TWI636652B - 電荷泵單元及電荷泵電路 - Google Patents

電荷泵單元及電荷泵電路 Download PDF

Info

Publication number
TWI636652B
TWI636652B TW106127886A TW106127886A TWI636652B TW I636652 B TWI636652 B TW I636652B TW 106127886 A TW106127886 A TW 106127886A TW 106127886 A TW106127886 A TW 106127886A TW I636652 B TWI636652 B TW I636652B
Authority
TW
Taiwan
Prior art keywords
terminal
type transistor
coupled
charge pump
pump unit
Prior art date
Application number
TW106127886A
Other languages
English (en)
Other versions
TW201902097A (zh
Inventor
張武昌
楊政德
Original Assignee
力旺電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力旺電子股份有限公司 filed Critical 力旺電子股份有限公司
Application granted granted Critical
Publication of TWI636652B publication Critical patent/TWI636652B/zh
Publication of TW201902097A publication Critical patent/TW201902097A/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/065Differential amplifiers of latching type
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/26Sensing or reading circuits; Data output circuits
    • G11C16/28Sensing or reading circuits; Data output circuits using differential sensing or reference cells, e.g. dummy cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/16Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM using electrically-fusible links
    • G11C17/165Memory cells which are electrically programmed to cause a change in resistance, e.g. to permit multiple resistance steps to be programmed rather than conduct to or from non-conduct change of fuses and antifuses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C17/00Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards
    • G11C17/14Read-only memories programmable only once; Semi-permanent stores, e.g. manually-replaceable information cards in which contents are determined by selectively establishing, breaking or modifying connecting links by permanently altering the state of coupling elements, e.g. PROM
    • G11C17/18Auxiliary circuits, e.g. for writing into memory
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/56External testing equipment for static stores, e.g. automatic test equipment [ATE]; Interfaces therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/70Masking faults in memories by using spares or by reconfiguring
    • G11C29/78Masking faults in memories by using spares or by reconfiguring using programmable devices
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/145Applications of charge pumps; Boosted voltage circuits; Clamp circuits therefor
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C5/00Details of stores covered by group G11C11/00
    • G11C5/14Power supply arrangements, e.g. power down, chip selection or deselection, layout of wirings or power grids, or multiple supply levels
    • G11C5/147Voltage reference generators, voltage or current regulators; Internally lowered supply levels; Compensation for voltage drops
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • G11C7/062Differential amplifiers of non-latching type, e.g. comparators, long-tailed pairs
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/12Bit line control circuits, e.g. drivers, boosters, pull-up circuits, pull-down circuits, precharging circuits, equalising circuits, for bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/14Dummy cell management; Sense reference voltage generators
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/18Bit line organisation; Bit line lay-out
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/22Read-write [R-W] timing or clocking circuits; Read-write [R-W] control signal generators or management 
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/525Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections
    • H01L23/5252Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body with adaptable interconnections comprising anti-fuses, i.e. connections having their state changed from non-conductive to conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/161Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys
    • H01L29/165Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table including two or more of the elements provided for in group H01L29/16, e.g. alloys in different semiconductor regions, e.g. heterojunctions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/012Modifications of generator to improve response time or to decrease power consumption
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/13Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals
    • H03K5/133Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices
    • H03K5/134Arrangements having a single output and transforming input signals into pulses delivered at desired time intervals using a chain of active delay devices with field-effect transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B20/00Read-only memory [ROM] devices
    • H10B20/20Programmable ROM [PROM] devices comprising field-effect components
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/417Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the field-effect type
    • G11C11/419Read-write [R-W] circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0021Auxiliary circuits
    • G11C13/004Reading or sensing circuits or methods
    • G11C2013/0042Read using differential sensing, e.g. bit line [BL] and bit line bar [BLB]
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/002Isolation gates, i.e. gates coupling bit lines to the sense amplifier
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/005Transfer gates, i.e. gates coupling the sense amplifier output to data lines, I/O lines or global bit lines
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2211/00Indexing scheme relating to digital stores characterized by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C2211/401Indexing scheme relating to cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C2211/4013Memory devices with multiple cells per bit, e.g. twin-cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/06Sense amplifiers; Associated circuits, e.g. timing or triggering circuits
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0041Control circuits in which a clock signal is selectively enabled or disabled
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/007Plural converter units in cascade
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/06Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider
    • H02M3/07Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using resistors or capacitors, e.g. potential divider using capacitors charged and discharged alternately by semiconductor devices with control electrode, e.g. charge pumps
    • H02M3/073Charge pumps of the Schenkel-type
    • H02M3/075Charge pumps of the Schenkel-type including a plurality of stages and two sets of clock signals, one set for the odd and one set for the even numbered stages
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K2005/00013Delay, i.e. output pulse is delayed after input pulse and pulse length of output pulse is dependent on pulse length of input pulse
    • H03K2005/0015Layout of the delay element
    • H03K2005/00195Layout of the delay element using FET's
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/159Applications of delay lines not covered by the preceding subgroups
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Nonlinear Science (AREA)
  • Read Only Memory (AREA)
  • Dc-Dc Converters (AREA)
  • Semiconductor Memories (AREA)
  • Stabilization Of Oscillater, Synchronisation, Frequency Synthesizers (AREA)

Abstract

電荷泵電路包含電壓輸入埠、電壓輸出埠、串接於電壓輸入埠及電壓輸出埠之間的複數個電荷泵單元、時脈訊號源及N個時脈延遲元件。時脈訊號源產生主要時脈訊號,而N個時脈延遲元件延遲主要時脈訊號以產生電荷泵單元所需之時脈訊號。主要時脈訊號之正緣領先最後一電荷泵單元所接收之最末時脈訊號的正緣,且主要時脈訊號之負緣落後於最末時脈訊號的正緣。每一電荷泵單元包含兩組反向器及延遲元件以產生兩個互補的時脈訊號。

