (fr) 2015-02-03 2016-08-11 Grünenthal GmbH Forme pharmaceutique inviolable comprenant un copolymère greffé par polyéthylène glycol
MX2017013633A (es) 2015-04-24 2018-03-08 Gruenenthal Gmbh Combinacion de dosis fija resistente a la manipulacion que proporciona una liberacion rapida de dos farmacos desde particulas.
WO2016170096A1 (fr) 2015-04-24 2016-10-27 Grünenthal GmbH Combinaison inviolable de doses fixes permettant la libération rapide de deux médicaments à partir de particules différentes
WO2016170093A1 (fr) 2015-04-24 2016-10-27 Grünenthal GmbH Combinaison à dose fixe inaltérable présentant une libération rapide de deux médicaments de particules et d'une matrice
WO2017040607A1 (fr) 2015-08-31 2017-03-09 Acura Pharmaceuticals, Inc. Procédés et compositions pour la libération auto-régulée d'un ingrédient pharmaceutique actif
US20170296476A1 (en) 2016-04-15 2017-10-19 Grünenthal GmbH Modified release abuse deterrent dosage forms
WO2018007507A1 (fr) 2016-07-06 2018-01-11 Grünenthal GmbH Forme posologique pharmaceutique renforcée
US20180028670A1 (en) 2016-08-01 2018-02-01 Grünenthal GmbH Tamper resistant dosage form comprising an anionic polysaccharide
AU2017310006A1 (en) 2016-08-12 2019-01-31 Grünenthal GmbH Tamper resistant formulation of ephedrine and its derivatives
CN106926430A (zh) * 2017-04-28 2017-07-07 广东轻工职业技术学院 转速比为2.5的同向自洁型多螺杆挤出机及挤出方法
DE102017111275B4 (de) * 2017-05-23 2020-02-13 Gneuss Gmbh Extruderschnecke für einen Mehrschneckenextruder für die Kunststoffextrusion und Mehrschneckenextruder
RU2690491C2 (ru) * 2017-07-19 2019-06-04 Общество с ограниченной ответственностью "МБА-групп" Твердофазный линезолидсодержащий препарат
CN111630026A (zh) * 2017-10-10 2020-09-04 道格拉斯制药有限公司 缓释药物制剂和治疗方法
US10869838B2 (en) 2017-10-10 2020-12-22 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation
US11471415B2 (en) 2017-10-10 2022-10-18 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation and methods of treatment
US10441544B2 (en) 2017-10-10 2019-10-15 Douglas Pharmaceuticals, Ltd. Extended release pharmaceutical formulation
EP3694494A1 (fr) 2017-10-13 2020-08-19 Grünenthal GmbH Formes posologiques à libération modifiée, dissuasives d'abus
TW202002957A (zh) 2018-02-09 2020-01-16 德商歌林達有限公司 包含轉化抑制劑之麻黃素及其衍生物之抗損壞調配物
CA3112030A1 (fr) 2018-09-25 2020-04-02 SpecGx LLC Formes posologiques de capsules a liberation immediate anti-abus
EP3698776A1 (fr) 2019-02-19 2020-08-26 Grünenthal GmbH Forme posologique inviolable à libération immédiate et résistance à l'extraction par solvant
WO2021219577A1 (fr) 2020-04-27 2021-11-04 Grünenthal GmbH Forme posologique comprenant des comprimés extrudés à chaud contenant un copolymère eva et un agent de glissement
WO2021219576A1 (fr) 2020-04-27 2021-11-04 Grünenthal GmbH Forme posologique à particules multiples contenant un copolymère eva et un excipient supplémentaire
CN111657861B (zh) * 2020-06-04 2022-02-25 浙江大学 基于双光子显微镜技术的溶栓药效评价方法

Citations (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987445A (en) * 1958-10-10 1961-06-06 Rohm & Haas Drug composition
US3806603A (en) * 1969-10-13 1974-04-23 W Gaunt Pharmaceutical carriers of plasticized dried milled particles of hydrated cooked rice endosperm
US3865108A (en) * 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US4002173A (en) * 1974-07-23 1977-01-11 International Paper Company Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
US4014965A (en) * 1972-11-24 1977-03-29 The Dow Chemical Company Process for scrapless forming of plastic articles
US4070494A (en) * 1975-07-09 1978-01-24 Bayer Aktiengesellschaft Enteral pharmaceutical compositions
US4070497A (en) * 1971-03-09 1978-01-24 Ppg Industries, Inc. Process of applying and curing a plurality of coatings
US4427681A (en) * 1982-09-16 1984-01-24 Richardson-Vicks, Inc. Thixotropic compositions easily convertible to pourable liquids
US4427778A (en) * 1982-06-29 1984-01-24 Biochem Technology, Inc. Enzymatic preparation of particulate cellulose for tablet making
US4667013A (en) * 1986-05-02 1987-05-19 Union Carbide Corporation Process for alkylene oxide polymerization
US4744976A (en) * 1984-07-23 1988-05-17 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4892778A (en) * 1987-05-27 1990-01-09 Alza Corporation Juxtaposed laminated arrangement
US4992278A (en) * 1987-01-14 1991-02-12 Ciba-Geigy Corporation Therapeutic system for sparingly soluble active ingredients
US4992279A (en) * 1985-07-03 1991-02-12 Kraft General Foods, Inc. Sweetness inhibitor
US5004601A (en) * 1988-10-14 1991-04-02 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US5082668A (en) * 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US5190760A (en) * 1989-07-08 1993-03-02 Coopers Animal Health Limited Solid pharmaceutical composition
US5198226A (en) * 1986-01-30 1993-03-30 Syntex (U.S.A.) Inc. Long acting nicardipine hydrochloride formulation
US5200197A (en) * 1989-11-16 1993-04-06 Alza Corporation Contraceptive pill
US5211892A (en) * 1990-07-20 1993-05-18 L'oreal Process for the compaction of a powder mixture providing an absorbent or partially friable compact product and the product obtained by this process
US5508042A (en) * 1991-11-27 1996-04-16 Euro-Celtigue, S.A. Controlled release oxycodone compositions
US5601842A (en) * 1993-09-03 1997-02-11 Gruenenthal Gmbh Sustained release drug formulation containing a tramadol salt
US5620697A (en) * 1992-12-31 1997-04-15 Orion-Yhtyma Oy Method for preparing matrix-type pharmaceutical compositions through ultrasonic means to accomplish melting
US5707636A (en) * 1994-08-03 1998-01-13 Saitec S.R.L. Apparatus and method for preparing solid forms with controlled release of the active ingredient
US5741519A (en) * 1995-03-21 1998-04-21 Basf Aktiengesellschaft The production of active substance compositions in the form of a solid solution of the active substance in a polymer matrix, and active substance compositions produced by this process
US5866164A (en) * 1996-03-12 1999-02-02 Alza Corporation Composition and dosage form comprising opioid antagonist
US6009690A (en) * 1994-12-23 2000-01-04 Basf Aktiengesellschaft Process and apparatus for the production of divisible tablets
US6228863B1 (en) * 1997-12-22 2001-05-08 Euro-Celtique S.A. Method of preventing abuse of opioid dosage forms
US6235825B1 (en) * 1998-03-05 2001-05-22 Mitsui Chemicals, Inc. Polylactic acid resin composition and film therefrom
US6238697B1 (en) * 1998-12-21 2001-05-29 Pharmalogix, Inc. Methods and formulations for making bupropion hydrochloride tablets using direct compression
EP1152026A1 (fr) * 2000-05-01 2001-11-07 National Starch and Chemical Investment Holding Corporation Polysaccharides pour compression directe
US6340475B2 (en) * 1997-06-06 2002-01-22 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
US20020012701A1 (en) * 2000-06-19 2002-01-31 Karl Kolter Process for producing solid oral dosage forms with sustained release of active ingredient
US6344535B1 (en) * 1997-12-03 2002-02-05 Bayer Aktiengesellschaft Polyether ester amides
US20020015730A1 (en) * 2000-03-09 2002-02-07 Torsten Hoffmann Pharmaceutical formulations and method for making
US6348469B1 (en) * 1995-04-14 2002-02-19 Pharma Pass Llc Solid compositions containing glipizide and polyethylene oxide
US6355656B1 (en) * 1995-12-04 2002-03-12 Celgene Corporation Phenidate drug formulations having diminished abuse potential
US6375963B1 (en) * 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof
US6375957B1 (en) * 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US20030008409A1 (en) * 2001-07-03 2003-01-09 Spearman Steven R. Method and apparatus for determining sunlight exposure
US20030017532A1 (en) * 1998-09-22 2003-01-23 Sanjoy Biswas ndp
US20030015814A1 (en) * 1999-12-15 2003-01-23 Harald Krull Device and method for producing solid shape containing an active ingredient
US20030021546A1 (en) * 2001-07-30 2003-01-30 Tsuguo Sato Optical fiber ferrule assembly and optical module and optical connector using the same
US20030031546A1 (en) * 2001-08-08 2003-02-13 Toshiyuki Araki Lift apparatus
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20030044464A1 (en) * 1999-08-31 2003-03-06 Iris Ziegler Sustained-release, oral pharamaceutical forms of formulation
US6534089B1 (en) * 1996-04-05 2003-03-18 Alza Corporation Uniform drug delivery therapy
US20030064099A1 (en) * 2001-08-06 2003-04-03 Benjamin Oshlack Pharmaceutical formulation containing bittering agent
US20030068375A1 (en) * 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US20030069263A1 (en) * 2001-07-18 2003-04-10 Breder Christopher D. Pharmaceutical combinations of oxycodone and naloxone
US6547997B1 (en) * 1997-11-28 2003-04-15 Abbot Laboratories Method for producing solvent-free noncrystalline biologically active substances
US6547977B1 (en) * 1998-04-02 2003-04-15 Applied Materials Inc. Method for etching low k dielectrics
US6562375B1 (en) * 1999-08-04 2003-05-13 Yamanouchi Pharmaceuticals, Co., Ltd. Stable pharmaceutical composition for oral use
US20030091630A1 (en) * 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US20040010000A1 (en) * 2002-04-29 2004-01-15 Ayer Atul D. Methods and dosage forms for controlled delivery of oxycodone
US20040011806A1 (en) * 2002-07-17 2004-01-22 Luciano Packaging Technologies, Inc. Tablet filler device with star wheel
US6699503B1 (en) * 1992-09-18 2004-03-02 Yamanuchi Pharmaceutical Co., Ltd. Hydrogel-forming sustained-release preparation
US20040052844A1 (en) * 2002-09-16 2004-03-18 Fang-Hsiung Hsiao Time-controlled, sustained release, pharmaceutical composition containing water-soluble resins
US6723340B2 (en) * 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
US20040081694A1 (en) * 1994-11-04 2004-04-29 Euro-Celtique, S.A. Melt-extruded orally administrable opioid formulations
US6733783B2 (en) * 2000-10-30 2004-05-11 Euro-Celtique S.A. Controlled release hydrocodone formulations
US20040091528A1 (en) * 2002-11-12 2004-05-13 Yamanouchi Pharma Technologies, Inc. Soluble drug extended release system
US20050015730A1 (en) * 2003-07-14 2005-01-20 Srimanth Gunturi Systems, methods and computer program products for identifying tab order sequence of graphically represented elements
US20050031546A1 (en) * 2003-08-06 2005-02-10 Johannes Bartholomaus Abuse-proffed dosage form
US20050058706A1 (en) * 2001-10-24 2005-03-17 Grunenthal Gmbh Delayed release pharmaceutical composition containing 3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol
US20050063214A1 (en) * 2003-09-22 2005-03-24 Daisaburo Takashima Semiconductor integrated circuit device
US20050089475A1 (en) * 2001-08-06 2005-04-28 Thomas Gruber Pharmaceutical formulation containing dye
US20050095291A1 (en) * 2000-02-08 2005-05-05 Benjamin Oshlack Tamper-resistant oral opioid agonist formulations
US20050106249A1 (en) * 2002-04-29 2005-05-19 Stephen Hwang Once-a-day, oral, controlled-release, oxycodone dosage forms
US20060002859A1 (en) * 2004-07-01 2006-01-05 Elisabeth Arkenau Process for production of an abuse-proofed solid dosage form
US20060002860A1 (en) * 2004-07-01 2006-01-05 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060039864A1 (en) * 2004-07-01 2006-02-23 Johannes Bartholomaus Abuse-proofed oral dosage form
US7157103B2 (en) * 2001-08-06 2007-01-02 Euro-Celtique S.A. Pharmaceutical formulation containing irritant
US20070003616A1 (en) * 2003-12-24 2007-01-04 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US20070020335A1 (en) * 2005-07-07 2007-01-25 Farnam Companies, Inc. Sustained release pharmaceutical compositions for highly water soluble drugs
US7176251B1 (en) * 1996-11-05 2007-02-13 Novamont S.P.A. Biodegradable polymeric compositions comprising starch and a thermoplastic polymer
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
US20070065365A1 (en) * 2004-04-21 2007-03-22 Gruenenthal Gmbh Abuse-resistant transdermal system
US7201920B2 (en) * 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US20070092573A1 (en) * 2005-10-24 2007-04-26 Laxminarayan Joshi Stabilized extended release pharmaceutical compositions comprising a beta-adrenoreceptor antagonist
US20080069871A1 (en) * 2006-07-21 2008-03-20 Vaughn Jason M Hydrophobic abuse deterrent delivery system
US20080081290A1 (en) * 2006-09-25 2008-04-03 Fujifilm Corporation Resist composition, resin for use in the resist composition, compound for use in the synthesis of the resin, and pattern-forming method using the resist composition
US20090004267A1 (en) * 2007-03-07 2009-01-01 Gruenenthal Gmbh Dosage Form with Impeded Abuse
US20100015223A1 (en) * 2006-03-01 2010-01-21 Ethypharm Sa Crush-Resistant Tablets Intended to Prevent Accidental Misuse and Unlawful Diversion
US7674800B2 (en) * 2004-03-30 2010-03-09 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 PPM 14-hydroxycodeinone
US20100092553A1 (en) * 2005-11-10 2010-04-15 Flamel Technologies anti-misuse microparticulate oral pharmaceutical form
US20110020454A1 (en) * 2008-03-13 2011-01-27 Rosa Lamarca Casado Novel dosage and formulation
US20110082214A1 (en) * 2008-05-09 2011-04-07 Gruenthal Gmbh Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20120034171A1 (en) * 2003-08-06 2012-02-09 Gruenenthal Gmbh Abuse-proofed dosage form
US8114838B2 (en) * 2000-05-23 2012-02-14 Acorda Therapeutics, Inc. Methods for protecting dopaminergic neurons from stress and promoting proliferation and differentiation of oligodendrocyte progenitors by NRG-2
US20120065220A1 (en) * 2010-09-02 2012-03-15 Grunenthal Gmbh Tamper Resistant Dosage Form Comprising An Anionic Polymer

Family Cites Families (490)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA722109A (en) 1965-11-23 W. Mock Henry Extrusion of ethylene oxide polymers
US2524855A (en) 1950-10-10 Process for the manufacture of
US1674790A (en) 1924-11-05 1928-06-26 John M Hopwood Separator and method of separating extraneous material from fluids
US2806033A (en) 1955-08-03 1957-09-10 Lewenstein Morphine derivative
US3370035A (en) 1961-06-23 1968-02-20 Takeda Chemical Industries Ltd Stabilization of polyalkylene oxide
US3332950A (en) 1963-03-23 1967-07-25 Endo Lab 14-hydroxydihydronormorphinone derivatives
GB1147210A (en) 1965-06-30 1969-04-02 Eastman Kodak Co Improvements in or relating to vitamins
US3652589A (en) * 1967-07-27 1972-03-28 Gruenenthal Chemie 1-(m-substituted phenyl)-2-aminomethyl cyclohexanols
CH503520A (de) 1969-12-15 1971-02-28 Inventa Ag Verfahren zum Vermahlen von körnigen Materialien, insbesondere von Kunststoffgranulaten, bei tiefen Temperaturen
US3966747A (en) 1972-10-26 1976-06-29 Bristol-Myers Company 9-Hydroxy-6,7-benzomorphans
US3980766A (en) 1973-08-13 1976-09-14 West Laboratories, Inc. Orally administered drug composition for therapy in the treatment of narcotic drug addiction
US3941865A (en) 1973-12-10 1976-03-02 Union Carbide Corporation Extrusion of ethylene oxide resins
JPS603286B2 (ja) 1977-03-03 1985-01-26 日本化薬株式会社 定速溶出性製剤
US4207893A (en) 1977-08-29 1980-06-17 Alza Corporation Device using hydrophilic polymer for delivering drug to biological environment
US4175119A (en) 1978-01-11 1979-11-20 Porter Garry L Composition and method to prevent accidental and intentional overdosage with psychoactive drugs
CA1104832A (fr) 1978-03-13 1981-07-14 John S. Rendall Procede pour l'extraction d'acide phosphorique et de metaux a partir de roches aux phosphates
DE2822324C3 (de) * 1978-05-22 1981-02-26 Basf Ag, 6700 Ludwigshafen Herstellung von Vitamin-E-Trockenpulver
US4211681A (en) 1978-08-16 1980-07-08 Union Carbide Corporation Poly(ethylene oxide) compositions
US4200704A (en) * 1978-09-28 1980-04-29 Union Carbide Corporation Controlled degradation of poly(ethylene oxide)
NO793297L (no) 1978-10-19 1980-04-22 Mallinckrodt Inc Fremgangsmaate til fremstilling av oksymorfon
US4258027A (en) 1979-03-26 1981-03-24 Mead Johnson & Company Multi-fractionable tablet structure
US4215104A (en) 1979-03-26 1980-07-29 Mead Johnson & Company Multi-fractionable tablet structure
CA1146866A (fr) 1979-07-05 1983-05-24 Yamanouchi Pharmaceutical Co. Ltd. Procede de production d'un compose pharmaceutique a liberation continue sous forme solide
US4353887A (en) 1979-08-16 1982-10-12 Ciba-Geigy Corporation Divisible tablet having controlled and delayed release of the active substance
CH648754A5 (en) 1979-08-16 1985-04-15 Ciba Geigy Ag Pharmaceutical slow release tablet
US4457933A (en) 1980-01-24 1984-07-03 Bristol-Myers Company Prevention of analgesic abuse
JPS56169622A (en) 1980-06-03 1981-12-26 Kissei Pharmaceut Co Ltd Method of making solid preparation from oily substance
DE3024416C2 (de) 1980-06-28 1982-04-15 Gödecke AG, 1000 Berlin Verfahren zur Herstellung von Arzneimitteln mit retardierter Wirkstoff-Freisetzung
US4473640A (en) 1982-06-03 1984-09-25 Combie Joan D Detection of morphine and its analogues using enzymatic hydrolysis
US4462941A (en) 1982-06-10 1984-07-31 The Regents Of The University Of California Dynorphin amide analogs
US4485211A (en) 1982-09-15 1984-11-27 The B. F. Goodrich Company Poly(glycidyl ether)block copolymers and process for their preparation
US4529583A (en) 1983-03-07 1985-07-16 Clear Lake Development Group Composition and method of immobilizing emetics and method of treating human beings with emetics
US4603143A (en) 1983-05-02 1986-07-29 Basf Corporation Free-flowing, high density, fat soluble vitamin powders with improved stability
US4612008A (en) 1983-05-11 1986-09-16 Alza Corporation Osmotic device with dual thermodynamic activity
US4765989A (en) 1983-05-11 1988-08-23 Alza Corporation Osmotic device for administering certain drugs
US4783337A (en) 1983-05-11 1988-11-08 Alza Corporation Osmotic system comprising plurality of members for dispensing drug
US4599342A (en) 1984-01-16 1986-07-08 The Procter & Gamble Company Pharmaceutical products providing enhanced analgesia
AU592065B2 (en) 1984-10-09 1990-01-04 Dow Chemical Company, The Sustained release dosage form based on highly plasticized cellulose ether gels
GB8507779D0 (en) 1985-03-26 1985-05-01 Fujisawa Pharmaceutical Co Drug carrier
EP0228417B1 (fr) 1985-06-24 1990-08-29 Ici Australia Limited Capsules ingerables
DE3689195T2 (de) 1985-06-28 1994-05-05 Carrington Lab Inc Verfahren zur Herstellung von Aloe-Erzeugnissen, Erzeugnisse und Zusammensetzungen dazu.
US4851521A (en) 1985-07-08 1989-07-25 Fidia, S.P.A. Esters of hyaluronic acid
DE3689650T2 (de) 1985-12-17 1994-05-26 United States Surgical Corp Bioresorbierbare Polymere von hohem Molekulargewicht und Implantate davon.
US5229164A (en) 1985-12-19 1993-07-20 Capsoid Pharma Gmbh Process for producing individually dosed administration forms
US4711894A (en) 1986-01-16 1987-12-08 Henkel Corporation Stabilized tocopherol in dry, particulate, free-flowing form
US4940556A (en) 1986-01-30 1990-07-10 Syntex (U.S.A.) Inc. Method of preparing long acting formulation
US4764378A (en) 1986-02-10 1988-08-16 Zetachron, Inc. Buccal drug dosage form
JPS62232433A (ja) 1986-03-31 1987-10-12 ユニオン、カ−バイド、コ−ポレ−シヨン アルキレンオキシド重合用触媒の製造方法
DE3612211A1 (de) 1986-04-11 1987-10-15 Basf Ag Kontinuierliches verfahren zum tablettieren
USRE33093E (en) 1986-06-16 1989-10-17 Johnson & Johnson Consumer Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
US4713243A (en) 1986-06-16 1987-12-15 Johnson & Johnson Products, Inc. Bioadhesive extruded film for intra-oral drug delivery and process
USRE34990E (en) 1986-08-07 1995-07-04 Ciba-Geigy Corporation Oral therapeutic system having systemic action
CA1335748C (fr) 1986-09-25 1995-05-30 Jeffrey Lawrence Finnan Gelatines reticulees
US5227157A (en) 1986-10-14 1993-07-13 Board Of Regents, The University Of Texas System Delivery of therapeutic agents
WO1988003408A1 (fr) 1986-11-10 1988-05-19 Biopure Corporation Succedane du sang semi-synthetique extra pur
US4892889A (en) * 1986-11-18 1990-01-09 Basf Corporation Process for making a spray-dried, directly-compressible vitamin powder comprising unhydrolyzed gelatin
JPH0831303B2 (ja) 1986-12-01 1996-03-27 オムロン株式会社 チツプ型ヒユ−ズ
US5051261A (en) 1987-11-24 1991-09-24 Fmc Corporation Method for preparing a solid sustained release form of a functionally active composition
DE3877971T2 (de) 1987-12-17 1993-06-09 Upjohn Co Dreifach gekerbte arzneimitteltablette.
DE3812567A1 (de) 1988-04-15 1989-10-26 Basf Ag Verfahren zur herstellung pharmazeutischer mischungen
US4954346A (en) 1988-06-08 1990-09-04 Ciba-Geigy Corporation Orally administrable nifedipine solution in a solid light resistant dosage form
US4960814A (en) 1988-06-13 1990-10-02 Eastman Kodak Company Water-dispersible polymeric compositions
US5350741A (en) 1988-07-30 1994-09-27 Kanji Takada Enteric formulations of physiologically active peptides and proteins
JPH0249719A (ja) 1988-08-11 1990-02-20 Dai Ichi Kogyo Seiyaku Co Ltd 易水分散・可溶性能を有する油溶性ビタミン粉末
GB8820327D0 (en) * 1988-08-26 1988-09-28 May & Baker Ltd New compositions of matter
DE3830353A1 (de) 1988-09-07 1990-03-15 Basf Ag Verfahren zur kontinuierlichen herstellung von festen pharmazeutischen formen
US5139790A (en) 1988-10-14 1992-08-18 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US4957668A (en) 1988-12-07 1990-09-18 General Motors Corporation Ultrasonic compacting and bonding particles
US5169645A (en) 1989-10-31 1992-12-08 Duquesne University Of The Holy Ghost Directly compressible granules having improved flow properties
GB8926612D0 (en) 1989-11-24 1990-01-17 Erba Farmitalia Pharmaceutical compositions
EP0449775A3 (en) 1990-03-29 1992-09-02 Ciba-Geigy Ag Polyether-polyester block copolymers and their use as dispersing agents
SU1759445A1 (ru) 1990-06-15 1992-09-07 Ленинградский Технологический Институт Им.Ленсовета Способ получени капсулированных гидрофобных веществ
EP0477135A1 (fr) 1990-09-07 1992-03-25 Warner-Lambert Company Microcapsules enduites sphéroidales mâchables et méthodes de leur préparation
US5126151A (en) 1991-01-24 1992-06-30 Warner-Lambert Company Encapsulation matrix
US5273758A (en) 1991-03-18 1993-12-28 Sandoz Ltd. Directly compressible polyethylene oxide vehicle for preparing therapeutic dosage forms
US5149538A (en) 1991-06-14 1992-09-22 Warner-Lambert Company Misuse-resistive transdermal opioid dosage form
JP3073054B2 (ja) 1991-07-11 2000-08-07 住友精化株式会社 アルキレンオキシド重合体の製造方法
WO1993004670A1 (fr) 1991-08-30 1993-03-18 Showa Yakuhin Kako Co., Ltd. Composition de gel sec
AU2670292A (en) * 1991-10-04 1993-05-03 Olin Corporation Fungicide tablet
US5593694A (en) * 1991-10-04 1997-01-14 Yoshitomi Pharmaceutical Industries, Ltd. Sustained release tablet
DE4138513A1 (de) 1991-11-23 1993-05-27 Basf Ag Feste pharmazeutische retardform
ATE140620T1 (de) 1991-12-05 1996-08-15 Mallinckrodt Veterinary Inc Glasartige kohlenhydratenmatrize zur verabreichung von heilmitteln mit verzögerter wirkstoffabgabe
DE69222182T2 (de) 1991-12-18 1998-02-26 Warner Lambert Co Verfahren für die herstellung einer festen dispersion
US5200194A (en) 1991-12-18 1993-04-06 Alza Corporation Oral osmotic device
US5225417A (en) 1992-01-21 1993-07-06 G. D. Searle & Co. Opioid agonist compounds
IL105553A (en) 1992-05-06 1998-01-04 Janssen Pharmaceutica Inc Solid dosage forms consisting of a porous network of matrix that releases a substance that dissipates rapidly in water
EP0641195B1 (fr) 1992-05-22 1996-04-10 Gödecke Aktiengesellschaft Procede de preparation de compositions medicamenteuses a effet retarde
GB9217295D0 (en) 1992-08-14 1992-09-30 Wellcome Found Controlled released tablets
DE4227385A1 (de) 1992-08-19 1994-02-24 Kali Chemie Pharma Gmbh Pankreatinmikropellets
DE4229085C2 (de) 1992-09-01 1996-07-11 Boehringer Mannheim Gmbh Längliche, teilbare Tablette
US5472943A (en) 1992-09-21 1995-12-05 Albert Einstein College Of Medicine Of Yeshiva University, Method of simultaneously enhancing analgesic potency and attenuating dependence liability caused by morphine and other opioid agonists
FI101039B (fi) 1992-10-09 1998-04-15 Eeva Kristoffersson Menetelmä lääkepellettien valmistamiseksi
AU679937B2 (en) 1992-11-18 1997-07-17 Johnson & Johnson Consumer Products, Inc. Extrudable compositions for topical or transdermal drug delivery
WO1994014421A2 (fr) 1992-12-23 1994-07-07 Saitec S.R.L. Procede de preparation de produits pharmaceutiques a liberation lente et produits ainsi obtenus
US6071970A (en) 1993-02-08 2000-06-06 Nps Pharmaceuticals, Inc. Compounds active at a novel site on receptor-operated calcium channels useful for treatment of neurological disorders and diseases
US5914132A (en) 1993-02-26 1999-06-22 The Procter & Gamble Company Pharmaceutical dosage form with multiple enteric polymer coatings for colonic delivery
DE4309528C2 (de) 1993-03-24 1998-05-20 Doxa Gmbh Folie oder Folienschlauch aus Casein, Verfahren zu deren Herstellung und deren Verwendung
NZ260408A (en) 1993-05-10 1996-05-28 Euro Celtique Sa Controlled release preparation comprising tramadol
IL109944A (en) 1993-07-01 1998-12-06 Euro Celtique Sa Continuous release dosage form containing morphine and a method of preparing such sustained release unit dosage forms
HU218673B (hu) 1993-10-07 2000-10-28 Euroceltique S.A. Opioid analgetikumot tartalmazó elnyújtott hatóanyag-felszabadítású orális gyógyszerkészítmény és eljárás előállítására
KR100354702B1 (ko) 1993-11-23 2002-12-28 유로-셀티크 소시에떼 아노뉨 약학조성물의제조방법및서방형조성물
EP0654263B1 (fr) 1993-11-23 2002-01-23 Euro-Celtique S.A. Procédé pour la préparation d'une composition pharmaceutique à libération prolongée
AU1266895A (en) 1993-12-20 1995-07-10 Procter & Gamble Company, The Process for making laxatives containing dioctyl sulfosuccinate
IL112106A0 (en) 1993-12-22 1995-03-15 Ergo Science Inc Accelerated release composition containing bromocriptine
GB9401894D0 (en) 1994-02-01 1994-03-30 Rhone Poulenc Rorer Ltd New compositions of matter
DK0744941T3 (da) 1994-02-16 2003-09-29 Abbott Lab Fremgangsmåde til fremstilling af findelte farmaceutiske formuleringer
SE9503924D0 (sv) 1995-08-18 1995-11-07 Astra Ab Novel opioid peptides
US5458887A (en) 1994-03-02 1995-10-17 Andrx Pharmaceuticals, Inc. Controlled release tablet formulation
DE4413350A1 (de) 1994-04-18 1995-10-19 Basf Ag Retard-Matrixpellets und Verfahren zu ihrer Herstellung
PL179910B1 (pl) 1994-05-06 2000-11-30 Pfizer Postac dawkowania o kontrolowanym uwalnianiu zawierajaca azytromycyne PL PL PL PL PL PL PL PL
AT403988B (de) 1994-05-18 1998-07-27 Lannacher Heilmittel Festes orales retardpräparat
US5460826A (en) 1994-06-27 1995-10-24 Alza Corporation Morphine therapy
DE4426245A1 (de) 1994-07-23 1996-02-22 Gruenenthal Gmbh 1-Phenyl-3-dimethylamino-propanverbindungen mit pharmakologischer Wirkung
JP3285452B2 (ja) 1994-08-11 2002-05-27 サンスター株式会社 歯磨組成物
US5837790A (en) 1994-10-24 1998-11-17 Amcol International Corporation Precipitation polymerization process for producing an oil adsorbent polymer capable of entrapping solid particles and liquids and the product thereof
AUPM897594A0 (en) 1994-10-25 1994-11-17 Daratech Pty Ltd Controlled release container
DE19504832A1 (de) 1995-02-14 1996-08-22 Basf Ag Feste Wirkstoff-Zubereitungen
US5945125A (en) 1995-02-28 1999-08-31 Temple University Controlled release tablet
US6117453A (en) 1995-04-14 2000-09-12 Pharma Pass Solid compositions containing polyethylene oxide and an active ingredient
US5900425A (en) 1995-05-02 1999-05-04 Bayer Aktiengesellschaft Pharmaceutical preparations having controlled release of active compound and processes for their preparation
DE19522899C1 (de) 1995-06-23 1996-12-19 Hexal Pharmaforschung Gmbh Verfahren zum kontinuierlichen Ersintern eines Granulats
US5759583A (en) 1995-08-30 1998-06-02 Syntex (U.S.A.) Inc. Sustained release poly (lactic/glycolic) matrices
US6063405A (en) 1995-09-29 2000-05-16 L.A.M. Pharmaceuticals, Llc Sustained release delivery system
US5811126A (en) 1995-10-02 1998-09-22 Euro-Celtique, S.A. Controlled release matrix for pharmaceuticals
DE19539361A1 (de) 1995-10-23 1997-04-24 Basf Ag Verfahren zur Herstellung von mehrschichtigen, festen Arzneiformen zur oralen oder rektalen Verabreichung
US5908850A (en) 1995-12-04 1999-06-01 Celgene Corporation Method of treating attention deficit disorders with d-threo methylphenidate
DE19547766A1 (de) 1995-12-20 1997-06-26 Gruenenthal Gmbh 1-Phenyl-2-dimethylaminomethyl-cyclohexan-1-ol-verbindungen als pharmazeutische Wirkstoffe
US6461644B1 (en) 1996-03-25 2002-10-08 Richard R. Jackson Anesthetizing plastics, drug delivery plastics, and related medical products, systems and methods