Description

電荷泵單元及電荷泵電路
本發明係有關於一種電荷泵電路,尤其是一種具有低逆向電流及低峰值電流的電荷泵電路。
為滿足電子裝置對於低耗能的需求,積體電路(integrated circuits,IC)的電力規格也被重新設計成能夠在低電壓的環境中操作,以減少電能損耗。舉例來說,過去電力規格為5V的積體電路現在常被減至3.3V或甚至低於2V。雖然低電壓的操作能夠減少電力損耗,然而在部分的情況下,電路仍然需要較高的電壓來完成操作。舉例來說,快閃記憶體就需要較高的電壓來進行寫入及清除操作。其中較高的電壓常會利用電荷泵電路來提供。
先前技術的電荷泵電路常利用互補的時脈訊號來控制。互補的時脈訊號則常是透過將主要時脈訊號經由兩個具有不同數量之反向器的訊號路徑來產生。然而,由於這兩個互補的時脈訊號是經由不同的訊號路徑產生,因此兩者的相位差並非180度。也就是說,其中一個時脈訊號會領先另一個時脈訊號。這樣非完美的互補時脈訊號將導致電荷泵電路產生逆向電流,並增加電流損耗。此外,為了提供更高的電壓,電荷泵電路須具備更多級的電路。在此情況下,倘若未能妥善控制時脈訊號,則將導致高峰值電流產生。亦即,隨著電荷泵路的級數變多,時脈訊號的控制也變得更加複雜。
本發明之一實施例提供一種電荷泵單元,電荷泵單元包含輸入端、輸出端、第一N型電晶體、第二N型電晶體、第一P型電晶體、第二P型電晶體、第一電容、第二電容、時脈輸入端、P個第一反向器及R個延遲元件。
第一N型電晶體具有第一端、第二端及控制端,第一N型電晶體的第一端耦接於輸入端。第二N型電晶體具有第一端、第二端及控制端,第二N型電晶體的第一端耦接於輸入端,第二N型電晶體的第二端耦接於第一N型電晶體之控制端,而第二N型電晶體的控制端耦接於第一N型電晶體之第二端。第一P型電晶體具有第一端、第二端及控制端,第一P型電晶體的第一端耦接於第一N型電晶體之第二端,而第一P型電晶體的第二端耦接於輸出端。第二P型電晶體具有第一端、第二端及控制端,第二P型電晶體的第一端耦接於第二N型電晶體之第二端及第一P型電晶體的控制端,第二P型電晶體的第二端耦接於輸出端,而第二P型電晶體的控制端耦接於第一P型電晶體之第一端。第一電容具有第一端及第二端,第一電容的第一端耦接於第一N型電晶體之第二端。第二電容具有第一端及第二端,第二電容的第一端耦接於第二N型電晶體之第二端。
時脈輸入端接收時脈訊號。P個第一反向器串聯於時脈輸入端及第一電容之第二端之間,其中P為正整數。R個延遲元件串聯於時脈輸入端及第二電容之第二端之間,其中R為正整數。
本發明之另一實施例提供一種電荷泵電路。電荷泵電路包含電壓輸入埠、電壓輸出埠、複數個電荷泵單元、時脈訊號源及N個時脈延遲元件。
電壓輸入埠接收輸入電壓,而電壓輸出埠輸出抬升電壓。複數個電荷泵單元串接於電壓輸入埠及電壓輸出埠之間。時脈訊號源產生主要時脈訊號。N個時脈延遲元件耦接於時脈訊號源,並可延遲主要時脈訊號以產生複數個電荷泵單元中至少一電荷泵單元所需之至少一時脈訊號。
複數個電荷泵單元中的第一電荷泵單元接收主要時脈訊號。主要時脈訊號的正緣領先至少一電荷泵單元中最後一電荷泵單元所接收之最末時脈訊號的正緣,且主要時脈訊號之負緣係落後於最末時脈訊號的正緣。
第1圖為本發明一實施例之電荷泵單元100的示意圖。電荷泵單元100包含輸入端IN、輸出端OUT、第一N型電晶體N1、第二N型電晶體N2、第一P型電晶體P1、第二P型電晶體P2、第一電容C1、第二電容C2、時脈輸入端CLK、P個第一反向器110、Q個第二反向器120及R個延遲元件130。P為正整數,Q為小於P的正整數或0,而R為正整數。
第一N型電晶體N1具有第一端、第二端、控制端及基體端。第一N型電晶體N1的第一端耦接於輸入端IN。第二N型電晶體N2具有第一端、第二端、控制端及基體端。第二N型電晶體N2的第一端耦接於輸入端IN,第二N型電晶體N2的第二端耦接於第一N型電晶體N1的控制端,而第二N型電晶體N2的控制端耦接於第一N型電晶體N1的第二端。
第一P型電晶體P1具有第一端、第二端、控制端及基體端。第一P型電晶體P1的第一端耦接於第一N型電晶體N1的第二端,而第一P型電晶體P1的第二端耦接於輸出端OUT。第二P型電晶體P2具有第一端、第二端、控制端及基體端。第二P型電晶體P2的第一端耦接於第二N型電晶體N2的第二端及第一P型電晶體P1的控制端,第二P型電晶體P2的第二端耦接於輸出端OUT,而第二P型電晶體P2的控制端耦接於第一P型電晶體P1的第一端。
第一電容C1具有第一端及第二端。第一電容C1的第一端耦接於第一N型電晶體N1的第二端。第二電容C2具有第一端及第二端。第二電容C2的第一端耦接於第二N型電晶體N2的第二端。
時脈輸入端CLK接收時脈訊號SIG CLK。P個第一反向器110可串聯於時脈輸入端CLK及第一電容C1之第二端之間。Q個第二反向器120及R個延遲元件130可串聯於時脈輸入端CLK及第二電容C2之第二端之間。
此外,P與Q的差值可為奇數,因此由第一電容C1所接收到的時脈訊號SIG CLKA與第二電容C2所接收到的時脈訊號SIG CLKB可為互補。舉例來說,P可為3,而Q可為2。為確保時脈訊號SIG CLKA與時脈訊號SIG CLKB之間的相位差保持在180度,R個延遲元件130可與Q個第二反向器120一起串聯在時脈輸入端CLK及第二電容C2之第二端之間。R個延遲元件130可設計成能夠提供適當的延遲,使得P個第一反向器110所造成的延遲實質上可與Q個第二反向器120及R個延遲元件130所共同造成的延遲相等。如此一來,時脈訊號SIG CLKA與時脈訊號SIG CLKB就可以同步變換電位,減少電荷泵單元100產生逆向電流。
第2圖為時脈訊號SIG CLKA與時脈訊號SIG CLKB的波形圖。在第2圖中,在時段T1,時脈訊號SIG CLKA為第一電壓VDD,而時脈訊號SIG CLKB為第二電壓VSS,第二電壓VSS低於第一電壓VDD。在部分實施例中,電荷泵單元100的輸入端IN也可接收第一電壓VDD。
在時段T1先前的時段中,第一電容C1的第一端可先經由第一N型電晶體N1被充電至第一電壓VDD,而第一電容C1的第二端則為第二電壓VSS。在時段T1中,由於時脈訊號SIG CLKA會被抬升至第一電壓VDD,因此第一電容C1的第一端會被抬升到第三電壓2VDD,亦即第一電壓VDD的兩倍。如此一來,第二N型電晶體N2會被導通,使得第二電容C2的第一端會經由第二N型電晶體N2被充電至第一電壓VDD,同時第二電容C2的第二端則會隨著時脈訊號SIG CLKB處於第二電壓VSS。
再者,第一P型電晶體P1會被導通,而第二P型電晶體P2會被截止。因此,電荷泵單元100可經由第一P型電晶體P1自輸出端OUT輸出第三電壓2VDD。
相似地,在時段T2中,時脈訊號SIG CLKA變為第二電壓VSS而時脈訊號SIG CLKB變為第一電壓VDD。由於第二電容C2的第一端已經在時段T1中經由第二N型電晶體N2被充電至第一電壓VDD,因此在時段T2中,第二電容C2的第一端會隨著時脈訊號SIG CLKB抬升而被抬升至第三電壓2VDD。如此一來,第一N型電晶體N1將被導通,因此第一電容C1的第一端會被充電至第一電壓VDD,而第一電容C1的第二端則會隨著時脈訊號SIG CLKA而處於第二電壓VSS。
再者,第二P型電晶體P2會被導通,而第一P型電晶體P1會被截止。因此,第三電壓2VDD會經由第二P型電晶體P2輸出至輸出端OUT。