US20020114838A1 (en) 1996-04-05 2002-08-22 Ayer Atul D. Uniform drug delivery therapy
AU713277B2 (en) 1996-04-05 1999-11-25 Takeda Pharmaceutical Company Limited Pharmaceutical combination containing a compound having angiotensin II and antagonistic activity
US5817343A (en) 1996-05-14 1998-10-06 Alkermes, Inc. Method for fabricating polymer-based controlled-release devices
EP0952824B1 (fr) 1996-06-06 2004-09-29 Bifodan A/S Revetement gastro-resistant comprenant de l'acide alginique pour preparation a administrer par voie orale
DK1014941T3 (da) 1996-06-26 2009-07-27 Univ Texas Ekstruderbar farmaceutisk hot-melt-formulering
IL123505A (en) 1996-07-08 2004-12-15 Penwest Pharmaceuticals Compan Sustained release matrix for high-dose insoluble drugs
DE19629753A1 (de) 1996-07-23 1998-01-29 Basf Ag Verfahren zur Herstellung von festen Arzneiformen
NL1003684C2 (nl) 1996-07-25 1998-01-28 Weterings B V H Inrichting voor het afgeven van een vloeistof.
DE19630236A1 (de) 1996-07-26 1998-01-29 Wolff Walsrode Ag Biaxial gereckte, biologisch abbaubare und kompostierbare Wursthülle
BE1010353A5 (fr) 1996-08-14 1998-06-02 Boss Pharmaceuticals Ag Procede pour la fabrication de produits pharmaceutiques, dispositif pour un tel procede et produits pharmaceutiques ainsi obtenus.
EP0826693A1 (fr) 1996-09-03 1998-03-04 Bayer Ag Procédé de préparation de phénolates de phosphonium
US5991799A (en) 1996-12-20 1999-11-23 Liberate Technologies Information retrieval system using an internet multiplexer to focus user selection
DE19705538C1 (de) 1997-02-14 1998-08-27 Goedecke Ag Verfahren zur Trennung von Wirkstoffen in festen pharmazeutischen Zubereitungen
US5948787A (en) 1997-02-28 1999-09-07 Alza Corporation Compositions containing opiate analgesics
DE19710009A1 (de) 1997-03-12 1998-09-24 Knoll Ag Mehrphasige wirkstoffhaltige Zubereitungsformen
DE19710213A1 (de) 1997-03-12 1998-09-17 Basf Ag Verfahren zur Herstellung von festen Kombinationsarzneiformen
DE19710008A1 (de) 1997-03-12 1998-09-17 Basf Ag Feste, mindestens zweiphasige Zubereitungsformen eines Opioid-Analgeticums mit verzögerter Freisetzung
US6139770A (en) 1997-05-16 2000-10-31 Chevron Chemical Company Llc Photoinitiators and oxygen scavenging compositions
DE19721467A1 (de) 1997-05-22 1998-11-26 Basf Ag Verfahren zur Herstellung kleinteiliger Zubereitungen biologisch aktiver Stoffe
US6635280B2 (en) 1997-06-06 2003-10-21 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
WO1999001111A1 (fr) 1997-07-02 1999-01-14 Euro-Celtique, S.A. Formulations de tramadol stabilisees a liberation prolongee
IE970588A1 (en) 1997-08-01 2000-08-23 Elan Corp Plc Controlled release pharmaceutical compositions containing tiagabine
EP1027305A1 (fr) 1997-09-10 2000-08-16 AlliedSignal Inc. Moulage par injection de materiaux structurels a base de zircone par procede aqueux
US6009390A (en) 1997-09-11 1999-12-28 Lucent Technologies Inc. Technique for selective use of Gaussian kernels and mixture component weights of tied-mixture hidden Markov models for speech recognition
DE19753534A1 (de) 1997-12-03 1999-06-10 Bayer Ag Schnell kristallisierende, biologisch abbaubare Polyesteramide
DE19800698A1 (de) 1998-01-10 1999-07-15 Bayer Ag Biologisch abbaubare Polyesteramide mit blockartig aufgebauten Polyester- und Polyamid-Segmenten
DE19800689C1 (de) 1998-01-10 1999-07-15 Deloro Stellite Gmbh Formkörper aus einem verschleißfesten Werkstoff
US6251430B1 (en) 1998-02-04 2001-06-26 Guohua Zhang Water insoluble polymer based sustained release formulation
EP1045885A1 (fr) 1998-02-06 2000-10-25 Union Carbide Chemicals & Plastics Technology Corporation Compositions polymeres d'oxyde d'alkylene
US6245357B1 (en) * 1998-03-06 2001-06-12 Alza Corporation Extended release dosage form
US6090411A (en) 1998-03-09 2000-07-18 Temple University Monolithic tablet for controlled drug release
US6110500A (en) 1998-03-25 2000-08-29 Temple University Coated tablet with long term parabolic and zero-order release kinetics
ATE267589T1 (de) 1998-04-03 2004-06-15 Egalet As Zusammensetzung mit kontrollierter wirkstoff- freisetzung
US5962488A (en) 1998-04-08 1999-10-05 Roberts Laboratories, Inc. Stable pharmaceutical formulations for treating internal bowel syndrome containing isoxazole derivatives
DE19822979A1 (de) 1998-05-25 1999-12-02 Kalle Nalo Gmbh & Co Kg Folie mit Stärke oder Stärkederivaten und Polyesterurethanen sowie Verfahren zu ihrer Herstellung
US6333087B1 (en) 1998-08-27 2001-12-25 Chevron Chemical Company Llc Oxygen scavenging packaging
DE19841244A1 (de) 1998-09-09 2000-03-16 Knoll Ag Verfahren und Vorrichtung zum Herstellen von Tabletten
GT199900148A (es) 1998-09-10 2001-02-28 Desnaturalizantes para las sales aminas simpaticomimeticas.
WO2000023073A1 (fr) 1998-10-20 2000-04-27 Korea Institute Of Science And Technology Flavonoides utilises comme agents augmentant la teneur en lipoproteines de haute densite du plasma
US6322819B1 (en) 1998-10-21 2001-11-27 Shire Laboratories, Inc. Oral pulsed dose drug delivery system
US20060240105A1 (en) 1998-11-02 2006-10-26 Elan Corporation, Plc Multiparticulate modified release composition
ES2141688B1 (es) 1998-11-06 2001-02-01 Vita Invest Sa Nuevos esteres derivados de compuestos fenil-ciclohexil sustituidos.
DE19855440A1 (de) 1998-12-01 2000-06-08 Basf Ag Verfahren zum Herstellen fester Darreichungsformen mittels Schmelzextrusion
DE19856147A1 (de) 1998-12-04 2000-06-08 Knoll Ag Teilbare feste Dosierungsformen und Verfahren zu ihrer Herstellung
EP1005863A1 (fr) 1998-12-04 2000-06-07 Synthelabo Formes galeniques a liberation controlee contenant un hypnotique a activite courte ou un sel de ce compose
US6419960B1 (en) 1998-12-17 2002-07-16 Euro-Celtique S.A. Controlled release formulations having rapid onset and rapid decline of effective plasma drug concentrations
AU3469100A (en) 1999-01-05 2000-07-24 Copley Pharmaceutical Inc. Sustained release formulation with reduced moisture sensitivity
EP1070504A4 (fr) 1999-02-04 2004-03-10 Nichimo Kk Substances permettant d'eviter la survenue de l'arteriosclerose, substances immunostimulantes, vertebres nourris a l'aide ces substances et oeufs de ces vertebres
US7374779B2 (en) * 1999-02-26 2008-05-20 Lipocine, Inc. Pharmaceutical formulations and systems for improved absorption and multistage release of active agents
US6384020B1 (en) 1999-07-14 2002-05-07 Shire Laboratories, Inc. Rapid immediate release oral dosage form
US20030118641A1 (en) * 2000-07-27 2003-06-26 Roxane Laboratories, Inc. Abuse-resistant sustained-release opioid formulation
JP2003522127A (ja) 1999-07-29 2003-07-22 ロクセニ ラボラトリーズ インコーポレイテッド オピオイド徐放性製剤
MXPA02001267A (es) 1999-08-04 2002-08-12 Yamanouchi Pharma Co Ltd Composicion farmaceutica estable para uso oral.
KR100345214B1 (ko) 1999-08-17 2002-07-25 이강춘 생체적합성 고분자가 수식된 펩타이드의 비점막 전달
IL148411A0 (en) 1999-08-31 2002-09-12 Gruenenthal Chemie Delayed-action form of administration containing tramadol saccharinate
DE19940740A1 (de) 1999-08-31 2001-03-01 Gruenenthal Gmbh Pharmazeutische Salze
DE19949740C2 (de) 1999-10-15 2002-01-10 Harting Kgaa Kontaktierungseinrichtung
ES2160534B1 (es) 1999-12-30 2002-04-16 Vita Invest Sa Nuevos esteres derivados de (rr,ss)-2-hidroxibenzoato de 3-(2-dimetilaminometil-1-hidroxiciclohexil) fenilo.
US6680070B1 (en) 2000-01-18 2004-01-20 Albemarle Corporation Particulate blends and compacted products formed therefrom, and the preparation thereof
DE10015479A1 (de) 2000-03-29 2001-10-11 Basf Ag Feste orale Darreichungsformen mit retardierter Wirkstofffreisetzung und hoher mechanischer Stabilität
US8012504B2 (en) 2000-04-28 2011-09-06 Reckitt Benckiser Inc. Sustained release of guaifenesin combination drugs
US6419954B1 (en) 2000-05-19 2002-07-16 Yamanouchi Pharmaceutical Co., Ltd. Tablets and methods for modified release of hydrophilic and other active agents
US6488962B1 (en) 2000-06-20 2002-12-03 Depomed, Inc. Tablet shapes to enhance gastric retention of swellable controlled-release oral dosage forms
US6607748B1 (en) 2000-06-29 2003-08-19 Vincent Lenaerts Cross-linked high amylose starch for use in controlled-release pharmaceutical formulations and processes for its manufacture
DE10036400A1 (de) 2000-07-26 2002-06-06 Mitsubishi Polyester Film Gmbh Weiße, biaxial orientierte Polyesterfolie
US6642205B2 (en) 2000-09-25 2003-11-04 Pro-Pharmaceuticals, Inc. Methods and compositions for reducing side effects in chemotherapeutic treatments
EP1322189A1 (fr) 2000-09-27 2003-07-02 Danisco A/S Agent anti-microbien
AU2001294902A1 (en) 2000-09-28 2002-04-08 The Dow Chemical Company Polymer composite structures useful for controlled release systems
GB0026137D0 (en) 2000-10-25 2000-12-13 Euro Celtique Sa Transdermal dosage form
US6344215B1 (en) 2000-10-27 2002-02-05 Eurand America, Inc. Methylphenidate modified release formulations
WO2002035991A2 (fr) 2000-10-30 2002-05-10 The Board Of Regents, The University Of Texas System Particules spheriques produites a l'aide d'un procede d'extrusion/spheronisation a chaud
DE10109763A1 (de) 2001-02-28 2002-09-05 Gruenenthal Gmbh Pharmazeutische Salze
JP2002265592A (ja) 2001-03-07 2002-09-18 Sumitomo Seika Chem Co Ltd アルキレンオキシド重合体の製造方法
WO2002071860A1 (fr) 2001-03-13 2002-09-19 L.A. Dreyfus Co. Base de gomme et fabrication de base de gomme en utilisant des ingredients a base de gomme particulaire
JP3967554B2 (ja) 2001-03-15 2007-08-29 株式会社ポッカコーポレーション フラボノイド化合物及びその製造方法
US20020132395A1 (en) 2001-03-16 2002-09-19 International Business Machines Corporation Body contact in SOI devices by electrically weakening the oxide under the body
EP1241110A1 (fr) 2001-03-16 2002-09-18 Pfizer Products Inc. Unité de distribution pour médicaments sensibles à l'oxygène
US6946146B2 (en) 2001-04-18 2005-09-20 Nostrum Pharmaceuticals Inc. Coating for a sustained release pharmaceutical composition
US20020187192A1 (en) 2001-04-30 2002-12-12 Yatindra Joshi Pharmaceutical composition which reduces or eliminates drug abuse potential
ATE328028T1 (de) 2001-05-01 2006-06-15 Union Carbide Chem Plastic Pharmazeutische zusammensetzung enthaltend polyalkylenoxide mit verringerten mengen an ameisensäure und ameisensäurederivaten
UA81224C2 (uk) 2001-05-02 2007-12-25 Euro Celtic S A Дозована форма оксикодону та її застосування
US6852891B2 (en) 2001-05-08 2005-02-08 The Johns Hopkins University Method of inhibiting methaphetamine synthesis
ATE493130T1 (de) 2001-05-11 2011-01-15 Endo Pharmaceuticals Inc Opioid enthaltende arzneiform gegen missbrauch
CA2778114A1 (fr) 2001-05-11 2002-11-21 Endo Pharmaceuticals, Inc. Forme posologique d'opioides empechant la consommation abusive
US6623754B2 (en) 2001-05-21 2003-09-23 Noveon Ip Holdings Corp. Dosage form of N-acetyl cysteine
US7125561B2 (en) 2001-05-22 2006-10-24 Euro-Celtique S.A. Compartmentalized dosage form
US20030064122A1 (en) 2001-05-23 2003-04-03 Endo Pharmaceuticals, Inc. Abuse resistant pharmaceutical composition containing capsaicin
WO2003002100A1 (fr) 2001-06-26 2003-01-09 Farrell John J Systeme d'administration de narcotique inviolable
ATE376832T1 (de) 2001-07-06 2007-11-15 Penwest Pharmaceuticals Co Verzögert freisetzende formulierungen von oxymorphon
AU2002325192B2 (en) * 2001-07-06 2008-05-22 Veloxis Pharmaceuticals, Inc. Controlled agglomeration
CN1268338C (zh) 2001-07-06 2006-08-09 恩德制药公司 用作止痛剂的6-羟基羟吗啡酮的口服给药
US8329216B2 (en) 2001-07-06 2012-12-11 Endo Pharmaceuticals Inc. Oxymorphone controlled release formulations
JP2003020517A (ja) 2001-07-10 2003-01-24 Calp Corp 複合繊維用樹脂組成物
US7332182B2 (en) * 2001-08-06 2008-02-19 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and irritant
US7144587B2 (en) * 2001-08-06 2006-12-05 Euro-Celtique S.A. Pharmaceutical formulation containing opioid agonist, opioid antagonist and bittering agent
US7842307B2 (en) * 2001-08-06 2010-11-30 Purdue Pharma L.P. Pharmaceutical formulation containing opioid agonist, opioid antagonist and gelling agent
MXPA04001206A (es) 2001-08-06 2004-07-08 Euro Celtique Sa Composiciones y metodos para prevenir el abuso de opioides.
US20030157168A1 (en) 2001-08-06 2003-08-21 Christopher Breder Sequestered antagonist formulations
WO2003013479A1 (fr) 2001-08-06 2003-02-20 Euro-Celtique S.A. Compositions et methodes destinees a prevenir l'abus d'opioides
US20030049272A1 (en) 2001-08-30 2003-03-13 Yatindra Joshi Pharmaceutical composition which produces irritation
US6691698B2 (en) 2001-09-14 2004-02-17 Fmc Technologies Inc. Cooking oven having curved heat exchanger
US20030059467A1 (en) 2001-09-14 2003-03-27 Pawan Seth Pharmaceutical composition comprising doxasozin
US20030059397A1 (en) 2001-09-17 2003-03-27 Lyn Hughes Dosage forms
US20030068276A1 (en) * 2001-09-17 2003-04-10 Lyn Hughes Dosage forms
US20030092724A1 (en) 2001-09-18 2003-05-15 Huaihung Kao Combination sustained release-immediate release oral dosage forms with an opioid analgesic and a non-opioid analgesic
DE60224293T2 (de) 2001-09-21 2008-12-11 Egalet A/S Feste dispersionen mit kontrollierter freisetzung von carvedilol
WO2003024430A1 (fr) 2001-09-21 2003-03-27 Egalet A/S Systeme a liberation de polymere de morphine
CA2459976A1 (fr) 2001-09-26 2003-04-03 Penwest Pharmaceuticals Company Formulations d'opioides presentant un potentiel reduit pour des utilisations abusives
WO2003028698A2 (fr) 2001-09-26 2003-04-10 Steffens Klaus-Juergen Procede et dispositif de production de granules comprenant au moins un principe actif pharmaceutique
US6837696B2 (en) 2001-09-28 2005-01-04 Mcneil-Ppc, Inc. Apparatus for manufacturing dosage forms
US20040213848A1 (en) 2001-09-28 2004-10-28 Shun-Por Li Modified release dosage forms
WO2003031546A1 (fr) 2001-10-09 2003-04-17 The Procter & Gamble Company Compositions aqueuses pour le traitement d'une surface
US6592901B2 (en) 2001-10-15 2003-07-15 Hercules Incorporated Highly compressible ethylcellulose for tableting
JP2003125706A (ja) 2001-10-23 2003-05-07 Lion Corp 口中清涼製剤
US20030104052A1 (en) 2001-10-25 2003-06-05 Bret Berner Gastric retentive oral dosage form with restricted drug release in the lower gastrointestinal tract
US20030152622A1 (en) 2001-10-25 2003-08-14 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral diuretic
TWI312285B (en) * 2001-10-25 2009-07-21 Depomed Inc Methods of treatment using a gastric retained gabapentin dosage
CA2409552A1 (fr) 2001-10-25 2003-04-25 Depomed, Inc. Forme posologique orale pouvant etre retenue dans l'estomac dont la liberation est limitee a la partie inferieure du tube digestif
EP1441703B1 (fr) 2001-10-29 2018-01-03 Massachusetts Institute of Technology Forme pharmaceutique à profil de libération d'ordre zero élaborée en impression tridimensionnelle
US20040126428A1 (en) 2001-11-02 2004-07-01 Lyn Hughes Pharmaceutical formulation including a resinate and an aversive agent
CA2464528A1 (fr) 2001-11-02 2003-05-15 Elan Corporation, Plc Composition pharmaceutique
WO2003049689A2 (fr) 2001-12-06 2003-06-19 Nutraceutix, Inc. Composition d'isoflavone a administration orale
FR2833838B1 (fr) 2001-12-21 2005-09-16 Ellipse Pharmaceuticals Procede de fabrication d'un comprime incluant un analgesique de type morphinique et comprime obtenu
AUPS044502A0 (en) 2002-02-11 2002-03-07 Commonwealth Scientific And Industrial Research Organisation Novel catalysts and processes for their preparation
US20040033253A1 (en) 2002-02-19 2004-02-19 Ihor Shevchuk Acyl opioid antagonists
US20030158265A1 (en) 2002-02-20 2003-08-21 Ramachandran Radhakrishnan Orally administrable pharmaceutical formulation comprising pseudoephedrine hydrochloride and process for preparing the same
US20030190343A1 (en) * 2002-03-05 2003-10-09 Pfizer Inc. Palatable pharmaceutical compositions for companion animals
US6572889B1 (en) 2002-03-07 2003-06-03 Noveon Ip Holdings Corp. Controlled release solid dosage carbamazepine formulations
US6753009B2 (en) 2002-03-13 2004-06-22 Mcneil-Ppc, Inc. Soft tablet containing high molecular weight polyethylene oxide
LT2425821T (lt) 2002-04-05 2017-07-25 Euro-Celtique S.A. Farmacinis preparatas, turintis oksikodono ir naloksono
DE10217232B4 (de) 2002-04-18 2004-08-19 Ticona Gmbh Verfahren zur Herstellung gefüllter Granulate aus Polyethylenen hohen bzw. ultrahohen Molekulargewichts
AU2003234159A1 (en) 2002-04-22 2003-11-03 Purdue Research Foundation Hydrogels having enhanced elasticity and mechanical strength properties
US20060073102A1 (en) 2002-05-13 2006-04-06 Huaihung Kao D Abuse-resistant opioid solid dosage form
KR20050034645A (ko) 2002-05-31 2005-04-14 알자 코포레이션 다양한 용량의 옥시코돈을 삼투 전달하기 위한 제형 및조성물
US7776314B2 (en) 2002-06-17 2010-08-17 Grunenthal Gmbh Abuse-proofed dosage system
DE10250083A1 (de) 2002-06-17 2003-12-24 Gruenenthal Gmbh Gegen Missbrauch gesicherte Darreichungsform
US7399488B2 (en) * 2002-07-05 2008-07-15 Collegium Pharmaceutical, Inc. Abuse-deterrent pharmaceutical compositions of opiods and other drugs
AR040680A1 (es) 2002-07-25 2005-04-13 Pharmacia Corp Composicion de tabletas de liberacion sostenida
US7388068B2 (en) 2002-08-21 2008-06-17 Clariant Produkte (Deutschland) Gmbh Copolymers made of alkylene oxides and glycidyl ethers and use thereof as polymerizable emulsifiers
JP2006501234A (ja) 2002-08-21 2006-01-12 フォークス ファーマシューティカルズ リミテッド 錠剤製造における、クエン酸およびラクチトール等の水溶性糖水溶液の、造粒液としての使用
UA81265C2 (en) 2002-09-17 2007-12-25 Wyeth Corp Granulate formulation of the rapamycin ester cci-779 and process for the preparation thereof
KR101018527B1 (ko) 2002-09-20 2011-03-03 에프엠씨 코포레이션 미정질 셀룰로즈를 함유하는 화장품 조성물
DE60319252T2 (de) 2002-09-21 2009-03-05 Zhang, Shuyi Formulierung von acetaminophen und tramadol mit verzögerter freisetzung
US8623412B2 (en) 2002-09-23 2014-01-07 Elan Pharma International Limited Abuse-resistant pharmaceutical compositions
JP2004143071A (ja) 2002-10-23 2004-05-20 Hosokawa Funtai Gijutsu Kenkyusho:Kk 薬物含有複合粒子の製造方法および薬物含有複合粒子
DE10250087A1 (de) 2002-10-25 2004-05-06 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
DE10250088A1 (de) 2002-10-25 2004-05-06 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
US20050186139A1 (en) 2002-10-25 2005-08-25 Gruenenthal Gmbh Abuse-proofed dosage form
US20050191244A1 (en) 2002-10-25 2005-09-01 Gruenenthal Gmbh Abuse-resistant pharmaceutical dosage form
DE10250084A1 (de) 2002-10-25 2004-05-06 Grünenthal GmbH Gegen Missbrauch gesicherte Darreichungsform
WO2004037222A2 (fr) 2002-10-25 2004-05-06 Labopharm Inc. Preparations de tramadol a liberation soutenue dotees d'une efficacite de 24 heures
DE10252667A1 (de) 2002-11-11 2004-05-27 Grünenthal GmbH Spirocyclische Cyclohexan-Derivate
US7018658B2 (en) 2002-11-14 2006-03-28 Synthon Bv Pharmaceutical pellets comprising tamsulosin
US20040121003A1 (en) 2002-12-19 2004-06-24 Acusphere, Inc. Methods for making pharmaceutical formulations comprising deagglomerated microparticles
US20040185097A1 (en) 2003-01-31 2004-09-23 Glenmark Pharmaceuticals Ltd. Controlled release modifying complex and pharmaceutical compositions thereof
US7442387B2 (en) 2003-03-06 2008-10-28 Astellas Pharma Inc. Pharmaceutical composition for controlled release of active substances and manufacturing method thereof
ATE454169T1 (de) 2003-03-13 2010-01-15 Controlled Chemicals Inc Oxycodon- konjugate mit niedrigerem missbrauch- potential und ausgedehnter tätigkeitsdauer
ES2570454T3 (es) 2003-03-26 2016-05-18 Egalet Ltd Sistema de liberación controlada de morfina
ATE399538T1 (de) 2003-03-26 2008-07-15 Egalet As Matrixzubereitungen für die kontrollierte darreichung von arzneistoffen
WO2004093819A2 (fr) 2003-04-21 2004-11-04 Euro-Celtique, S.A. Forme posologique inviolable contenant des particules co-extrudees d'agent repulsif contraire et procede de fabrication
TWI347201B (en) 2003-04-21 2011-08-21 Euro Celtique Sa Pharmaceutical products,uses thereof and methods for preparing the same
RS20050812A (en) 2003-04-30 2007-12-31 Purdue Pharma L.P., Tamper resistant transdermal dosage form
US8906413B2 (en) 2003-05-12 2014-12-09 Supernus Pharmaceuticals, Inc. Drug formulations having reduced abuse potential
CN1473562A (zh) 2003-06-27 2004-02-11 辉 刘 儿用口腔速溶、速崩冻干片及其制备方法
HU227142B1 (en) 2003-07-02 2010-08-30 Egis Gyogyszergyar Nyilvanosan Capsule of improved release containing fluconazole
CL2004002016A1 (es) 2003-08-06 2005-05-20 Gruenenthal Chemie Forma de dosificacion termoformada a prueba de abuso que contiene (a) uno o mas principios activos susceptibles de abuso, (b) opcionalmente sustancias auxiliares, (c) al menos un polimero sintetico o natural definido y (d) opcionalmente al menos una
RU2339365C2 (ru) * 2003-08-06 2008-11-27 Грюненталь Гмбх Защищенная от применения не по назначению лекарственная форма
DE502004004205D1 (de) * 2003-08-06 2007-08-09 Gruenenthal Gmbh Gegen missbrauch gesicherte darreichungsform
DE102004020220A1 (de) 2004-04-22 2005-11-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten, festen Darreichungsform
DE102005005446A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Bruchfeste Darreichungsformen mit retardierter Freisetzung
ES2344350T3 (es) 2003-09-25 2010-08-25 Euro-Celtique S.A. Combinaciones farmaceuticas de hidrocodona y naltrexona.
WO2005032524A2 (fr) 2003-09-30 2005-04-14 Alza Corporation Dispositif d'administration par osmose de principe actif actionne permettant d'obtenir un profil de liberation croissant
US20060172006A1 (en) 2003-10-10 2006-08-03 Vincent Lenaerts Sustained-release tramadol formulations with 24-hour clinical efficacy
US20060009478A1 (en) * 2003-10-15 2006-01-12 Nadav Friedmann Methods for the treatment of back pain
JP2007509979A (ja) 2003-10-29 2007-04-19 アルザ・コーポレーシヨン 1日1回の、経口用、制御放出、オキシコドン投与形態物
EP1689368B1 (fr) 2003-12-04 2016-09-28 Bend Research, Inc Procédé d'atomisation/congélation faisant appel à une extrudeuse pour la préparation de compositions médicamenteuses cristallines multiparticulaires
DE602004005076T2 (de) 2003-12-09 2007-11-15 Euro-Celtique S.A. Co-extrudierte sicherheits-dosierform mit einem wirkstoff und einem adversen mittel und herstellungsverfahren dafür
WO2005060942A1 (fr) 2003-12-19 2005-07-07 Aurobindo Pharma Ltd Composition pharmaceutique de metformine a liberation prolongee
DE10360792A1 (de) 2003-12-23 2005-07-28 Grünenthal GmbH Spirocyclische Cyclohexan-Derivate
MXPA06007509A (es) 2003-12-29 2007-10-18 Johnson & Johnson Composiciones de farmaco y formas de dosis novedosas.
WO2005079752A2 (fr) 2004-02-11 2005-09-01 Rubicon Research Private Limited Compositions pharmaceutiques a liberation controlee presentant une meilleure biodisponibilite
TWI350762B (en) 2004-02-12 2011-10-21 Euro Celtique Sa Particulates
GB0403100D0 (en) 2004-02-12 2004-03-17 Euro Celtique Sa Particulates
GB0403098D0 (en) 2004-02-12 2004-03-17 Euro Celtique Sa Extrusion
ATE426399T1 (de) 2004-02-23 2009-04-15 Euro Celtique Sa Missbrauchsichere transdermale abgabevorrichtung fur opioide, enthaltend opioidantagonist in form von mikrokugelchen
US20050220877A1 (en) 2004-03-31 2005-10-06 Patel Ashish A Bilayer tablet comprising an antihistamine and a decongestant
WO2005102286A1 (fr) * 2004-04-22 2005-11-03 Grünenthal GmbH Procede de production d'une forme galenique solide protegee contre un usage detourne
WO2005105036A1 (fr) 2004-04-28 2005-11-10 Natco Pharma Limited Matrice muco-adhesive a liberation controlee contenant de la tolterodine, et procede d'elaboration
US20050271594A1 (en) 2004-06-04 2005-12-08 Groenewoud Pieter J Abuse resistent pharmaceutical composition
TWI356036B (en) 2004-06-09 2012-01-11 Smithkline Beecham Corp Apparatus and method for pharmaceutical production
DE602004007905T2 (de) 2004-06-28 2008-05-08 Grünenthal GmbH Kristalline Formen von (-)-(1R,2R)-3-(3-Dimethylamino-1-ethyl-2-methylpropyl)-phenol hydrochlorid
ITMI20041317A1 (it) 2004-06-30 2004-09-30 Ibsa Inst Biochimique Sa Formulazioni farmaceutiche per la somministrazione sicura di farmaci utilizzati nel trattamento della tossicodipendenza e procedimento per il loro ottenimento
CA2572352A1 (fr) 2004-07-01 2006-01-12 Gruenenthal Gmbh Forme posologique anti-abus pour administration par voie orale contenant du (1r, 2r)-3-(3-dimethylamino-1-ethyl-2-methyl-propyl)-phenol
WO2006002883A1 (fr) 2004-07-01 2006-01-12 Grünenthal GmbH Procede de production d'une forme posologique solide anti-abus au moyen d'une extrudeuse a vis planetaires
PL1765303T5 (pl) 2004-07-01 2023-05-22 Grünenthal GmbH Tabletka doustna zabezpieczona przed nadużywaniem
KR20060007225A (ko) * 2004-07-19 2006-01-24 삼성전자주식회사 촬상소자 구동제어와 메모리 읽기제어를 이용한 손떨림보정방법 및 이를 적용한 촬영장치
JP2008508201A (ja) 2004-07-27 2008-03-21 ユニリーバー・ナームローゼ・ベンノートシヤープ ヘアケア組成物
GB2418854B (en) 2004-08-31 2009-12-23 Euro Celtique Sa Multiparticulates
US20060068009A1 (en) 2004-09-30 2006-03-30 Scolr Pharma, Inc. Modified release ibuprofen dosage form
US20070077297A1 (en) 2004-09-30 2007-04-05 Scolr Pharma, Inc. Modified release ibuprofen dosage form
US7426948B2 (en) 2004-10-08 2008-09-23 Phibrowood, Llc Milled submicron organic biocides with narrow particle size distribution, and uses thereof
US20060177380A1 (en) 2004-11-24 2006-08-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20080152595A1 (en) 2004-11-24 2008-06-26 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
US20070231268A1 (en) 2004-11-24 2007-10-04 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of orally administered pharmaceutical products
SI1849470T2 (sl) 2005-01-26 2024-05-31 Taiho Pharmaceutical Co., Ltd. Zdravilo proti raku, ki vsebuje alfa,alfa,alfa-trifluorotimidin in zaviralec timidin-fosforilaze
JP5704789B2 (ja) 2005-01-28 2015-04-22 ユーロ−セルティーク エス.エイ. 耐アルコール性剤形
DE102005005449A1 (de) 2005-02-04 2006-08-10 Grünenthal GmbH Verfahren zur Herstellung einer gegen Missbrauch gesicherten Darreichungsform
FR2889810A1 (fr) 2005-05-24 2007-02-23 Flamel Technologies Sa Forme medicamenteuse orale, microparticulaire, anti-mesurage
KR20070104447A (ko) 2005-02-10 2007-10-25 라이프사이클 파마 에이/에스 페노피브레이트 및 HMG-CoA 리덕타제 억제제의 고정용량 배합물을 포함하는 안정한 약학 조성물
US20060194759A1 (en) 2005-02-25 2006-08-31 Eidelson Stewart G Topical compositions and methods for treating pain and inflammation
EP1695700A1 (fr) 2005-02-28 2006-08-30 Euro-Celtique S.A. Forme posologique contenant de l'oxycodone et de la naloxone
ES2355870T3 (es) 2005-03-04 2011-03-31 Euro-Celtique S.A. Método de reducción de cetonas alfa,beta-insaturadas en composiciones opioides.
US20060204575A1 (en) 2005-03-11 2006-09-14 Hengsheng Feng Amphetamine formulations
US7732427B2 (en) 2005-03-31 2010-06-08 University Of Delaware Multifunctional and biologically active matrices from multicomponent polymeric solutions
NZ562311A (en) 2005-04-08 2009-10-30 Ozpharma Pty Ltd Buccal delivery system
KR20080007357A (ko) 2005-05-10 2008-01-18 노파르티스 아게 압축성이 열등한 치료학적 화합물을 갖는 조성물을제조하는 압출방법
CN101188999B (zh) 2005-06-03 2012-07-18 尹格莱特股份有限公司 用于递送分散在分散介质中的活性物质的药物传递系统
WO2007005716A2 (fr) 2005-06-30 2007-01-11 Cinergen, Llc Methodes de traitement et leurs compositions d'utilisation
DE102005032806A1 (de) 2005-07-12 2007-01-18 Röhm Gmbh Verwendung eines teilneutralisierten, anionischen (Meth)acrylat-Copolymers als Überzug für die Herstellung einer Arzneiform mit einer Wirkstofffreisetzung bei erniedrigten pH-Werten
US8858993B2 (en) 2005-07-25 2014-10-14 Metrics, Inc. Coated tablet with zero-order or near zero-order release kinetics
US20090155357A1 (en) 2005-08-01 2009-06-18 Alpharma Inc. Alcohol Resistant Pharmaceutical Formulations
EP1909760A1 (fr) 2005-08-03 2008-04-16 Eastman Chemical Company Poudre de succinate de tocopheryl polyethylene glycol et procede de preparation de celle-ci
US20070048373A1 (en) 2005-08-30 2007-03-01 Cima Labs Inc. Dried milled granulate and methods
ES2369898T3 (es) 2005-10-14 2011-12-07 The Kitasato Institute Nuevos derivados de dihidropseudoeritromicina.
PL116330U1 (en) 2005-10-31 2007-04-02 Alza Corp Method for the reduction of alcohol provoked rapid increase in the released dose of the orally administered opioide with prolonged liberation
US8329744B2 (en) 2005-11-02 2012-12-11 Relmada Therapeutics, Inc. Methods of preventing the serotonin syndrome and compositions for use thereof
US9125833B2 (en) 2005-11-02 2015-09-08 Relmada Therapeutics, Inc. Multimodal abuse resistant and extended release opioid formulations
FR2892937B1 (fr) 2005-11-10 2013-04-05 Flamel Tech Sa Forme pharmaceutique orale microparticulaire anti-mesusage
DE102005058569B4 (de) 2005-12-08 2010-07-15 Lts Lohmann Therapie-Systeme Ag Schaumwafer mit Polyvinylalkohol-Polyethylenglycol-Pfropfcopolymer
US20100172989A1 (en) 2006-01-21 2010-07-08 Abbott Laboratories Abuse resistant melt extruded formulation having reduced alcohol interaction
US20090317355A1 (en) 2006-01-21 2009-12-24 Abbott Gmbh & Co. Kg, Abuse resistant melt extruded formulation having reduced alcohol interaction
US20070190142A1 (en) 2006-01-21 2007-08-16 Abbott Gmbh & Co. Kg Dosage forms for the delivery of drugs of abuse and related methods
US20090022798A1 (en) 2007-07-20 2009-01-22 Abbott Gmbh & Co. Kg Formulations of nonopioid and confined opioid analgesics
EP1813276A1 (fr) 2006-01-27 2007-08-01 Euro-Celtique S.A. Formes de dosage inviolables
FR2897267A1 (fr) 2006-02-16 2007-08-17 Flamel Technologies Sa Formes pharmaceutiques multimicroparticulaires pour administration per os
EP1994034B1 (fr) 2006-03-02 2009-11-11 Mallinckrodt, Inc. Procédés de préparation de produits à base de morphinan-6-one avec de faibles niveaux de composés de cétones alpha, bêta-insaturées
WO2007103286A2 (fr) 2006-03-02 2007-09-13 Spherics, Inc. Formulations posologiques orales a liberation controlee
ES2628883T3 (es) 2006-03-24 2017-08-04 Auxilium International Holdings, Inc. Procedimiento para la preparación de un laminado extruido en estado fundido en caliente
US20070224637A1 (en) 2006-03-24 2007-09-27 Mcauliffe Joseph C Oxidative protection of lipid layer biosensors
CN101484142B (zh) 2006-03-24 2013-06-05 奥克思利尤姆国际控股公司 包含对碱性不稳定的药物的稳定组合物