如此一來,第一P型電晶體P1及第二P型電晶體P2可以交替地輸出第三電壓2VDD,亦即輸入電壓VDD的兩倍。在先前技術中,若時脈訊號SIG CLKA及時脈訊號SIG CLKB未能同步變換電位,則將可能導致逆向電流產生。舉例來說,若在時脈訊號SIG CLKA自第二電壓VSS變為第一電壓VDD之前,時脈訊號SIG CLKB就先自第一電壓VDD變為第二電壓VSS,則時脈訊號SIG CLKA及時脈訊號SIG CLKB會有短暫的時間同時處於第二電壓VSS。在這個短暫的時間內,第一P型電晶體P1及第二P型電晶體P2可能都會被導通,因而產生自輸出端OUT流經第一P型電晶體P1及第二P型電晶體P2至第一P型電晶體P1的第一端及第二P型電晶體P2的第一端的逆向電流。
然而,由於P個第一反向器110所造成的延遲實質上會與Q個第二反向器120及R個延遲元件130所共同造成的延遲相同,因此電荷泵單元100能夠減少因為時脈訊號不匹配而導致的逆向電流。
第3圖為本發明一實施例之反向器INV的示意圖。P個第一反向器110及Q個第二反向器120中的每一個反向器皆可與反向器INV具有相同的結構。反向器INV包含輸入端、輸出端、P型電晶體INVP及N型電晶體INVN。P型電晶體INVP具有第一端、第二端及控制端。P型電晶體INVP的第一端可接收第一偏壓,例如第一電壓VDD,P型電晶體INVP的第二端耦接於反向器INV的輸出端,而P型電晶體的控制端耦接於反向器INV的輸入端。N型電晶體INVN具有第一端、第二端及控制端。N型電晶體INVN的第一端耦接於P型電晶體的第二端及反向器INV的輸出端,N型電晶體INVN的第二端可接收第二偏壓,例如第二電壓VSS,而N型電晶體的控制端耦接於反向器INV的輸入端。
第4圖為本發明一實施例之延遲元件DE的示意圖。R個延遲元件130中的每一個延遲元件都可與延遲元件DE具有相同的結構。延遲元件DE具有輸入端、輸出端、N型電晶體DEN及P型電晶體DEP。N型電晶體DEN具有第一端、第二端及控制端,N型電晶體DEN的第一端耦接於延遲元件DE之輸入端,N型電晶體DEN的第二端耦接於延遲元件DE之輸出端,而N型電晶體DEN的控制端接收第一偏壓,例如為第一電壓VDD。P型電晶體DEP具有第一端、第二端及控制端,P型電晶體DEP的第一端耦接於延遲元件DE之輸入端,P型電晶體DEP的第二端耦接於延遲元件DE之輸出端,而P型電晶體DEP的控制端可接收第二偏壓,例如為第二電壓VSS。亦即,第一偏壓會大於第二偏壓。
為提供與反向器INV相同的延遲效果,延遲元件DE可設計成使其中的N型電晶體DEN的通道寬長比(channel width-to-length ratio)實質上與反向器INV之N型電晶體INVN之通道寬長比相等。此外,延遲元件DE之P型電晶體DEP之通道寬長比實質上也可相等於反向器INV之P型電晶體INVP之通道寬長比。
在此情況下,若P個第一反向器110及Q個第二反向器120皆以反向器INV來實作,且R個延遲元件130皆以延遲元件DE來實作,則R與Q的和可等於P。如此一來,P個第一反向器110所造成的延遲便會與Q個第二反向器120及R個延遲元件130所造成的延遲相等。舉例來說,P可為3,Q可為2,而R可為1。或者,在另一個實施例中,P可為5,Q可為2,而R可為3。此外,電荷泵單元100也可僅利用第一反向器110及延遲元件130,而不使用第二反向器120。舉例來說,P可為1,Q可為0,而R可為1。在此情況下,第一電容C1及第二電容C2仍然可以接收到同步且互補的時脈訊號,並得以避免逆向電流產生。
再者,在部分實施例中,延遲元件130造成的延遲可能會與反向器110或120所造成的延遲不同,此時P、Q及R的數值亦可根據系統的需求加以調整。
在第1圖中,電荷泵單元100可另包含第一初始升壓電晶體IT1及第二初始升壓電晶體IT2。第一初始升壓電晶體IT1具有第一端、第二端及控制端,第一初始升壓電晶體IT1的第一端耦接於電荷泵單元100之輸入端IN,第一初始升壓電晶體IT1的第二端耦接於第一N型電晶體N1之第二端,而第一初始升壓電晶體IT1的控制端耦接於電荷泵單元100之輸入端IN。第二初始升壓電晶體IT2具有第一端、第二端及控制端,第二初始升壓電晶體IT2的第一端耦接於電荷泵單元100之輸入端IN,第二初始升壓電晶體IT2的第二端耦接於第二N型電晶體N2之第二端,而第二初始升壓電晶體IT2的控制端耦接於電荷泵單元100之輸入端IN。
初始升壓電晶體IT1及IT2可為N型電晶體,且可用以在升壓過程的初期將第一N型電晶體N1的第二端及第二N型電晶體N2的第二端充電至(VDD-Vthn),其中Vthn為N型電晶體的臨界電壓,以確保電荷泵單元100能夠快速地進入穩定狀態並輸出高電壓。
此外,電荷泵單元100還可包含第一升壓充電電晶體TT1及第二升壓充電電晶體TT2。第一升壓充電電晶體TT1具有第一端、第二端及控制端。第一升壓充電電晶體TT1的第一端耦接於第一N型電晶體N1之第二端,第一升壓充電電晶體TT1的第二端耦接於電荷泵單元100之輸出端OUT,而第一升壓充電電晶體TT1的控制端耦接於電荷泵單元100之輸出端OUT。第二升壓充電電晶體TT2具有第一端、第二端及控制端。第二升壓充電電晶體TT2的第一端耦接於第二N型電晶體N2之第二端,第二升壓充電電晶體TT2的第二端耦接於電荷泵單元100之輸出端OUT,而第二升壓充電電晶體TT2的控制端耦接於電荷泵單元100之輸出端OUT。
升壓充電電晶體TT1及TT2可為P型電晶體,並可用來在升壓過程的初期對第一P型電晶體P1之第二端及第二P型電晶體P2之第二端進行預充電,以減少電荷泵100輸出電壓的準備時間。舉例來說,若時脈訊號SIG CLKA自第二電壓VSS變為第一電壓VDD,第一電容C1的第一端會被抬升至第三電壓2VDD,此時第一升壓充電電晶體TT1就可以將第一P型電晶體的第二端充電至(2VDD-Vthp),其中Vthp為P型電晶體的臨界電壓,以確保電荷泵單元100能夠快速地進入穩定狀態並輸出高電壓。
再者,為減少基體效應(body effect),並避免第一N型電晶體N1的接面崩潰產生漏電流,電荷泵單元100還可包含第一井電位切換電路WS1。第一井電位切換電路WS1包含第三N型電晶體及第四N型電晶體N4。
第三N型電晶體N3具有第一端、第二端、控制端及基體端。第三N型電晶體N3的第一端耦接於第一N型電晶體N1之基體端,第三N型電晶體N3的第二端耦接於第一N型電晶體N1之第二端,第三N型電晶體N3的控制端耦接於第一N型電晶體N1之第一端,而第三N型電晶體N3的基體端耦接於第一N型電晶體N1之基體端。第四N型電晶體N4具有第一端、第二端、控制端及基體端,第四N型電晶體N4的第一端耦接於第一N型電晶體N1之第一端,第四N型電晶體N4的第二端耦接於第一N型電晶體N1之基體端,第四N型電晶體N4的控制端耦接於第一N型電晶體N1之第二端,而第四N型電晶體N4的基體端耦接於第一N型電晶體N1之基體端。
透過井電位切換電路WS1,第一N型電晶體N1的基體端電壓就可被控制在不大於第一N型電晶體N1之第一端電壓,亦不大於第一N型電晶體N1之第二端電壓。因此得以避免第一N型電晶體N1產生基體效應並減少漏電流。
相似地,在第1圖中,電荷泵單元100還可包含第二井電位切換電路WS2、第三井電位切換電路WS3及第四井電位切換電路WS4,以避免第二N型電晶體N2、第一P型電晶體P1及第二P型電晶體P2因為基體效應而產生漏電流。
第二井電位切換電路WS2至第四井電位切換電路WS4可皆與第一井電位切換電路WS1具有相似的結構。也就是說,第二井電位切換電路WS2可包含第五N型電晶體N5及第六N型電晶體N6。第五N型電晶體N5及第六N型電晶體N6可耦接至第二N型電晶體N2,且其耦接方式會與第三N型電晶體N3及第四N型電晶體耦接至第一N型電晶體N1的方式相同。
再者,第三井電位切換電路WS3可包含第三P型電晶體P3及第四P型電晶體P4。第三P型電晶體P3及第四P型電晶體P4可耦接至第一P型電晶體P1,且其耦接方式會與第三N型電晶體N3及第四N型電晶體耦接至第一N型電晶體N1的方式相同。第四井電位切換電路WS4可包含第五P型電晶體P5及第六P型電晶體P6。第五P型電晶體P5及第六P型電晶體P6可耦接至第二P型電晶體P2,且其耦接方式會與第三N型電晶體N3及第四N型電晶體耦接至第一N型電晶體N1的方式相同。
第5圖為本發明一實施例之電荷泵電路10的示意圖。電荷泵電路10包含電壓輸入埠VIN、電壓輸出埠VOUT、(N+1)個電荷泵單元1001至100(N+1)、時脈訊號源12及N個時脈延遲元件141至14N,N為正整數。(N+1)個電荷泵單元1001至100(N+1)可串接於電壓輸入埠VIN及電壓輸出埠VOUT之間。也就是說,(N+1)個電荷泵單元中的第一電荷泵單元1001可耦接於電壓輸入埠VIN,而(N+1)個電荷泵單元中的最末電荷泵單元100(N+1)可耦接於電壓輸出埠VOUT。
在部分實施例中,每一個(N+1)個電荷泵單元1001至100(N+1)可與第1圖中的電荷泵單元100具有相同的結構。因此,若電壓輸入埠VIN接收到第一電壓VDD,則電壓輸出埠VOUT則可輸出(N+2)倍的第一電壓VDD,亦即(N+2)VDD。
此外,利用第1圖的結構,電荷泵單元1001至100(N+1)也能夠根據所接收到的單一時脈訊號,而自行產生兩個同步且互補的時脈訊號。
也就是說,當接收到時脈訊號源12所產生的主時脈訊號SIG CLK1時,電荷泵單元1001至100(N+1)可對應地產生兩個互補的時脈訊號。然而,倘若電荷泵單元1001至100(N+1)所產生的互補時脈訊號是同時變換電位,則將導致電荷泵單元1001至100(N+1)中的電容會在同時充電,使得每次時脈訊號變換電位時都會產生高峰值電流。因此,在第5圖中,N個時脈延遲元件141至14N可串接至時脈訊號源12,並藉由延遲主時脈訊號SIG CLK1產生電荷泵單元1001至100(N+1)所需的時脈訊號。此外,每一個時脈延遲元件141至14N可藉由將所接收到的時脈訊號延遲一預定時間以產生所需的時脈訊號。
舉例來說,第一時脈延遲元件141的輸出端可耦接於第二電荷泵單元1002的時脈輸入端CLK,而第二時脈延遲元件142的輸出端可耦接於第三電荷泵單元1003的時脈輸入端CLK。此外,時脈訊號SIG CLK2可輸出至第二時脈延遲元件142以產生時脈訊號SIG CLK3。亦即,時脈訊號SIG CLK3可利用延遲時脈訊號SIG CLK2來產生。
第6圖為時脈訊號源12所產生之主時脈訊號SIG CLK1及時脈延遲元件141至14N所產生之時脈訊號SIG CLK2至SIG CLK (N+1)的波形圖。在第6圖中,主時脈訊號SIG CLK1及時脈訊號SIG CLK2至SIG CLK (N+1)會依序變換電位。舉例來說,主時脈訊號SIG CLK1的正緣RE1會領先時脈訊號SIG CLK2的正緣RE2,且時脈訊號SIG CLK2的正緣RE2會領先時脈訊號SIG CLK3的正緣RE3。此外,時脈訊號SIG CLKi的正緣REi會領先時脈訊號SIG CLK(i+1)的正緣RE(i+1),其中i為大於1且小於(N+1)的整數。然而,主時脈訊號SIG CLK1的負緣FE1會落後時脈訊號SIG CLK(N+1)的正緣RE(N+1)。此外,主時脈訊號SIG CLK1的負緣FE1會領先時脈訊號SIG CLK2的負緣FE2,而時脈訊號SIG CLKi的負緣FEi會領先時脈訊號SIG CLK(i+1)的負緣FE(i+1)。也就是說,時脈訊號SIG CLK2至SIG CLK(N+1)可為在時序上平移主時脈訊號SIG CLK1所產生的一序列時脈訊號。
在此情況下,接收的主時脈訊號SIG CLK1的第一電荷泵單元1001會最先被充電,而接收時脈訊號SIG CLK2的第二電荷泵單元1002則會第二個被充電,並依此類推。如此一來,就能夠盡量避免電荷泵單元1001至100(N+1)同時充電,進而能夠較先前技術減少高峰值電流。
在第5圖中,電荷泵單元1001至100(N+1)可接收相異的時脈訊號。然而,在部分實施例中,部分電荷泵單元也可能接收相同的時脈訊號以減少時脈延遲元件所需的面積。第7圖為本發明另一實施例之電荷泵電路20的示意圖。
在第7圖中,電荷泵電路20與電荷泵電路10的結構相似。然而,電荷泵電路20包含(2N+2)個電荷泵單元1001至100(2N+2)。在此情況下,每一對電荷泵單元將會接收到相同的時脈訊號。舉例來說,電荷泵單元1001及1002會接收到主時脈訊號SIG CLK1,而電荷泵單元100(2N+1)及100(2N+2)會接收到相同的時脈訊號SIG CLK(N+1)。因此相較於電荷泵電路10,當電荷泵單元數量的增加時,電荷泵電路20的時脈延遲元件的數量會增加的較慢,進而減少電荷泵電路所需的面積。然而,當有越多的電荷泵單元共用相同的時脈訊號時,也將導致電荷泵電路的高峰值電流上升。因此,電荷泵電路可根據系統的需求,選擇讓適當數量的電荷泵單元接收相同的時脈訊號。
綜上所述,本發明之實施例所提供的電荷泵單元及電荷泵電路可利用延遲元件及反向器來產生精準而互補的時脈訊號,進而減少反向電流,並可簡化電荷泵電路對時脈訊號的控制。此外,藉由讓電荷泵電路中每一級的電荷泵單元接收到依序延遲的時脈訊號,也能夠有效的減少高峰值電流。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。
100、1001至100(2N+2)‧‧‧電荷泵單元
N1‧‧‧第一N型電晶體
N2‧‧‧第二N型電晶體
N3‧‧‧第三N型電晶體
N4‧‧‧第四N型電晶體
N5‧‧‧第五N型電晶體
N6‧‧‧第六N型電晶體
P1‧‧‧第一P型電晶體
P2‧‧‧第二P型電晶體
P3‧‧‧第三P型電晶體
P4‧‧‧第四P型電晶體
P5‧‧‧第五P型電晶體
P6‧‧‧第六P型電晶體
C1‧‧‧第一電容
C2‧‧‧第二電容
110‧‧‧第一反向器
120‧‧‧第二反向器
130‧‧‧延遲元件
WS1‧‧‧第一井電位切換電路
WS2‧‧‧第二井電位切換電路
WS3‧‧‧第三井電位切換電路
WS4‧‧‧第四井電位切換電路
IT1‧‧‧第一初始升壓電晶體
IT2‧‧‧第二初始升壓電晶體
TT1‧‧‧第一升壓充電電晶體
TT2‧‧‧第二升壓充電電晶體
CLK‧‧‧時脈輸入端
IN‧‧‧輸入端
OUT‧‧‧輸出端
VDD‧‧‧第一電壓
2VDD‧‧‧第三電壓
SIGCLK、SIGCLA、SIGCLKB、SIGCLK1至SIGCLK(N+1)‧‧‧時脈訊號
VSS‧‧‧第二電壓
T1、T2‧‧‧時段
INV‧‧‧反向器
INVN、DEN‧‧‧N型電晶體
INVP、DEP‧‧‧P型電晶體
DE‧‧‧延遲元件
10、20‧‧‧電荷泵電路
VIN‧‧‧電壓輸入埠
VOUT‧‧‧電壓輸出埠
12‧‧‧時脈訊號源
141至14N‧‧‧時脈延遲元件
RE1、RE2、REi、RE(i+1)、RE(N+1)‧‧‧正緣
FE1、FE2、FEi、FE(i+1)‧‧‧負緣
第1圖為本發明一實施例之電荷泵單元的示意圖。 第2圖為第1圖之電荷泵單元的時脈訊號波形圖。 第3圖為本發明一實施例之反向器的示意圖。 第4圖為本發明一實施例之延遲元件的示意圖。 第5圖為本發明一實施例之電荷泵電路的示意圖。 第6圖為第5圖之電荷泵電路的時脈訊號波形圖。 第7圖為本發明另一實施例之電荷泵電路的示意圖。