US10960077B2 (en) 2006-05-12 2021-03-30 Intellipharmaceutics Corp. Abuse and alcohol resistant drug composition
US9023400B2 (en) 2006-05-24 2015-05-05 Flamel Technologies Prolonged-release multimicroparticulate oral pharmaceutical form
WO2007138466A2 (fr) 2006-06-01 2007-12-06 Wockhardt Ltd Compositions pharmaceutiques comprenant une combinaison de meloxicam et de tramadol
US20070292508A1 (en) 2006-06-05 2007-12-20 Balchem Corporation Orally disintegrating dosage forms
US20080069891A1 (en) 2006-09-15 2008-03-20 Cima Labs, Inc. Abuse resistant drug formulation
US8158156B2 (en) 2006-06-19 2012-04-17 Alpharma Pharmaceuticals, Llc Abuse-deterrent multi-layer pharmaceutical composition comprising an opioid antagonist and an opioid agonist
CN101091721A (zh) 2006-06-22 2007-12-26 孙明 阿胶新剂型的制备方法
EP2043613A1 (fr) 2006-07-14 2009-04-08 Fmc Corporation Forme solide
JP4029109B1 (ja) 2006-07-18 2008-01-09 タマ生化学株式会社 ビタミンeとプロリンの複合体粉末及びその製造方法
SA07280459B1 (ar) 2006-08-25 2011-07-20 بيورديو فارما إل. بي. أشكال جرعة صيدلانية للتناول عن طريق الفم مقاومة للعبث تشتمل على مسكن شبه أفيوني
US8445018B2 (en) 2006-09-15 2013-05-21 Cima Labs Inc. Abuse resistant drug formulation
US8187636B2 (en) 2006-09-25 2012-05-29 Atlantic Pharmaceuticals, Inc. Dosage forms for tamper prone therapeutic agents
AU2006349402A1 (en) 2006-10-10 2008-04-17 Penwest Pharmaceuticals Co. Robust sustained release formulations
US20080085304A1 (en) 2006-10-10 2008-04-10 Penwest Pharmaceuticals Co. Robust sustained release formulations
GB0624880D0 (en) 2006-12-14 2007-01-24 Johnson Matthey Plc Improved method for making analgesics
DE102006062120A1 (de) 2006-12-22 2008-06-26 Grünenthal GmbH Pharmazeutische Zusammensetzung zur Aknebehandlung
EP2063867A2 (fr) 2006-12-22 2009-06-03 Combinatorx, Incorporated Compositions pharmaceutiques pour le traitement de la maladie de parkinson et de troubles apparentés
AU2008207200B2 (en) 2007-01-16 2011-02-17 Egalet Ltd Use of i) a polyglycol and ii) an active drug substance for the preparation of a pharmaceutical composition for i) mitigating the risk of alcohol induced dose dumping and/or ii) reducing the risk of drug abuse
US20080181932A1 (en) 2007-01-30 2008-07-31 Drugtech Corporation Compositions for oral delivery of pharmaceuticals
CN100579525C (zh) 2007-02-02 2010-01-13 东南大学 盐酸尼卡地平缓释制剂及其制备方法
BRPI0807157A2 (pt) 2007-02-08 2014-04-29 Kempharm Inc Pró-farmacos hidrófilos polares de anfetamina e outros estimulantes e processos para fabricação e uso dos mesmos
CN101057849A (zh) 2007-02-27 2007-10-24 齐齐哈尔医学院 含有盐酸二甲双胍和格列吡嗪的缓释制剂及其制备方法
ES2350029T3 (es) 2007-03-02 2011-01-17 Farnam Companies, Inc. Pellets de liberación sostenida que comprenden un material tipo cera.
EP1980245A1 (fr) 2007-04-11 2008-10-15 Cephalon France Composition pharmaceutique bicouche lyophilisée et ses procédés de fabrication et d'utilisation
US20080260836A1 (en) 2007-04-18 2008-10-23 Thomas James Boyd Films Comprising a Plurality of Polymers
CA2685118C (fr) 2007-04-26 2016-11-01 Sigmoid Pharma Limited Fabrication de minicapsules multiples
WO2008142627A2 (fr) 2007-05-17 2008-11-27 Ranbaxy Laboratories Limited Formulation multicouches à libération modifiée comprenant de l'amoxicilline et du clavulanate
US8202542B1 (en) 2007-05-31 2012-06-19 Tris Pharma Abuse resistant opioid drug-ion exchange resin complexes having hybrid coatings
EP2155167A2 (fr) 2007-06-04 2010-02-24 Egalet A/S Compositions pharmaceutiques à libération contrôlée pour un effet prolongé
US20100035886A1 (en) 2007-06-21 2010-02-11 Veroscience, Llc Parenteral formulations of dopamine agonists
CA2690956C (fr) 2007-07-01 2017-01-03 Joseph Peter Habboushe Comprime de combinaison avec une couche exterieure pouvant etre machee
JP2010534204A (ja) 2007-07-20 2010-11-04 アボット ゲーエムベーハー ウント カンパニー カーゲー 非オピオイド鎮痛薬と閉じ込められたオピオイド鎮痛薬の製剤
WO2009034541A2 (fr) 2007-09-11 2009-03-19 Ranbaxy Laboratories Limited Formes galéniques à libération contrôlée à base de trimétazidine
EP2200593B1 (fr) 2007-09-13 2016-08-24 Cima Labs Inc. Formulation médicamenteuse contre l'abus
EP2211760A4 (fr) 2007-10-17 2013-09-18 Axxia Pharmaceuticals Llc Systèmes d'administration de médicaments polymères et procédés d'extrusion de composés thermoplastiques pour produire ces systèmes
ES2619329T3 (es) 2007-11-23 2017-06-26 Grünenthal GmbH Composiciones de tapentadol
EP2067471B1 (fr) 2007-12-06 2018-02-14 Durect Corporation Formes orales de dosage pharmaceutique
AU2008334580A1 (en) 2007-12-12 2009-06-18 Basf Se Salts of active ingredients with polymeric counter-ions
KR20100121463A (ko) 2007-12-17 2010-11-17 라보팜 인코포레이트 오용 예방적 방출 제어형 제제
RU2493830C2 (ru) 2008-01-25 2013-09-27 Грюненталь Гмбх Лекарственная форма
EP2085603A1 (fr) * 2008-01-31 2009-08-05 Caterpillar Motoren GmbH & Co. KG Système et procédé pour éviter la surchauffe de pompe CR
KR100970665B1 (ko) 2008-02-04 2010-07-15 삼일제약주식회사 알푸조신 또는 그의 염을 함유하는 서방성 정제
BRPI0909030A2 (pt) 2008-03-05 2018-03-13 Panacea Biotec Ltd composições farmacêuticas de liberação modificada compreendendo micofenolato e processos para as mesmas.
US8372432B2 (en) 2008-03-11 2013-02-12 Depomed, Inc. Gastric retentive extended-release dosage forms comprising combinations of a non-opioid analgesic and an opioid analgesic
TWI519322B (zh) 2008-04-15 2016-02-01 愛戴爾製藥股份有限公司 包含弱鹼性藥物及控制釋放劑型之組合物
PL2309987T3 (pl) * 2008-07-03 2013-01-31 Novartis Ag Granulacja metodą stapiania
MX2011001864A (es) 2008-08-20 2011-06-20 Univ Texas Extrusion de fusion en caliente de multiples particulas de liberacion modificada.
FR2936709B1 (fr) 2008-10-02 2012-05-11 Ethypharm Sa Comprimes alcoolo-resistants.
WO2010044842A1 (fr) 2008-10-16 2010-04-22 University Of Tennessee Research Foundation Formes pharmaceutiques orales inviolables contenant un agent embolisant
BRPI0920082A2 (pt) 2008-10-27 2019-09-24 Alza Corp forma de dosagem oral de acetaminofeno/tramadol com liberação estendida.
RU2011123377A (ru) 2008-11-14 2012-12-20 Портола Фармасьютиклз, Инк. ТВЕРДАЯ КОМПОЗИЦИЯ ДЛЯ КОНТРОЛИРУЕМОГО ВЫСВОБОЖДЕНИЯ АКТИВНЫХ ИОНИЗИРУЕМЫХ АГЕНТОВ, ХАРАКТЕРИЗУЮЩИХСЯ НИЗКОЙ РАСТВОРИМОСТЬЮ В ВОДЕ ПРИ НИЗКИХ ЗНАЧЕНИЯХ pН, И СПОСОБЫ ЕЕ ПРИМЕНЕНИЯ
MX2011006173A (es) 2008-12-12 2011-09-01 Paladin Labs Inc Formulaciones de drogas narcoticas con disminuido potencial de abuso.
JP5667575B2 (ja) 2008-12-16 2015-02-12 パラディン ラブス インコーポレーテッド 誤用を防止する放出制御製剤
AU2010206376B2 (en) 2009-01-26 2012-10-18 Egalet Ltd. Controlled release formulations with continuous efficacy
AU2010211376B2 (en) 2009-02-06 2013-08-22 Egalet Ltd. Pharmaceutical compositions resistant to abuse
MX2011009667A (es) 2009-03-18 2011-12-14 Evonik Roehm Gmbh Composición farmacéutica de liberación controlada con resistencia a la influencia de etanol mediante el uso de un revestimiento compuesto de polímeros de vinilo neutrales y excipientes.
EP2246063A1 (fr) 2009-04-29 2010-11-03 Ipsen Pharma S.A.S. Formulations à libération prolongée contenant des analogues de GnRH
GB0909680D0 (en) 2009-06-05 2009-07-22 Euro Celtique Sa Dosage form
EP2445487A2 (fr) 2009-06-24 2012-05-02 Egalet Ltd. Formulations à libération contrôlée
WO2011008298A2 (fr) 2009-07-16 2011-01-20 Nectid, Inc. Nouvelles formes pharmaceutiques de l’axomadol
BR112012001244A2 (pt) 2009-07-22 2020-12-08 Gruünenthal Gmbh Forma de dosagem resitente à adulteração, seu processo de produção, e embalagem contendo tal forma
US10080721B2 (en) * 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
EP2488029B1 (fr) 2009-09-30 2016-03-23 Acura Pharmaceuticals, Inc. Procédés et compositions de dissuasion d'abus
EP2535114A4 (fr) 2009-11-13 2015-11-18 Moriroku Chemicals Company Ltd Procédé de production de poudre fine et poudre fine produite selon ce procédé
WO2011068722A1 (fr) 2009-12-01 2011-06-09 Noven Pharmaceuticals, Inc. Dispositif d'administration transdermique de testostérone
CN102821757B (zh) 2010-02-03 2016-01-20 格吕伦塔尔有限公司 通过挤出机制备粉末状药物组合物
GB201003731D0 (en) 2010-03-05 2010-04-21 Univ Strathclyde Immediate/delayed drug delivery
EA029077B1 (ru) 2010-03-09 2018-02-28 Алкермес Фарма Айэленд Лимитед Устойчивая к спирту фармацевтическая лекарственная форма
WO2011123866A1 (fr) 2010-04-02 2011-10-06 Alltranz Inc. Formulations transdermiques empêchant les abus constituées d'agonistes et d'agonistes/antagonistes d'opiacés
CA2832436C (fr) 2010-04-07 2018-08-14 Lupin Limited Compositions pharmaceutiques a liberation controlee de tapentadol
GB201006200D0 (en) 2010-04-14 2010-06-02 Ayanda As Composition
US10463633B2 (en) 2010-04-23 2019-11-05 Kempharm, Inc. Therapeutic formulation for reduced drug side effects
FR2959935B1 (fr) 2010-05-14 2013-02-08 Ethypharm Sa Forme pharmaceutique orale alcoolo-resistante
FR2960775A1 (fr) 2010-06-07 2011-12-09 Ethypharm Sa Microgranules resistants au detournement
NZ607392A (en) 2010-09-02 2015-03-27 Gruenenthal Chemie Tamper resistant dosage form comprising inorganic salt
EP2611428B1 (fr) 2010-09-02 2015-01-14 Grünenthal GmbH Forme pharmaceutique inviolable comportant un polymere anionique
EP2635258A1 (fr) 2010-11-04 2013-09-11 AbbVie Inc. Formulations de médicaments
US20120231083A1 (en) 2010-11-18 2012-09-13 The Board Of Trustees Of The University Of Illinois Sustained release cannabinoid medicaments
GB201020895D0 (en) 2010-12-09 2011-01-26 Euro Celtique Sa Dosage form
BR112013015939A2 (pt) 2010-12-23 2020-08-04 Purdue Pharma L.P. formas farmacêuticas orais sólidas resistentes à adulteração
AU2012219322A1 (en) 2011-02-17 2013-05-09 QRxPharma Ltd. Technology for preventing abuse of solid dosage forms
PL2680832T3 (pl) 2011-03-04 2020-03-31 Grünenthal GmbH Wodna formulacja farmaceutyczna tapentadolu do podawania doustnego
PT3272343T (pt) 2011-04-29 2020-04-23 Gruenenthal Gmbh Tapentadol para prevenção e tratamento de depressão e ansiedade
US8858963B1 (en) 2011-05-17 2014-10-14 Mallinckrodt Llc Tamper resistant composition comprising hydrocodone and acetaminophen for rapid onset and extended duration of analgesia
DK2714015T3 (en) 2011-06-01 2017-06-19 Fmc Corp Fixed controlled release dosage forms
WO2013003845A1 (fr) 2011-06-30 2013-01-03 Neos Therapeutics, Lp Formes médicamenteuses résistant à l'abus
CA2839126A1 (fr) 2011-07-29 2013-02-07 Grunenthal Gmbh Comprime anti-manipulation permettant une liberation immediate de medicament
AR087360A1 (es) * 2011-07-29 2014-03-19 Gruenenthal Gmbh Tableta a prueba de manipulacion que proporciona liberacion de farmaco inmediato
CN103732216A (zh) 2011-08-16 2014-04-16 默沙东公司 无机基质和有机聚合物组合用于制备稳定的无定形分散体的用途
FR2979242A1 (fr) 2011-08-29 2013-03-01 Sanofi Sa Comprime contre l'usage abusif, a base de paracetamol et d'oxycodone
AR088250A1 (es) 2011-10-06 2014-05-21 Gruenenthal Gmbh Forma de dosificacion farmaceutica oral resistente a alteracion comprendiendo agonista opioide y antagonista opioide
KR20140096062A (ko) 2011-11-17 2014-08-04 그뤼넨탈 게엠베하 약리학적 활성 성분, 오피오이드 길항제 및/또는 혐오제, 폴리알킬렌 옥사이드 및 음이온성 중합체를 포함하는 탬퍼-저항성 경구 약제학적 투여형
TW201336529A (zh) 2011-12-09 2013-09-16 Purdue Pharma Lp 包含聚(ε-己內酯)和聚氧化乙烯之藥物劑量型
JP2013155124A (ja) 2012-01-30 2013-08-15 Moriroku Chemicals Co Ltd 医薬品の原末及びその製造方法
EP2819657A1 (fr) 2012-02-28 2015-01-07 Grünenthal GmbH Forme pharmaceutique inviolable comprenant un tensioactif non ionique
WO2013127831A1 (fr) 2012-02-28 2013-09-06 Grünenthal GmbH Forme pharmaceutique inviolable comprenant un composé pharmacologiquement actif et un polymère anionique
MX354677B (es) 2012-03-02 2018-03-15 Rhodes Pharmaceuticals Lp Formulaciones de liberacion inmediata resistentes a la manipulacion.
MX2014011815A (es) 2012-04-18 2014-12-05 Mallinckrodt Llc Composiciones farmaceuticas de liberacion inmediata con propiedades disuasivas de abuso.
LT2838512T (lt) 2012-04-18 2018-11-12 GrĆ¼nenthal GmbH Pažeidimui atspari ir dozės atpalaidavimo nuokrypiui atspari farmacinė vaisto forma
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
MX357783B (es) 2012-05-11 2018-07-25 Gruenenthal Gmbh Forma de dosificacion farmaceutica termoconformada, resistente al uso indebido, que contiene zinc.
WO2014022541A1 (fr) 2012-08-01 2014-02-06 Acura Pharmaceuticals, Inc. Stabilisation de systèmes de synthèse de la méthamphétamine en enceinte unique
AU2012388441B2 (en) 2012-08-27 2017-07-27 Evonik Operations Gmbh Pharmaceutical or nutraceutical composition with sustained release characteristic and with resistance against the influence of ethanol
WO2014032741A1 (fr) 2012-08-27 2014-03-06 Evonik Industries Ag Composition pharmaceutique ou nutraceutique gastrorésistante présentant de la résistance vis-à-vis de l'influence de l'éthanol
US9463165B2 (en) 2012-09-05 2016-10-11 Teika Pharmaceutical Co., Ltd. Granular material for orally fast disintegrating tablets
WO2014059512A1 (fr) 2012-10-15 2014-04-24 Isa Odidi Formulations de médicament pour administration par voie orale
US20140275143A1 (en) 2013-03-15 2014-09-18 Mallinckrodt Llc Compositions Comprising An Opioid And An Additional Active Pharmaceutical Ingredient For Rapid Onset And Extended Duration Of Analgesia That May Be Administered Without Regard To Food
US10420729B2 (en) 2013-03-15 2019-09-24 R.P. Scherer Technologies, Llc Abuse resistant capsule
US9517208B2 (en) 2013-03-15 2016-12-13 Purdue Pharma L.P. Abuse-deterrent dosage forms
CA2907950A1 (fr) 2013-05-29 2014-12-04 Grunenthal Gmbh Forme pharmaceutique inviolable contenant une ou plusieurs particules
EP3003283A1 (fr) 2013-05-29 2016-04-13 Grünenthal GmbH Forme dosifiée inviolable à profil de libération bimodale
CA2817728A1 (fr) 2013-05-31 2014-11-30 Pharmascience Inc. Formulation a liberation immediate de prevention des abus
BR112016000194A8 (pt) 2013-07-12 2019-12-31 Gruenenthal Gmbh forma de dosagem resistente à violação contendo o polímero de acetato de etileno-vinila
CA3042642A1 (fr) 2013-08-12 2015-02-19 Pharmaceutical Manufacturing Research Services, Inc. Comprime extrude anti-abus a liberation immediate
US9770514B2 (en) 2013-09-03 2017-09-26 ExxPharma Therapeutics LLC Tamper-resistant pharmaceutical dosage forms
WO2015048597A1 (fr) 2013-09-30 2015-04-02 Daya Drug Discoveries, Inc. Prévention de la fabrication illicite de méthamphétamine à partir de pseudoéphédrine à l'aide d'arômes alimentaires
US20150118300A1 (en) 2013-10-31 2015-04-30 Cima Labs Inc. Immediate Release Abuse-Deterrent Granulated Dosage Forms
US10744131B2 (en) 2013-12-31 2020-08-18 Kashiv Biosciences, Llc Abuse-resistant drug formulations
WO2015120201A1 (fr) 2014-02-05 2015-08-13 Kashiv Pharma, Llc Formulations de médicament résistantes aux abus avec protection intégrée contre le surdosage
US20160089439A1 (en) 2014-09-28 2016-03-31 Satara Pharmaceuticals, LLC Prevention of Illicit Manufacutre of Methamphetamine from Pseudoephedrine Using Food Flavor Excipients
US20170112766A1 (en) 2015-04-24 2017-04-27 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US20170296476A1 (en) 2016-04-15 2017-10-19 Grünenthal GmbH Modified release abuse deterrent dosage forms