Claims (22)

  1. 一種電荷泵單元,包含: 一輸入端; 一輸出端; 一第一N型電晶體,具有一第一端耦接於該輸入端,一第二端,及一控制端; 一第二N型電晶體,具有一第一端耦接於該輸入端,一第二端耦接於該第一N型電晶體之該控制端,及一控制端耦接於該第一N型電晶體之該第二端; 一第一P型電晶體,具有一第一端耦接於該第一N型電晶體之該第二端,一第二端耦接於該輸出端,及一控制端; 一第二P型電晶體,具有一第一端耦接於該第二N型電晶體之該第二端及該第一P型電晶體的該控制端,一第二端耦接於該輸出端,及一控制端耦接於該第一P型電晶體之該第一端; 一第一電容,具有一第一端耦接於該第一N型電晶體之該第二端,及一第二端; 一第二電容,具有一第一端耦接於該第二N型電晶體之該第二端,及一第二端; 一時脈輸入端,用以接收一時脈訊號; P個第一反向器,串聯於該時脈輸入端及該第一電容之該第二端之間,其中P為正整數;及 R個延遲元件,串聯於該時脈輸入端及該第二電容之該第二端之間,其中R為正整數。
  2. 如請求項1所述之電荷泵單元,其中該P個第一反向器所造成的延遲實質上與該R個延遲元件所造成的延遲相同。
  3. 如請求項1所述之電荷泵單元,另包含Q個第二反向器,與該R個延遲元件相串聯,其中Q為小於P的正整數,且P與Q的差值為奇數。
  4. 如請求項3所述之電荷泵單元,其中該P個第一反向器所造成的延遲實質上與該Q個第二反向器及該R個延遲元件所造成的延遲相同。
  5. 如請求項3所述之電荷泵單元,其中該R個延遲元件之每一延遲元件包含: 一輸入端; 一輸出端; 一N型電晶體,具有一第一端耦接於該延遲元件之該輸入端,一第二端耦接於該延遲元件之該輸出端,及一控制端用以接收一第一偏壓;及 一P型電晶體,具有一第一端耦接於該延遲元件之該輸入端,一第二端耦接於該延遲元件之該輸出端,及一控制端用以接收一第二偏壓; 其中該第一偏壓大於該第二偏壓。
  6. 如請求項5所述之電荷泵單元,其中該P個第一反向器及該Q個第二反向器之每一反向器包含: 一輸入端; 一輸出端; 一P型電晶體,具有一第一端用以接收該第一偏壓,一第二端耦接於該反向器之該輸出端,及一控制端耦接於該反向器之該輸入端;及 一N型電晶體,具有一第一端耦接於該反向器之該輸出端,一第二端用以接收該第二偏壓,及一控制端耦接於該反向器之該輸入端; 其中: 該反向器之該N型電晶體之一通道寬長比實質上相等於該延遲元件之該N型電晶體之一通道寬長比;及 該反向器之該P型電晶體之一通道寬長比實質上相等於該延遲元件之該P型電晶體之一通道寬長比。
  7. 如請求項1所述之電荷泵單元,另包含: 一第一初始升壓電晶體,具有一第一端耦接於該電荷泵單元之該輸入端,一第二端耦接於該第一N型電晶體之該第二端,及一控制端耦接於該電荷泵單元之該輸入端;及 一第二初始升壓電晶體,具有一第一端耦接於該電荷泵單元之該輸入端,一第二端耦接於該第二N型電晶體之該第二端,及一控制端耦接於該電荷泵單元之該輸入端。
  8. 如請求項1所述之電荷泵單元,另包含: 一第一升壓充電電晶體,具有一第一端耦接於該第一N型電晶體之該第二端,一第二端耦接於該電荷泵單元之該輸出端,及一控制端耦接於該電荷泵單元之該輸出端;及 一第二升壓充電電晶體,具有一第一端耦接於該第二N型電晶體之該第二端,一第二端耦接於該電荷泵單元之該輸出端,及一控制端耦接於該電荷泵單元之該輸出端。
  9. 如請求項1所述之電荷泵單元,另包含: 一第一井電位切換電路,包含: 一第三N型電晶體,具有一第一端耦接於該第一N型電晶體之一基體端,一第二端耦接於該第一N型電晶體之該第二端,一控制端耦接於該第一N型電晶體之該第一端,及一基體端耦接於該第一N型電晶體之該基體端;及 一第四N型電晶體,具有一第一端耦接於該第一N型電晶體之一第一端,一第二端耦接於該第一N型電晶體之該基體端,一控制端耦接於該第一N型電晶體之該第二端,及一基體端耦接於該第一N型電晶體之該基體端。
  10. 如請求項9所述之電荷泵單元,另包含: 一第二井電位切換電路,包含: 一第五N型電晶體,具有一第一端耦接於該第二N型電晶體之一基體端,一第二端耦接於該第二N型電晶體之該第二端,一控制端耦接於該第二N型電晶體之該第一端,及一基體端耦接於該第二N型電晶體之該基體端;及 一第六N型電晶體,具有一第一端耦接於該第二N型電晶體之一第一端,一第二端耦接於該第二N型電晶體之該基體端,一控制端耦接於該第二N型電晶體之該第二端,及一基體端耦接於該第二N型電晶體之該基體端。
  11. 如請求項10所述之電荷泵單元,另包含: 一第三井電位切換電路,包含: 一第三P型電晶體,具有一第一端耦接於該第一P型電晶體之一基體端,一第二端耦接於該第一P型電晶體之該第二端,一控制端耦接於該第一P型電晶體之該第一端,及一基體端耦接於該第一P型電晶體之該基體端;及 一第四P型電晶體,具有一第一端耦接於該第一P型電晶體之一第一端,一第二端耦接於該第一P型電晶體之該基體端,一控制端耦接於該第一P型電晶體之該第二端,及一基體端耦接於該第一P型電晶體之該基體端。
  12. 如請求項11所述之電荷泵單元,另包含: 一第四井電位切換電路,包含: 一第五P型電晶體,具有一第一端耦接於該第二P型電晶體之一基體端,一第二端耦接於該第二P型電晶體之該第二端,一控制端耦接於該第二P型電晶體之該第一端,及一基體端耦接於該第二P型電晶體之該基體端;及 一第六P型電晶體,具有一第一端耦接於該第二P型電晶體之一第一端,一第二端耦接於該第二P型電晶體之該基體端,一控制端耦接於該第二P型電晶體之該第二端,及一基體端耦接於該第二P型電晶體之該基體端。
  13. 一種電荷泵電路,包含: 一電壓輸入埠,用以接收一輸入電壓; 一電壓輸出埠,用以輸出一抬升電壓; 複數個電荷泵單元,串接於該電壓輸入埠及該電壓輸出埠之間; 一時脈訊號源,用以產生一主要時脈訊號;及 N個時脈延遲元件,耦接於該時脈訊號源,並用以延遲該主要時脈訊號以產生該些電荷泵單元中至少一電荷泵單元所需之至少一時脈訊號; 其中: 該些電荷泵單元中之一第一電荷泵單元接收該主要時脈訊號;及 該主要時脈訊號之一正緣係領先該至少一電荷泵單元中最後一電荷泵單元所接收之一最末時脈訊號的正緣,且該主要時脈訊號之一負緣係落後於該最末時脈訊號的正緣。
  14. 如請求項13所述之電荷泵電路,其中該些電荷泵單元中的每一電荷泵單元包含: 一輸入端; 一輸出端; 一第一N型電晶體,具有一第一端耦接於該輸入端,一第二端,及一控制端; 一第二N型電晶體,具有一第一端耦接於該輸入端,一第二端耦接於該第一N型電晶體之該控制端,及一控制端耦接於該第一N型電晶體之該第二端; 一第一P型電晶體,具有一第一端耦接於該第一N型電晶體之該第二端,一第二端耦接於該輸出端,及一控制端; 一第二P型電晶體,具有一第一端耦接於該第二N型電晶體之該第二端及該第一P型電晶體的該控制端,一第二端耦接於該輸出端,及一控制端耦接於該第一P型電晶體之該第一端; 一第一電容,具有一第一端耦接於該第一N型電晶體之該第二端,及一第二端; 一第二電容,具有一第一端耦接於該第二N型電晶體之該第二端,及一第二端; 一時脈輸入端,用以接收一時脈訊號; P個第一反向器,串聯於該時脈輸入端及該第一電容之該第二端之間,其中P為正整數;及 R個延遲元件,串聯於該時脈輸入端及該第二電容之該第二端之間,其中R為正整數。
  15. 如請求項14所述之電荷泵電路,其中該P個第一反向器所造成的延遲實質上與該R個延遲元件所造成的延遲相同。
  16. 如請求項14所述之電荷泵電路,其中該每一電荷泵單元另包含Q個第二反向器,與該R個延遲元件相串聯,其中Q為小於P的正整數,且P與Q的差值為奇數。
  17. 如請求項16所述之電荷泵電路,其中該P個第一反向器所造成的延遲實質上與該Q個第二反向器及該R個延遲元件所造成的延遲相同。
  18. 如請求項17所述之電荷泵電路,其中該P個第一反向器及該Q個第二反向器之每一反向器包含: 一輸入端; 一輸出端; 一P型電晶體,具有一第一端用以接收該第一偏壓,一第二端耦接於該反向器之該輸出端,及一控制端耦接於該反向器之該輸入端;及 一N型電晶體,具有一第一端耦接於該反向器之該輸出端,一第二端用以接收該第二偏壓,及一控制端耦接於該反向器之該輸入端; 其中: 該反向器之該N型電晶體之一通道寬長比實質上相等於該延遲元件之該N型電晶體之一通道寬長比;及 該反向器之該P型電晶體之一通道寬長比實質上相等於該延遲元件之該P型電晶體之一通道寬長比。
  19. 如請求項14所述之電荷泵電路,其中該R個延遲元件之每一延遲元件包含: 一輸入端; 一輸出端; 一N型電晶體,具有一第一端耦接於該延遲元件之該輸入端,一第二端耦接於該延遲元件之該輸出端,及一控制端用以接收一第一偏壓;及 一P型電晶體,具有一第一端耦接於該延遲元件之該輸入端,一第二端耦接於該延遲元件之該輸出端,及一控制端用以接收一第二偏壓; 其中該第一偏壓大於該第二偏壓。
  20. 如請求項14所述之電荷泵電路,其中該每一電荷泵單元另包含: 一第一井電位切換電路包含: 一第三N型電晶體,具有一第一端耦接於該第一N型電晶體之一基體端,一第二端耦接於該第一N型電晶體之該第二端,一控制端耦接於該第一N型電晶體之該第一端,及一基體端耦接於該第一N型電晶體之該基體端;及 一第四N型電晶體,具有一第一端耦接於該第一N型電晶體之一第一端,一第二端耦接於該第一N型電晶體之該基體端,一控制端耦接於該第一N型電晶體之該第二端,及一基體端耦接於該第一N型電晶體之該基體端。
  21. 如請求項14所述之電荷泵電路,其中該每一電荷泵單元另包含: 一第二井電位切換電路,包含: 一第三P型電晶體,具有一第一端耦接於該第一P型電晶體之一基體端,一第二端耦接於該第一P型電晶體之該第二端,一控制端耦接於該第一P型電晶體之該第一端,及一基體端耦接於該第一P型電晶體之該基體端;及 一第四P型電晶體,具有一第一端耦接於該第一P型電晶體之一第一端,一第二端耦接於該第一P型電晶體之該基體端,一控制端耦接於該第一P型電晶體之該第二端,及一基體端耦接於該第一P型電晶體之該基體端。
  22. 如請求項13所述之電荷泵電路,其中: 該些電荷泵單元包含(N+1)個電荷泵單元;及 一第i個時脈延遲元件之一輸出端係耦接於一第(i+1)電荷泵單元之一時脈輸入端,且N≧i≧1。
TW106127886A 2016-05-25 2017-08-17 電荷泵單元及電荷泵電路 TWI636652B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201662341105P 2016-05-25 2016-05-25
US15/604,662 US10224079B2 (en) 2016-05-25 2017-05-25 Charge pump circuit with low reverse current and low peak current
US15/604,662 2017-05-25

Publications (2)

Publication Number Publication Date
TWI636652B true TWI636652B (zh) 2018-09-21
TW201902097A TW201902097A (zh) 2019-01-01

Family

ID=60418184

Family Applications (4)

Application Number Title Priority Date Filing Date
TW106125243A TWI666865B (zh) 2016-05-25 2017-07-27 電荷泵電路
TW106127886A TWI636652B (zh) 2016-05-25 2017-08-17 電荷泵單元及電荷泵電路
TW106133409A TWI630708B (zh) 2016-05-25 2017-09-28 非揮發性記憶體及程式化具有非揮發性記憶體之記憶體陣列的方法
TW106134435A TWI630621B (zh) 2016-05-25 2017-10-06 記憶體系統及感測裝置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW106125243A TWI666865B (zh) 2016-05-25 2017-07-27 電荷泵電路

Family Applications After (2)

Application Number Title Priority Date Filing Date
TW106133409A TWI630708B (zh) 2016-05-25 2017-09-28 非揮發性記憶體及程式化具有非揮發性記憶體之記憶體陣列的方法
TW106134435A TWI630621B (zh) 2016-05-25 2017-10-06 記憶體系統及感測裝置

Country Status (5)

Country Link
US (5) US10090027B2 (zh)
EP (1) EP3407355B1 (zh)
JP (2) JP6389925B1 (zh)
CN (4) CN108964444B (zh)
TW (4) TWI666865B (zh)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI765944B (zh) 2016-12-14 2022-06-01 成真股份有限公司 標準大宗商品化現場可編程邏輯閘陣列(fpga)積體電路晶片組成之邏輯驅動器
US11625523B2 (en) 2016-12-14 2023-04-11 iCometrue Company Ltd. Logic drive based on standard commodity FPGA IC chips
US10447274B2 (en) 2017-07-11 2019-10-15 iCometrue Company Ltd. Logic drive based on standard commodity FPGA IC chips using non-volatile memory cells
US10957679B2 (en) 2017-08-08 2021-03-23 iCometrue Company Ltd. Logic drive based on standardized commodity programmable logic semiconductor IC chips
US10630296B2 (en) 2017-09-12 2020-04-21 iCometrue Company Ltd. Logic drive with brain-like elasticity and integrality based on standard commodity FPGA IC chips using non-volatile memory cells
US10608642B2 (en) 2018-02-01 2020-03-31 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile radom access memory cells
US10623000B2 (en) 2018-02-14 2020-04-14 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips
US10608638B2 (en) 2018-05-24 2020-03-31 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips
KR102577262B1 (ko) 2018-08-14 2023-09-11 삼성전자주식회사 확산 방지 영역을 갖는 반도체 소자
US11309334B2 (en) 2018-09-11 2022-04-19 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile random access memory cells
US10892011B2 (en) 2018-09-11 2021-01-12 iCometrue Company Ltd. Logic drive using standard commodity programmable logic IC chips comprising non-volatile random access memory cells
US10937762B2 (en) 2018-10-04 2021-03-02 iCometrue Company Ltd. Logic drive based on multichip package using interconnection bridge
US11616046B2 (en) 2018-11-02 2023-03-28 iCometrue Company Ltd. Logic drive based on chip scale package comprising standardized commodity programmable logic IC chip and memory IC chip
US11056197B2 (en) 2018-11-08 2021-07-06 Samsung Electronics Co., Ltd. Charge pump and memory device including the same
KR20200053324A (ko) * 2018-11-08 2020-05-18 삼성전자주식회사 차지 펌프 및 차지 펌프를 포함하는 메모리 장치
TWI708253B (zh) 2018-11-16 2020-10-21 力旺電子股份有限公司 非揮發性記憶體良率提升的設計暨測試方法
US11211334B2 (en) 2018-11-18 2021-12-28 iCometrue Company Ltd. Logic drive based on chip scale package comprising standardized commodity programmable logic IC chip and memory IC chip
US11360704B2 (en) 2018-12-21 2022-06-14 Micron Technology, Inc. Multiplexed signal development in a memory device
US10818592B1 (en) * 2019-04-29 2020-10-27 Nanya Technology Corporation Semiconductor memory device including decoupling capacitor array arranged overlying one-time programmable device
US11227838B2 (en) 2019-07-02 2022-01-18 iCometrue Company Ltd. Logic drive based on multichip package comprising standard commodity FPGA IC chip with cooperating or supporting circuits
US10985154B2 (en) 2019-07-02 2021-04-20 iCometrue Company Ltd. Logic drive based on multichip package comprising standard commodity FPGA IC chip with cryptography circuits
CN110299173B (zh) * 2019-07-05 2021-05-04 合肥联诺科技股份有限公司 一种用于nor flash编程处理的可控放电模块
US11404415B2 (en) * 2019-07-05 2022-08-02 Globalfoundries U.S. Inc. Stacked-gate transistors
US11887930B2 (en) 2019-08-05 2024-01-30 iCometrue Company Ltd. Vertical interconnect elevator based on through silicon vias
US11637056B2 (en) 2019-09-20 2023-04-25 iCometrue Company Ltd. 3D chip package based on through-silicon-via interconnection elevator
US10957701B1 (en) * 2019-11-11 2021-03-23 Globalfoundries U.S. Inc. Fin-based anti-fuse device for integrated circuit (IC) products, methods of making such an anti-fuse device and IC products comprising such an anti-fuse device
US11600526B2 (en) 2020-01-22 2023-03-07 iCometrue Company Ltd. Chip package based on through-silicon-via connector and silicon interconnection bridge
US11328957B2 (en) 2020-02-25 2022-05-10 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
US11270780B2 (en) 2020-03-31 2022-03-08 Taiwan Semiconductor Manufacturing Co., Ltd. Memory readout circuit and method
US11183502B1 (en) * 2020-08-20 2021-11-23 Nanya Technology Corporation Memory cell and Method for reading out data therefrom
CN112039335A (zh) * 2020-08-21 2020-12-04 厦门半导体工业技术研发有限公司 一种电压发生器和半导体器件
US20220199622A1 (en) * 2020-12-18 2022-06-23 Ememory Technology Inc. Resistive memory cell and associated cell array structure
CN116137493A (zh) 2021-11-17 2023-05-19 科奇芯有限公司 电荷泵电路
US20230016311A1 (en) * 2021-12-03 2023-01-19 Wuxi Esiontech Co., Ltd. Clock skew-adjustable chip clock architecture of progarmmable logic chip