Patent Citations (101)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2987445A (en) * 1958-10-10 1961-06-06 Rohm & Haas Drug composition
US3806603A (en) * 1969-10-13 1974-04-23 W Gaunt Pharmaceutical carriers of plasticized dried milled particles of hydrated cooked rice endosperm
US4070497A (en) * 1971-03-09 1978-01-24 Ppg Industries, Inc. Process of applying and curing a plurality of coatings
US3865108A (en) * 1971-05-17 1975-02-11 Ortho Pharma Corp Expandable drug delivery device
US4014965A (en) * 1972-11-24 1977-03-29 The Dow Chemical Company Process for scrapless forming of plastic articles
US4002173A (en) * 1974-07-23 1977-01-11 International Paper Company Diester crosslinked polyglucan hydrogels and reticulated sponges thereof
US4070494A (en) * 1975-07-09 1978-01-24 Bayer Aktiengesellschaft Enteral pharmaceutical compositions
US4427778A (en) * 1982-06-29 1984-01-24 Biochem Technology, Inc. Enzymatic preparation of particulate cellulose for tablet making
US4427681A (en) * 1982-09-16 1984-01-24 Richardson-Vicks, Inc. Thixotropic compositions easily convertible to pourable liquids
US5082668A (en) * 1983-05-11 1992-01-21 Alza Corporation Controlled-release system with constant pushing source
US4744976A (en) * 1984-07-23 1988-05-17 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4806337A (en) * 1984-07-23 1989-02-21 Zetachron, Inc. Erodible matrix for sustained release bioactive composition
US4992279A (en) * 1985-07-03 1991-02-12 Kraft General Foods, Inc. Sweetness inhibitor
US5198226A (en) * 1986-01-30 1993-03-30 Syntex (U.S.A.) Inc. Long acting nicardipine hydrochloride formulation
US4667013A (en) * 1986-05-02 1987-05-19 Union Carbide Corporation Process for alkylene oxide polymerization
US4992278A (en) * 1987-01-14 1991-02-12 Ciba-Geigy Corporation Therapeutic system for sparingly soluble active ingredients
US4892778A (en) * 1987-05-27 1990-01-09 Alza Corporation Juxtaposed laminated arrangement
US5004601A (en) * 1988-10-14 1991-04-02 Zetachron, Inc. Low-melting moldable pharmaceutical excipient and dosage forms prepared therewith
US5190760A (en) * 1989-07-08 1993-03-02 Coopers Animal Health Limited Solid pharmaceutical composition
US5200197A (en) * 1989-11-16 1993-04-06 Alza Corporation Contraceptive pill
US5211892A (en) * 1990-07-20 1993-05-18 L'oreal Process for the compaction of a powder mixture providing an absorbent or partially friable compact product and the product obtained by this process
US5508042A (en) * 1991-11-27 1996-04-16 Euro-Celtigue, S.A. Controlled release oxycodone compositions
US6699503B1 (en) * 1992-09-18 2004-03-02 Yamanuchi Pharmaceutical Co., Ltd. Hydrogel-forming sustained-release preparation
US5620697A (en) * 1992-12-31 1997-04-15 Orion-Yhtyma Oy Method for preparing matrix-type pharmaceutical compositions through ultrasonic means to accomplish melting
US5601842A (en) * 1993-09-03 1997-02-11 Gruenenthal Gmbh Sustained release drug formulation containing a tramadol salt
US5707636A (en) * 1994-08-03 1998-01-13 Saitec S.R.L. Apparatus and method for preparing solid forms with controlled release of the active ingredient
US20040081694A1 (en) * 1994-11-04 2004-04-29 Euro-Celtique, S.A. Melt-extruded orally administrable opioid formulations
US6009690A (en) * 1994-12-23 2000-01-04 Basf Aktiengesellschaft Process and apparatus for the production of divisible tablets
US5741519A (en) * 1995-03-21 1998-04-21 Basf Aktiengesellschaft The production of active substance compositions in the form of a solid solution of the active substance in a polymer matrix, and active substance compositions produced by this process
US6348469B1 (en) * 1995-04-14 2002-02-19 Pharma Pass Llc Solid compositions containing glipizide and polyethylene oxide
US6355656B1 (en) * 1995-12-04 2002-03-12 Celgene Corporation Phenidate drug formulations having diminished abuse potential
US5866164A (en) * 1996-03-12 1999-02-02 Alza Corporation Composition and dosage form comprising opioid antagonist
US6534089B1 (en) * 1996-04-05 2003-03-18 Alza Corporation Uniform drug delivery therapy
US7176251B1 (en) * 1996-11-05 2007-02-13 Novamont S.P.A. Biodegradable polymeric compositions comprising starch and a thermoplastic polymer
US6340475B2 (en) * 1997-06-06 2002-01-22 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
US20020051820A1 (en) * 1997-06-06 2002-05-02 Depomed, Inc. Extending the duration of drug release within the stomach during the fed mode
US6547997B1 (en) * 1997-11-28 2003-04-15 Abbot Laboratories Method for producing solvent-free noncrystalline biologically active substances
US6344535B1 (en) * 1997-12-03 2002-02-05 Bayer Aktiengesellschaft Polyether ester amides
US6228863B1 (en) * 1997-12-22 2001-05-08 Euro-Celtique S.A. Method of preventing abuse of opioid dosage forms
US6375957B1 (en) * 1997-12-22 2002-04-23 Euro-Celtique, S.A. Opioid agonist/opioid antagonist/acetaminophen combinations
US6235825B1 (en) * 1998-03-05 2001-05-22 Mitsui Chemicals, Inc. Polylactic acid resin composition and film therefrom
US6547977B1 (en) * 1998-04-02 2003-04-15 Applied Materials Inc. Method for etching low k dielectrics
US20030017532A1 (en) * 1998-09-22 2003-01-23 Sanjoy Biswas ndp
US6238697B1 (en) * 1998-12-21 2001-05-29 Pharmalogix, Inc. Methods and formulations for making bupropion hydrochloride tablets using direct compression
US6375963B1 (en) * 1999-06-16 2002-04-23 Michael A. Repka Bioadhesive hot-melt extruded film for topical and mucosal adhesion applications and drug delivery and process for preparation thereof
US6562375B1 (en) * 1999-08-04 2003-05-13 Yamanouchi Pharmaceuticals, Co., Ltd. Stable pharmaceutical composition for oral use
US20030044464A1 (en) * 1999-08-31 2003-03-06 Iris Ziegler Sustained-release, oral pharamaceutical forms of formulation
US20030015814A1 (en) * 1999-12-15 2003-01-23 Harald Krull Device and method for producing solid shape containing an active ingredient
US20110097404A1 (en) * 2000-02-08 2011-04-28 Purdue Pharma L.P. Tamper-resistant oral opioid agonist formulations
US20050095291A1 (en) * 2000-02-08 2005-05-05 Benjamin Oshlack Tamper-resistant oral opioid agonist formulations
US20020015730A1 (en) * 2000-03-09 2002-02-07 Torsten Hoffmann Pharmaceutical formulations and method for making
EP1152026A1 (fr) * 2000-05-01 2001-11-07 National Starch and Chemical Investment Holding Corporation Polysaccharides pour compression directe
US8114838B2 (en) * 2000-05-23 2012-02-14 Acorda Therapeutics, Inc. Methods for protecting dopaminergic neurons from stress and promoting proliferation and differentiation of oligodendrocyte progenitors by NRG-2
US20020012701A1 (en) * 2000-06-19 2002-01-31 Karl Kolter Process for producing solid oral dosage forms with sustained release of active ingredient
US6733783B2 (en) * 2000-10-30 2004-05-11 Euro-Celtique S.A. Controlled release hydrocodone formulations
US20030008409A1 (en) * 2001-07-03 2003-01-09 Spearman Steven R. Method and apparatus for determining sunlight exposure
US20030069263A1 (en) * 2001-07-18 2003-04-10 Breder Christopher D. Pharmaceutical combinations of oxycodone and naloxone
US20030021546A1 (en) * 2001-07-30 2003-01-30 Tsuguo Sato Optical fiber ferrule assembly and optical module and optical connector using the same
US20030064099A1 (en) * 2001-08-06 2003-04-03 Benjamin Oshlack Pharmaceutical formulation containing bittering agent
US20090081287A1 (en) * 2001-08-06 2009-03-26 Purdue Pharma L.P. Pharmaceutical Composition Containing Gelling Agent
US7157103B2 (en) * 2001-08-06 2007-01-02 Euro-Celtique S.A. Pharmaceutical formulation containing irritant
US20030068375A1 (en) * 2001-08-06 2003-04-10 Curtis Wright Pharmaceutical formulation containing gelling agent
US20070020188A1 (en) * 2001-08-06 2007-01-25 Purdue Pharma L.P. Pharmaceutical formulation containing irritant
US20050089475A1 (en) * 2001-08-06 2005-04-28 Thomas Gruber Pharmaceutical formulation containing dye
US20030044458A1 (en) * 2001-08-06 2003-03-06 Curtis Wright Oral dosage form comprising a therapeutic agent and an adverse-effect agent
US20030031546A1 (en) * 2001-08-08 2003-02-13 Toshiyuki Araki Lift apparatus
US20050058706A1 (en) * 2001-10-24 2005-03-17 Grunenthal Gmbh Delayed release pharmaceutical composition containing 3-(3-dimethylamino-1-ethyl-2-methyl-propyl)phenol
US20030091630A1 (en) * 2001-10-25 2003-05-15 Jenny Louie-Helm Formulation of an erodible, gastric retentive oral dosage form using in vitro disintegration test data
US6723340B2 (en) * 2001-10-25 2004-04-20 Depomed, Inc. Optimal polymer mixtures for gastric retentive tablets
US20050106249A1 (en) * 2002-04-29 2005-05-19 Stephen Hwang Once-a-day, oral, controlled-release, oxycodone dosage forms
US20040010000A1 (en) * 2002-04-29 2004-01-15 Ayer Atul D. Methods and dosage forms for controlled delivery of oxycodone
US20040011806A1 (en) * 2002-07-17 2004-01-22 Luciano Packaging Technologies, Inc. Tablet filler device with star wheel
US20040052844A1 (en) * 2002-09-16 2004-03-18 Fang-Hsiung Hsiao Time-controlled, sustained release, pharmaceutical composition containing water-soluble resins
US20040091528A1 (en) * 2002-11-12 2004-05-13 Yamanouchi Pharma Technologies, Inc. Soluble drug extended release system
US20050015730A1 (en) * 2003-07-14 2005-01-20 Srimanth Gunturi Systems, methods and computer program products for identifying tab order sequence of graphically represented elements
US20070048228A1 (en) * 2003-08-06 2007-03-01 Elisabeth Arkenau-Maric Abuse-proofed dosage form
US20120034171A1 (en) * 2003-08-06 2012-02-09 Gruenenthal Gmbh Abuse-proofed dosage form
US8114383B2 (en) * 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US20050031546A1 (en) * 2003-08-06 2005-02-10 Johannes Bartholomaus Abuse-proffed dosage form
US20050063214A1 (en) * 2003-09-22 2005-03-24 Daisaburo Takashima Semiconductor integrated circuit device
US7201920B2 (en) * 2003-11-26 2007-04-10 Acura Pharmaceuticals, Inc. Methods and compositions for deterring abuse of opioid containing dosage forms
US20090005408A1 (en) * 2003-12-24 2009-01-01 Grunenthal Gmbh Process for the production of an abuse-proofed dosage form
US20070003616A1 (en) * 2003-12-24 2007-01-04 Elisabeth Arkenau-Maric Process for the production of an abuse-proofed dosage form
US7683072B2 (en) * 2004-03-30 2010-03-23 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone
US7674799B2 (en) * 2004-03-30 2010-03-09 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 ppm 14-hydroxycodeinone
US7674800B2 (en) * 2004-03-30 2010-03-09 Purdue Pharma L.P. Oxycodone hydrochloride having less than 25 PPM 14-hydroxycodeinone
US20070065365A1 (en) * 2004-04-21 2007-03-22 Gruenenthal Gmbh Abuse-resistant transdermal system
US20060002859A1 (en) * 2004-07-01 2006-01-05 Elisabeth Arkenau Process for production of an abuse-proofed solid dosage form
US8114384B2 (en) * 2004-07-01 2012-02-14 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US20060002860A1 (en) * 2004-07-01 2006-01-05 Johannes Bartholomaus Abuse-proofed oral dosage form
US20060039864A1 (en) * 2004-07-01 2006-02-23 Johannes Bartholomaus Abuse-proofed oral dosage form
US20070020335A1 (en) * 2005-07-07 2007-01-25 Farnam Companies, Inc. Sustained release pharmaceutical compositions for highly water soluble drugs
US20070092573A1 (en) * 2005-10-24 2007-04-26 Laxminarayan Joshi Stabilized extended release pharmaceutical compositions comprising a beta-adrenoreceptor antagonist
US20100092553A1 (en) * 2005-11-10 2010-04-15 Flamel Technologies anti-misuse microparticulate oral pharmaceutical form
US20100015223A1 (en) * 2006-03-01 2010-01-21 Ethypharm Sa Crush-Resistant Tablets Intended to Prevent Accidental Misuse and Unlawful Diversion
US20080069871A1 (en) * 2006-07-21 2008-03-20 Vaughn Jason M Hydrophobic abuse deterrent delivery system
US20080081290A1 (en) * 2006-09-25 2008-04-03 Fujifilm Corporation Resist composition, resin for use in the resist composition, compound for use in the synthesis of the resin, and pattern-forming method using the resist composition
US20090004267A1 (en) * 2007-03-07 2009-01-01 Gruenenthal Gmbh Dosage Form with Impeded Abuse
US20110020454A1 (en) * 2008-03-13 2011-01-27 Rosa Lamarca Casado Novel dosage and formulation
US20110082214A1 (en) * 2008-05-09 2011-04-07 Gruenthal Gmbh Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20120065220A1 (en) * 2010-09-02 2012-03-15 Grunenthal Gmbh Tamper Resistant Dosage Form Comprising An Anionic Polymer

Cited By (152)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9694080B2 (en) 2001-09-21 2017-07-04 Egalet Ltd. Polymer release system
US9707179B2 (en) 2001-09-21 2017-07-18 Egalet Ltd. Opioid polymer release system
US8808745B2 (en) 2001-09-21 2014-08-19 Egalet Ltd. Morphine polymer release system
US9675610B2 (en) 2002-06-17 2017-06-13 Grünenthal GmbH Abuse-proofed dosage form
US10369109B2 (en) 2002-06-17 2019-08-06 Grünenthal GmbH Abuse-proofed dosage form
US9884029B2 (en) 2003-03-26 2018-02-06 Egalet Ltd. Morphine controlled release system
US9375428B2 (en) 2003-03-26 2016-06-28 Egalet Ltd. Morphine controlled release system
US8877241B2 (en) 2003-03-26 2014-11-04 Egalet Ltd. Morphine controlled release system
US8968777B2 (en) 2003-07-31 2015-03-03 Ferring B.V. Tranexamic acid formulations with reduced adverse effects
US20090214644A1 (en) * 2003-07-31 2009-08-27 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations with reduced adverse effects
US20090017114A1 (en) * 2003-07-31 2009-01-15 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations with reduced adverse effects
US8309060B2 (en) 2003-08-06 2012-11-13 Grunenthal Gmbh Abuse-proofed dosage form
US10058548B2 (en) 2003-08-06 2018-08-28 Grünenthal GmbH Abuse-proofed dosage form
US20050031546A1 (en) * 2003-08-06 2005-02-10 Johannes Bartholomaus Abuse-proffed dosage form
US8420056B2 (en) 2003-08-06 2013-04-16 Grunenthal Gmbh Abuse-proofed dosage form
US10130591B2 (en) 2003-08-06 2018-11-20 Grünenthal GmbH Abuse-proofed dosage form
US8075872B2 (en) 2003-08-06 2011-12-13 Gruenenthal Gmbh Abuse-proofed dosage form
US9629807B2 (en) 2003-08-06 2017-04-25 Grünenthal GmbH Abuse-proofed dosage form
US8192722B2 (en) 2003-08-06 2012-06-05 Grunenthal Gmbh Abuse-proof dosage form
US8114383B2 (en) 2003-08-06 2012-02-14 Gruenenthal Gmbh Abuse-proofed dosage form
US20090005408A1 (en) * 2003-12-24 2009-01-01 Grunenthal Gmbh Process for the production of an abuse-proofed dosage form
US11224576B2 (en) 2003-12-24 2022-01-18 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US7947739B2 (en) 2004-03-04 2011-05-24 Ferring B.V. Tranexamic acid formulations
US8487005B2 (en) 2004-03-04 2013-07-16 Ferring B.V. Tranexamic acid formulations
US20110230559A1 (en) * 2004-03-04 2011-09-22 Ferring B.V. Tranexamic Acid Formulations
US8022106B2 (en) 2004-03-04 2011-09-20 Ferring B.V. Tranexamic acid formulations
US9060939B2 (en) 2004-03-04 2015-06-23 Ferring B.V. Tranexamic acid formulations
US20080280981A1 (en) * 2004-03-04 2008-11-13 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations
US8957113B2 (en) 2004-03-04 2015-02-17 Ferring B.V. Tranexamic acid formulations
US8809394B2 (en) 2004-03-04 2014-08-19 Ferring B.V. Tranexamic acid formulations
US8273795B2 (en) 2004-03-04 2012-09-25 Ferring B.V. Tranexamic acid formulations
US20090209646A1 (en) * 2004-03-04 2009-08-20 Xanodyne Pharmaceuticals, Inc. Tranexamic acid formulations
US8791160B2 (en) 2004-03-04 2014-07-29 Ferring B.V. Tranexamic acid formulations
US11844865B2 (en) 2004-07-01 2023-12-19 Grünenthal GmbH Abuse-proofed oral dosage form
US8323889B2 (en) 2004-07-01 2012-12-04 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US8114384B2 (en) 2004-07-01 2012-02-14 Gruenenthal Gmbh Process for the production of an abuse-proofed solid dosage form
US10729658B2 (en) 2005-02-04 2020-08-04 Grünenthal GmbH Process for the production of an abuse-proofed dosage form
US10675278B2 (en) 2005-02-04 2020-06-09 Grünenthal GmbH Crush resistant delayed-release dosage forms
US20070243276A1 (en) * 2005-11-09 2007-10-18 Universidade Do Minho Laboratorial extrusion line for the production of conventional and bi-oriented tubular film, with simple commutation between the two techniques
US20100015223A1 (en) * 2006-03-01 2010-01-21 Ethypharm Sa Crush-Resistant Tablets Intended to Prevent Accidental Misuse and Unlawful Diversion
US20080020032A1 (en) * 2006-07-21 2008-01-24 Michael Crowley Hydrophobic abuse deterrent delivery system for hydromorphone
US8846086B2 (en) 2006-08-25 2014-09-30 Purdue Pharma L.P. Tamper resistant dosage forms
US9101661B2 (en) 2006-08-25 2015-08-11 Purdue Pharma L.P. Tamper resistant dosage forms
US8821929B2 (en) 2006-08-25 2014-09-02 Purdue Pharma L.P. Tamper resistant dosage forms
US8834925B2 (en) 2006-08-25 2014-09-16 Purdue Pharma L.P. Tamper resistant dosage forms
US11826472B2 (en) 2006-08-25 2023-11-28 Purdue Pharma L.P. Tamper resistant dosage forms
US20090081290A1 (en) * 2006-08-25 2009-03-26 Purdue Pharma L.P. Tamper resistant dosage forms
US8894987B2 (en) 2006-08-25 2014-11-25 William H. McKenna Tamper resistant dosage forms
US8894988B2 (en) 2006-08-25 2014-11-25 Purdue Pharma L.P. Tamper resistant dosage forms
US11904055B2 (en) 2006-08-25 2024-02-20 Purdue Pharma L.P. Tamper resistant dosage forms
US8911719B2 (en) 2006-08-25 2014-12-16 Purdue Pharma Lp Tamper resistant dosage forms
US11298322B2 (en) 2006-08-25 2022-04-12 Purdue Pharma L.P. Tamper resistant dosage forms
US11304908B2 (en) 2006-08-25 2022-04-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9775811B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9775809B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9775810B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US11304909B2 (en) 2006-08-25 2022-04-19 Purdue Pharma L.P. Tamper resistant dosage forms
US9084816B2 (en) 2006-08-25 2015-07-21 Purdue Pharma L.P. Tamper resistant dosage forms
US9095614B2 (en) 2006-08-25 2015-08-04 Purdue Pharma L.P. Tamper resistant dosage forms
US9095615B2 (en) 2006-08-25 2015-08-04 Purdue Pharma L.P. Tamper resistant dosage forms
US8815289B2 (en) 2006-08-25 2014-08-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9775808B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9775812B2 (en) 2006-08-25 2017-10-03 Purdue Pharma L.P. Tamper resistant dosage forms
US9770416B2 (en) 2006-08-25 2017-09-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9770417B2 (en) 2006-08-25 2017-09-26 Purdue Pharma L.P. Tamper resistant dosage forms
US9763933B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US11938225B2 (en) 2006-08-25 2024-03-26 Purdue Pharm L.P. Tamper resistant dosage forms
US9486413B2 (en) 2006-08-25 2016-11-08 Purdue Pharma L.P. Tamper resistant dosage forms
US9486412B2 (en) 2006-08-25 2016-11-08 Purdue Pharma L.P. Tamper resistant dosage forms
US9492393B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492391B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492390B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492392B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9492389B2 (en) 2006-08-25 2016-11-15 Purdue Pharma L.P. Tamper resistant dosage forms
US9545380B2 (en) 2006-08-25 2017-01-17 Purdue Pharma L.P. Tamper resistant dosage forms
US9763886B2 (en) 2006-08-25 2017-09-19 Purdue Pharma L.P. Tamper resistant dosage forms
US11964056B1 (en) 2006-08-25 2024-04-23 Purdue Pharma L.P Tamper resistant dosage forms
US10076498B2 (en) 2006-08-25 2018-09-18 Purdue Pharma L.P. Tamper resistant dosage forms
US10076499B2 (en) 2006-08-25 2018-09-18 Purdue Pharma L.P. Tamper resistant dosage forms
EP2692341A1 (fr) 2006-09-15 2014-02-05 Cima Labs Inc. Préparation médicamenteuse empêchant l'utilisation abusive
WO2008033523A1 (fr) 2006-09-15 2008-03-20 Cima Labs Inc. Préparation médicamenteuse empêchant l'utilisation abusive
US10888521B2 (en) * 2007-03-02 2021-01-12 Farnam Companies, Inc. Sustained release compositions using wax-like materials
US20080220079A1 (en) * 2007-03-02 2008-09-11 Farnam Companies, Inc. Sustained release compositions using wax-like materials
US8722086B2 (en) 2007-03-07 2014-05-13 Gruenenthal Gmbh Dosage form with impeded abuse
US9358213B2 (en) * 2007-04-20 2016-06-07 Wockhardt Limited Pharmaceutical compositions of duloxetine
US20100209498A1 (en) * 2007-04-20 2010-08-19 Girish Kumar Jain Pharmaceutical compositions of duloxetine
US9642809B2 (en) 2007-06-04 2017-05-09 Egalet Ltd. Controlled release pharmaceutical compositions for prolonged effect
US20090052818A1 (en) * 2007-07-10 2009-02-26 Jason Matthew Mitmesser Hybrid bearing
US8383152B2 (en) * 2008-01-25 2013-02-26 Gruenenthal Gmbh Pharmaceutical dosage form
US9750701B2 (en) 2008-01-25 2017-09-05 Grünenthal GmbH Pharmaceutical dosage form
US9161917B2 (en) 2008-05-09 2015-10-20 Grünenthal GmbH Process for the preparation of a solid dosage form, in particular a tablet, for pharmaceutical use and process for the preparation of a precursor for a solid dosage form, in particular a tablet
US20110165248A1 (en) * 2008-09-18 2011-07-07 Meridith Lee Machonis Pharmaceutical dosage forms comprising poly(e-caprolactone)
US20100099696A1 (en) * 2008-10-16 2010-04-22 Anthony Edward Soscia Tamper resistant oral dosage forms containing an embolizing agent
WO2010044842A1 (fr) * 2008-10-16 2010-04-22 University Of Tennessee Research Foundation Formes pharmaceutiques orales inviolables contenant un agent embolisant
US20110237615A1 (en) * 2008-12-12 2011-09-29 Paladin Labs Inc. Narcotic Drug Formulations with Decreased Abuse Potential
US8460640B2 (en) 2008-12-12 2013-06-11 Paladin Labs, Inc. Narcotic drug formulations with decreased abuse potential
US9358295B2 (en) 2009-02-06 2016-06-07 Egalet Ltd. Immediate release composition resistant to abuse by intake of alcohol
US9005660B2 (en) 2009-02-06 2015-04-14 Egalet Ltd. Immediate release composition resistant to abuse by intake of alcohol
US20100280117A1 (en) * 2009-04-30 2010-11-04 Xanodyne Pharmaceuticals, Inc. Menorrhagia Instrument and Method for the Treatment of Menstrual Bleeding Disorders
US9023394B2 (en) 2009-06-24 2015-05-05 Egalet Ltd. Formulations and methods for the controlled release of active drug substances
US10080721B2 (en) * 2009-07-22 2018-09-25 Gruenenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US10493033B2 (en) 2009-07-22 2019-12-03 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
KR101738369B1 (ko) * 2009-07-22 2017-05-22 그뤼넨탈 게엠베하 핫 멜트 압출된 제어 방출 투여형
US9925146B2 (en) 2009-07-22 2018-03-27 Grünenthal GmbH Oxidation-stabilized tamper-resistant dosage form
US20110038930A1 (en) * 2009-07-22 2011-02-17 Grunenthal Gmbh Hot-melt extruded pharmaceutical dosage form
US9604374B2 (en) * 2009-10-21 2017-03-28 Edgewell Personal Care Brands, Llc Method of making a lubrication box for a wet shaving implement
US20110099815A1 (en) * 2009-10-21 2011-05-05 Eveready Battery Company, Inc. Lubrication Box For A Wet Shaving Implement
US9579285B2 (en) 2010-02-03 2017-02-28 Gruenenthal Gmbh Preparation of a powdery pharmaceutical composition by means of an extruder
US9757338B2 (en) 2010-03-01 2017-09-12 Dexcel Pharma Technologies Ltd. Sustained-release donepezil formulation
RU2631481C2 (ru) * 2010-08-04 2017-09-22 Грюненталь Гмбх ЛЕКАРСТВЕННАЯ ДОЗИРОВАННАЯ ФОРМА, КОТОРАЯ СОДЕРЖИТ 6'-ФТОР-(N-МЕТИЛ-ИЛИ N, N-ДИМЕТИЛ-)-4-ФЕНИЛ-4', 9'-ДИГИДРО-3' Н-СПИРО[ЦИКЛОГЕКСАН-1, 1'-ПИРАНО[3, 4, b] ИНДОЛ]-4-АМИН ДЛЯ ЛЕЧЕНИЯ НОЦИЦЕПТИВНОЙ БОЛИ
RU2582390C2 (ru) * 2010-08-04 2016-04-27 Грюненталь Гмбх ЛЕКАРСТВЕННАЯ ДОЗИРОВАННАЯ ФОРМА, КОТОРАЯ СОДЕРЖИТ 6'-ФТОР-(N-МЕТИЛ-ИЛИ N,N-ДИМЕТИЛ-)-4-ФЕНИЛ-4', 9'-ДИГИДРО-3'Н-СПИРО[ЦИКЛОГЕКСАН-1,1'-ПИРАНО[3,4,b]ИНДОЛ]-4-АМИН
US9289416B2 (en) 2010-08-04 2016-03-22 Gruenenthal Gmbh Pharmaceutical dosage forms comprising 6′-fluoro-(N-methyl- or N,N-dimethyl-)-4-phenyl-4′,9′-dihydro-3′H-spiro[cyclohexane-1,1′-pyrano[3,4,b]indol]-4-amine
US10912763B2 (en) 2010-08-04 2021-02-09 Grünenthal GmbH Pharmaceutical dosage forms comprising 6′-fluoro-(N-methyl- or N,N-dimethyl-)-4-phenyl-4′,9′-dihydro-3′H-spiro[cyclohexane-1,1′-pyrano[3,4,b]indol]-4-amine
US9636303B2 (en) 2010-09-02 2017-05-02 Gruenenthal Gmbh Tamper resistant dosage form comprising an anionic polymer
US10300141B2 (en) 2010-09-02 2019-05-28 Grünenthal GmbH Tamper resistant dosage form comprising inorganic salt
US20120202838A1 (en) * 2010-11-04 2012-08-09 Abbott Laboratories Drug formulations
US9872837B2 (en) 2010-12-22 2018-01-23 Purdue Pharma L.P. Tamper resistant controlled release dosage forms
US9861584B2 (en) 2010-12-22 2018-01-09 Purdue Pharma L.P. Tamper resistant controlled release dosage forms
US9750703B2 (en) 2010-12-22 2017-09-05 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US11911512B2 (en) 2010-12-22 2024-02-27 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US10966932B2 (en) 2010-12-22 2021-04-06 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US9744136B2 (en) 2010-12-22 2017-08-29 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
US11590082B2 (en) 2010-12-22 2023-02-28 Purdue Pharma L.P. Encased tamper resistant controlled release dosage forms
WO2012085657A2 (fr) 2010-12-23 2012-06-28 Purdue Pharma L.P. Formes pharmaceutiques solides à usage oral résistant à la contrefaçon
US10201502B2 (en) 2011-07-29 2019-02-12 Gruenenthal Gmbh Tamper-resistant tablet providing immediate drug release
US10864164B2 (en) 2011-07-29 2020-12-15 Grünenthal GmbH Tamper-resistant tablet providing immediate drug release
US9655853B2 (en) 2012-02-28 2017-05-23 Grünenthal GmbH Tamper-resistant dosage form comprising pharmacologically active compound and anionic polymer
US10335373B2 (en) 2012-04-18 2019-07-02 Grunenthal Gmbh Tamper resistant and dose-dumping resistant pharmaceutical dosage form
US10064945B2 (en) 2012-05-11 2018-09-04 Gruenenthal Gmbh Thermoformed, tamper-resistant pharmaceutical dosage form containing zinc
US9044402B2 (en) 2012-07-06 2015-06-02 Egalet Ltd. Abuse-deterrent pharmaceutical compositions for controlled release
US10064826B2 (en) * 2013-03-15 2018-09-04 Navinta, Llc Direct compression and dry granulation processes for preparing carglumic acid tablets having less impurities than those produced by wet granulation process
US20140356428A1 (en) * 2013-05-29 2014-12-04 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10154966B2 (en) 2013-05-29 2018-12-18 Grünenthal GmbH Tamper-resistant dosage form containing one or more particles
US20170296472A1 (en) * 2013-05-29 2017-10-19 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US9737490B2 (en) * 2013-05-29 2017-08-22 Grünenthal GmbH Tamper resistant dosage form with bimodal release profile
US10624862B2 (en) 2013-07-12 2020-04-21 Grünenthal GmbH Tamper-resistant dosage form containing ethylene-vinyl acetate polymer
US10449547B2 (en) 2013-11-26 2019-10-22 Grünenthal GmbH Preparation of a powdery pharmaceutical composition by means of cryo-milling
US9913814B2 (en) 2014-05-12 2018-03-13 Grünenthal GmbH Tamper resistant immediate release capsule formulation comprising tapentadol
US9872835B2 (en) 2014-05-26 2018-01-23 Grünenthal GmbH Multiparticles safeguarded against ethanolic dose-dumping
US20180153845A1 (en) * 2014-11-19 2018-06-07 Biogen Ma Inc. Pharmaceutical bead formulations comprising dimethyl fumarate
US11197842B2 (en) * 2014-11-19 2021-12-14 Biogen Ma Inc. Pharmaceutical bead formulations comprising dimethyl fumarate
US9855263B2 (en) 2015-04-24 2018-01-02 Grünenthal GmbH Tamper-resistant dosage form with immediate release and resistance against solvent extraction
US10842750B2 (en) 2015-09-10 2020-11-24 Grünenthal GmbH Protecting oral overdose with abuse deterrent immediate release formulations
US9861629B1 (en) 2015-10-07 2018-01-09 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10478429B2 (en) 2015-10-07 2019-11-19 Patheon Softgels, Inc. Abuse deterrent dosage forms
US9943513B1 (en) 2015-10-07 2018-04-17 Banner Life Sciences Llc Opioid abuse deterrent dosage forms
US10335405B1 (en) 2016-05-04 2019-07-02 Patheon Softgels, Inc. Non-burst releasing pharmaceutical composition
US11679413B2 (en) 2016-09-02 2023-06-20 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasonic vibration system having a lateral surface mounting
US11090759B2 (en) 2016-09-02 2021-08-17 Herrmann Ultraschalltechnik Gmbh & Co. Kg Ultrasonic vibration system having an amplitude transformer mounted on the lateral surface
US11186011B2 (en) * 2017-02-24 2021-11-30 Entex Rust & Mitschke Gmbh Method for producing thermally crosslinkable polymers in a planetary roller extruder
US10335375B2 (en) 2017-05-30 2019-07-02 Patheon Softgels, Inc. Anti-overingestion abuse deterrent compositions
CN113939286A (zh) * 2019-03-25 2022-01-14 道格拉斯制药有限公司 缓释药物制剂