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483377B2 (en) * 2001-01-10 2002-11-19 Texas Instruments Incorporated Low slew rate charge pump
CN101056104A (zh) * 2006-04-12 2007-10-17 国际商业机器公司 具有与操作频率无关的电荷泵增益的延迟锁定环
TW200840211A (en) * 2007-03-20 2008-10-01 Novatek Microelectronics Corp Charge pump circuit
TW201023488A (en) * 2008-12-02 2010-06-16 Himax Tech Ltd Charge pump circuit and method thereof
TWI574498B (zh) * 2015-01-07 2017-03-11 力旺電子股份有限公司 電荷泵單元及電荷泵電路

Family Cites Families (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2537264B2 (ja) 1988-04-13 1996-09-25 株式会社東芝 半導体記憶装置
JP3076606B2 (ja) 1990-12-14 2000-08-14 富士通株式会社 半導体記憶装置およびその検査方法
US5126590A (en) * 1991-06-17 1992-06-30 Micron Technology, Inc. High efficiency charge pump
JP3178946B2 (ja) 1993-08-31 2001-06-25 沖電気工業株式会社 半導体記憶装置及びその駆動方法
JPH0778465A (ja) 1993-09-10 1995-03-20 Oki Micro Design Miyazaki:Kk 半導体集積回路
EP0696839B1 (en) 1994-08-12 1998-02-25 Co.Ri.M.Me. Consorzio Per La Ricerca Sulla Microelettronica Nel Mezzogiorno Voltage elevator of the charge pump type
KR0142403B1 (ko) * 1994-12-20 1998-07-15 김광호 반도체 메모리장치의 전원승압회로
KR0149220B1 (ko) 1994-12-27 1998-12-01 김주용 챠지 펌프 회로
US5729493A (en) 1996-08-23 1998-03-17 Motorola Inc. Memory suitable for operation at low power supply voltages and sense amplifier therefor
JP3378457B2 (ja) * 1997-02-26 2003-02-17 株式会社東芝 半導体装置
JP3557090B2 (ja) 1998-03-31 2004-08-25 株式会社東芝 半導体記憶装置
US6501325B1 (en) * 2001-01-18 2002-12-31 Cypress Semiconductor Corp. Low voltage supply higher efficiency cross-coupled high voltage charge pumps
US6661682B2 (en) * 2001-02-16 2003-12-09 Imec (Interuniversitair Microelectronica Centrum) High voltage generating charge pump circuit
JP2003077282A (ja) 2001-08-31 2003-03-14 Fujitsu Ltd 不揮発性半導体記憶装置
KR100454144B1 (ko) * 2001-11-23 2004-10-26 주식회사 하이닉스반도체 멀티 뱅크 구조의 플래쉬 메모리 장치
KR100404001B1 (ko) * 2001-12-29 2003-11-05 주식회사 하이닉스반도체 차지 펌프 회로
KR100538883B1 (ko) * 2003-04-29 2005-12-23 주식회사 하이닉스반도체 반도체 메모리 장치
CN1455574A (zh) * 2003-05-30 2003-11-12 无敌科技(西安)有限公司 选择性信息储存系统及其实现方法
US7411840B2 (en) * 2004-03-02 2008-08-12 Via Technologies, Inc. Sense mechanism for microprocessor bus inversion
US6995603B2 (en) * 2004-03-03 2006-02-07 Aimtron Technology Corp. High efficiency charge pump with prevention from reverse current
JP4727261B2 (ja) 2005-03-16 2011-07-20 三菱電機株式会社 分周回路、電源回路及び表示装置
US7551503B2 (en) * 2005-06-24 2009-06-23 Macronix International Co., Ltd. Method for refreshing a flash memory
JP4728726B2 (ja) * 2005-07-25 2011-07-20 株式会社東芝 半導体記憶装置
JP2007034943A (ja) * 2005-07-29 2007-02-08 Sony Corp 共有メモリ装置
CN101154683B (zh) * 2006-09-29 2011-03-30 旺宏电子股份有限公司 晶体管结构及其制造方法
KR20080029696A (ko) * 2006-09-29 2008-04-03 주식회사 하이닉스반도체 리던던시 회로를 구비한 반도체 메모리 장치
JP4883780B2 (ja) * 2006-11-14 2012-02-22 ルネサスエレクトロニクス株式会社 チャージポンプ回路
KR100818710B1 (ko) * 2006-11-21 2008-04-01 주식회사 하이닉스반도체 전압펌핑장치
JP4498374B2 (ja) * 2007-03-22 2010-07-07 株式会社東芝 半導体記憶装置
US7656731B2 (en) * 2007-03-30 2010-02-02 Qualcomm, Incorporated Semi-shared sense amplifier and global read line architecture
US7446596B1 (en) 2007-05-25 2008-11-04 Atmel Corporation Low voltage charge pump
CN101409554B (zh) * 2007-10-11 2012-05-16 北京朗波芯微技术有限公司 用于电荷泵锁相环的环路滤波电路
KR101102776B1 (ko) 2008-02-13 2012-01-05 매그나칩 반도체 유한회사 비휘발성 메모리 소자의 단위 셀 및 이를 구비한 비휘발성메모리 소자
US7859043B2 (en) * 2008-02-25 2010-12-28 Tower Semiconductor Ltd. Three-terminal single poly NMOS non-volatile memory cell
CN101685677A (zh) * 2008-09-27 2010-03-31 英华达(上海)科技有限公司 闪存检测装置及其方法
US8144537B2 (en) 2008-11-11 2012-03-27 Stmicroelectronics Pvt. Ltd. Balanced sense amplifier for single ended bitline memory architecture
US8154936B2 (en) * 2008-12-30 2012-04-10 Stmicroelectronics Pvt. Ltd. Single-ended bit line based storage system
US8305790B2 (en) 2009-03-16 2012-11-06 Taiwan Semiconductor Manufacturing Company, Ltd. Electrical anti-fuse and related applications
US9042173B2 (en) 2010-01-29 2015-05-26 Texas Instruments Incorporated Efficient memory sense architecture
TW201203253A (en) 2010-07-06 2012-01-16 Maxchip Electronics Corp One time programmable memory and the manufacturing method and operation method thereof
JP5673935B2 (ja) * 2010-12-28 2015-02-18 セイコーエプソン株式会社 不揮発性記憶装置、電子機器
CN102646387B (zh) * 2011-05-19 2014-09-17 京东方科技集团股份有限公司 移位寄存器及行扫描驱动电路
KR20130093303A (ko) * 2012-02-14 2013-08-22 에스케이하이닉스 주식회사 전하 펌프 장치 및 그 단위 셀
FR2988535B1 (fr) * 2012-03-23 2014-03-07 Soitec Silicon On Insulator Circuit de pompage de charge a transistors munis de portes doubles en phase, et procédé de fonctionnement dudit circuit.
JP5444414B2 (ja) 2012-06-04 2014-03-19 株式会社東芝 磁気ランダムアクセスメモリ
CN103456711B (zh) * 2012-06-05 2016-03-23 中芯国际集成电路制造(上海)有限公司 鳍型反熔丝结构及其制造方法