Also Published As

Publication number Publication date
US20140112984A1 (en) 2014-04-24
HUE035492T2 (en) 2018-05-02
US20190321358A1 (en) 2019-10-24
SI2478896T1 (sl) 2017-12-29
CY1119598T1 (el) 2018-04-04
US20150374630A1 (en) 2015-12-31
NO20074412L (no) 2007-11-02
US20160184297A1 (en) 2016-06-30
US10058548B2 (en) 2018-08-28
RU2010119291A (ru) 2011-11-20
BRPI0606145A2 (pt) 2009-06-02
US10675278B2 (en) 2020-06-09
PT1845956T (pt) 2017-07-04
LT1845956T (lt) 2017-06-12
TWI381860B (zh) 2013-01-11
BRPI0606145A8 (pt) 2018-05-29
NZ560203A (en) 2010-09-30
EP2478896B1 (fr) 2017-09-06
MX2007009393A (es) 2007-08-16
IL185018A (en) 2017-06-29
WO2006082099A1 (fr) 2006-08-10
US20100151028A1 (en) 2010-06-17
RU2399371C2 (ru) 2010-09-20
CN101175482A (zh) 2008-05-07
KR101299928B1 (ko) 2013-08-27
PT2478896T (pt) 2017-11-15
CA2595954C (fr) 2011-01-18
DK1845956T3 (en) 2017-07-10
US20160120810A1 (en) 2016-05-05
CN101175482B (zh) 2013-09-18
RU2007132975A (ru) 2009-04-20
BRPI0606145C1 (pt) 2021-05-25
HRP20171695T1 (hr) 2017-12-15
US20140322311A1 (en) 2014-10-30
AR107985A2 (es) 2018-07-04
EP1845956A1 (fr) 2007-10-24
PE20061087A1 (es) 2006-12-15
KR20070111510A (ko) 2007-11-21
LT2478896T (lt) 2017-12-27
SI1845956T1 (sl) 2017-07-31
US20080311187A1 (en) 2008-12-18
IL185018A0 (en) 2007-12-03
NO342922B1 (no) 2018-09-03
AU2006210145B2 (en) 2011-06-09
HRP20170746T1 (hr) 2017-08-11
EP2478896A1 (fr) 2012-07-25
EP1845956B1 (fr) 2017-03-22
US20170209379A1 (en) 2017-07-27
ZA200705836B (en) 2008-06-25
BRPI0606145B8 (pt) 2019-11-05
TW200640501A (en) 2006-12-01
US20150290138A1 (en) 2015-10-15
PL1845956T3 (pl) 2017-08-31
ES2629303T3 (es) 2017-08-08
JP5202963B2 (ja) 2013-06-05
DE102005005446A1 (de) 2006-08-10
RU2461381C2 (ru) 2012-09-20
US20170312271A1 (en) 2017-11-02
BRPI0606145B1 (pt) 2019-09-17
PL2478896T3 (pl) 2018-02-28
AU2006210145A1 (en) 2006-08-10
ES2651016T3 (es) 2018-01-23
AU2006210145B9 (en) 2011-06-30
US20140079780A1 (en) 2014-03-20
AR054328A1 (es) 2007-06-20
DK2478896T3 (da) 2017-11-20
HUE032099T2 (en) 2017-08-28
CA2595954A1 (fr) 2006-08-10
CY1118914T1 (el) 2018-01-10
US20190008849A1 (en) 2019-01-10
US20200215053A1 (en) 2020-07-09
JP2008528654A (ja) 2008-07-31
US20180369235A1 (en) 2018-12-27

Similar Documents

Publication Publication Date Title
US10675278B2 (en) Crush resistant delayed-release dosage forms
US9750701B2 (en) Pharmaceutical dosage form

Legal Events

Date Code Title Description
AS Assignment

Owner name: GRUNENTHAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASHWORTH, JUDY DR.;ARKENAU-MARIC, ELISABETH DR.;BARTHOLOMAUS, JOHANNES DR.;REEL/FRAME:017878/0195;SIGNING DATES FROM 20060215 TO 20060420

AS Assignment

Owner name: GRUENENTHAL GMBH, GERMANY

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ASHWORTH, JUDY, DR.;ARKENAU-MARIC, ELISABETH, DR.;BARTHOLOMAEUS, JOHANNES, DR.;AND OTHERS;REEL/FRAME:023562/0270;SIGNING DATES FROM 20091103 TO 20091113

AS Assignment

Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT

Free format text: CONFIRMATORY GRANT OF SECURITY INTEREST IN UNITED STATES PATENTS (EXCLUSIVELY LICENSED PATENTS);ASSIGNOR:ENDO PHARMACEUTICALS INC.;REEL/FRAME:025456/0172

Effective date: 20101130

AS Assignment

Owner name: MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRA

Free format text: SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS;ASSIGNOR:ENDO PHARMACEUTICALS INC.;REEL/FRAME:026561/0978

Effective date: 20110617

AS Assignment

Owner name: ENDO PHARMACEUTICALS INC., PENNSYLVANIA

Free format text: RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS RECORDED AT REEL/FRAME 25456/172;ASSIGNOR:JPMORGAN CHASE BANK N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:026577/0357

Effective date: 20110617

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

AS Assignment

Owner name: ENDO PHARMACEUTICALS SOLUTIONS INC., PENNSYLVANIA

Free format text: RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT;REEL/FRAME:032380/0157

Effective date: 20140228

AS Assignment

Owner name: DEUTSCHE BANK AG NEW YORK BRANCH, AS COLLATERAL AG

Free format text: GRANT OF SECURITY INTEREST IN LICENSED PATENTS;ASSIGNOR:ENDO PHARMACEUTICALS, INC.;REEL/FRAME:032491/0620

Effective date: 20140228

AS Assignment

Owner name: ENDO PHARMACEUTICALS INC., PENNSYLVANIA

Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF RECEIVING PARTY IN RELEASE OF PATENT SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS PREVIOUSLY RECORDED ON REEL 032380 FRAME 0157. ASSIGNOR(S) HEREBY CONFIRMS THE RELEASE OF SECURITY INTEREST IN EXCLUSIVELY LICENSED PATENTS.;ASSIGNOR:MORGAN STANLEY SENIOR FUNDING, INC., AS ADMINISTRATIVE AGENT;REEL/FRAME:032513/0255

Effective date: 20140228

AS Assignment

Owner name: ENDO PHARMACEUTICALS, INC., PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001

Effective date: 20170427

Owner name: ENDO PHARMACEUTICALS SOLUTIONS, INC., PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001

Effective date: 20170427

Owner name: ASTORA WOMEN'S HEALTH HOLDINGS, LLC, PENNSYLVANIA

Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH;REEL/FRAME:042362/0001

Effective date: 20170427