US9070424B2 (en) 2012-06-29 2015-06-30 Samsung Electronics Co., Ltd. Sense amplifier circuitry for resistive type memory
US9536883B2 (en) * 2012-07-12 2017-01-03 Broadcom Corporation Dual anti-fuse
US9337318B2 (en) * 2012-10-26 2016-05-10 Taiwan Semiconductor Manufacturing Company, Ltd. FinFET with dummy gate on non-recessed shallow trench isolation (STI)
US9601499B2 (en) 2013-05-16 2017-03-21 Ememory Technology Inc. One-time programmable memory cell capable of reducing leakage current and preventing slow bit response, and method for programming a memory array comprising the same
TWI502722B (zh) 2013-07-24 2015-10-01 Ememory Technology Inc 改善讀取特性的反熔絲單次可程式記憶胞及記憶體的操作方法
US20150078103A1 (en) * 2013-09-13 2015-03-19 Lsi Corporation Sensing technique for single-ended bit line memory architectures
US20150194433A1 (en) * 2014-01-08 2015-07-09 Broadcom Corporation Gate substantial contact based one-time programmable device
CN104979362B (zh) * 2014-04-10 2019-11-19 三星电子株式会社 具有翅片式有源图案和栅极节点的半导体装置
US9171752B1 (en) 2014-08-12 2015-10-27 Globalfoundries Inc. Product comprised of FinFET devices with single diffusion break isolation structures, and methods of making such a product
US9460761B2 (en) * 2014-08-14 2016-10-04 Stmicroelectronics (Rousset) Sas Lower power sense amplifier for reading non-volatile memory cells
KR102179169B1 (ko) * 2014-09-02 2020-11-18 삼성전자주식회사 반도체 장치 및 반도체 장치의 제조방법
DE102014115433A1 (de) * 2014-10-23 2016-05-12 Infineon Technologies Ag Ladungspumpe
US9620176B2 (en) 2015-09-10 2017-04-11 Ememory Technology Inc. One-time programmable memory array having small chip area
US10109364B2 (en) 2015-10-21 2018-10-23 Avago Technologies General Ip (Singapore) Pte. Ltd. Non-volatile memory cell having multiple signal pathways to provide access to an antifuse of the memory cell
US9613714B1 (en) * 2016-01-19 2017-04-04 Ememory Technology Inc. One time programming memory cell and memory array for physically unclonable function technology and associated random code generating method
JP6200983B2 (ja) * 2016-01-25 2017-09-20 力旺電子股▲ふん▼有限公司eMemory Technology Inc. ワンタイムプログラマブルメモリセル、該メモリセルを含むメモリアレイのプログラム方法及び読み込み方法
US9536991B1 (en) 2016-03-11 2017-01-03 Globalfoundries Inc. Single diffusion break structure
CN107306082B (zh) * 2016-04-18 2020-05-22 晶门科技(深圳)有限公司 电荷泵电路
CN205883044U (zh) * 2016-07-06 2017-01-11 西安紫光国芯半导体有限公司 电荷泵电路及其单级电路
US9589970B1 (en) 2016-08-02 2017-03-07 United Microelectronics Corp. Antifuse one-time programmable memory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6483377B2 (en) * 2001-01-10 2002-11-19 Texas Instruments Incorporated Low slew rate charge pump
CN101056104A (zh) * 2006-04-12 2007-10-17 国际商业机器公司 具有与操作频率无关的电荷泵增益的延迟锁定环
TW200840211A (en) * 2007-03-20 2008-10-01 Novatek Microelectronics Corp Charge pump circuit
TW201023488A (en) * 2008-12-02 2010-06-16 Himax Tech Ltd Charge pump circuit and method thereof
TWI574498B (zh) * 2015-01-07 2017-03-11 力旺電子股份有限公司 電荷泵單元及電荷泵電路

Also Published As

Publication number Publication date
TWI666865B (zh) 2019-07-21
CN108964444A (zh) 2018-12-07
CN108964444B (zh) 2020-05-29
CN108932965A (zh) 2018-12-04
US9935113B2 (en) 2018-04-03
TWI630621B (zh) 2018-07-21
US20170346393A1 (en) 2017-11-30
CN108962332B (zh) 2021-03-23
US10003258B2 (en) 2018-06-19
JP6389925B1 (ja) 2018-09-12
JP2018201002A (ja) 2018-12-20
JP2018198105A (ja) 2018-12-13
US20170345464A1 (en) 2017-11-30
TW201902097A (zh) 2019-01-01
US10090027B2 (en) 2018-10-02
TW201901929A (zh) 2019-01-01
CN108932965B (zh) 2020-12-01
US20170346394A1 (en) 2017-11-30
US10714155B2 (en) 2020-07-14
CN108964446B (zh) 2020-08-25
CN108964446A (zh) 2018-12-07
TW201901674A (zh) 2019-01-01
TWI630708B (zh) 2018-07-21
TW201902096A (zh) 2019-01-01
US20190147922A1 (en) 2019-05-16
EP3407355A1 (en) 2018-11-28
US10224079B2 (en) 2019-03-05
EP3407355B1 (en) 2020-04-29
CN108962332A (zh) 2018-12-07
US20170345828A1 (en) 2017-11-30

Similar Documents

Publication Publication Date Title
TWI636652B (zh) 電荷泵單元及電荷泵電路
TWI574498B (zh) 電荷泵單元及電荷泵電路
US7902909B2 (en) Charge pump circuit
TWI392209B (zh) 電荷泵電路以及其相關方法
JP2009509449A (ja) 単一しきい値・単一導電型論理回路
TW200822511A (en) Electronic device including boosting circuit
CN104038219A (zh) 用于减少采样电路时序不匹配的装置和方法
KR20180057510A (ko) 승압 회로 및 그것을 구비한 불휘발성 메모리
US7924086B2 (en) Boosting circuit
US8810296B2 (en) D flip-flop with high-swing output
US10778203B2 (en) Clock generation circuit and charge pumping system
TWI602386B (zh) 電荷泵浦電路
CN107404316B (zh) 信号复用装置
CN105306017B (zh) 信号产生电路以及工作周期调整电路
TWI762401B (zh) 升壓時脈產生器
CN107645294B (zh) 一种交流/直流耦合电路
CN105336368B (zh) 一种非交叠四相位时钟产生电路
KR100466198B1 (ko) 승압회로
CN106230407B (zh) 多路数据合成时钟产生装置
CN114844488A (zh) 负压脉冲控制信号产生电路及方法
CN115694178A (zh) 电荷泵电路和电荷泵系统