TWI627428B - 用於磁共振成像系統中之磁性系統 - Google Patents
用於磁共振成像系統中之磁性系統 Download PDFInfo
- Publication number
- TWI627428B TWI627428B TW105128467A TW105128467A TWI627428B TW I627428 B TWI627428 B TW I627428B TW 105128467 A TW105128467 A TW 105128467A TW 105128467 A TW105128467 A TW 105128467A TW I627428 B TWI627428 B TW I627428B
- Authority
- TW
- Taiwan
- Prior art keywords
- magnetic
- ferromagnetic
- field
- coil
- magnetic system
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/5608—Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/34—Constructional details, e.g. resonators, specially adapted to MR
- G01R33/34007—Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/32—Excitation or detection systems, e.g. using radio frequency signals
- G01R33/36—Electrical details, e.g. matching or coupling of the coil to the receiver
- G01R33/3614—RF power amplifiers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3802—Manufacture or installation of magnet assemblies; Additional hardware for transportation or installation of the magnet assembly or for providing mechanical support to components of the magnet assembly
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3804—Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/3806—Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/381—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/383—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
- G01R33/3852—Gradient amplifiers; means for controlling the application of a gradient magnetic field to the sample, e.g. a gradient signal synthesizer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
- G01R33/3854—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
- G01R33/3856—Means for cooling the gradient coils or thermal shielding of the gradient coils
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/385—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
- G01R33/3858—Manufacture and installation of gradient coils, means for providing mechanical support to parts of the gradient-coil assembly
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/387—Compensation of inhomogeneities
- G01R33/3875—Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/445—MR involving a non-standard magnetic field B0, e.g. of low magnitude as in the earth's magnetic field or in nanoTesla spectroscopy, comprising a polarizing magnetic field for pre-polarisation, B0 with a temporal variation of its magnitude or direction such as field cycling of B0 or rotation of the direction of B0, or spatially inhomogeneous B0 like in fringe-field MR or in stray-field imaging
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/543—Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/546—Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/54—Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
- G01R33/56—Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
- G01R33/565—Correction of image distortions, e.g. due to magnetic field inhomogeneities
- G01R33/56518—Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/44—Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
- G01R33/48—NMR imaging systems
- G01R33/58—Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/02—Permanent magnets [PM]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F7/00—Magnets
- H01F7/06—Electromagnets; Actuators including electromagnets
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/42—Screening
- G01R33/422—Screening of the radio frequency field
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- Electromagnetism (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Radiology & Medical Imaging (AREA)
- Power Engineering (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Epidemiology (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
- Coils Or Transformers For Communication (AREA)
- Laminated Bodies (AREA)
- Parts Printed On Printed Circuit Boards (AREA)
- Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
- Gas Separation By Absorption (AREA)
Abstract
在一些態樣中,一種磁性系統用於一低場MRI系統中。該磁性系統包括:至少一個電磁鐵,其經組態以在操作時產生一磁場以促成該低場MRI系統之一B0磁場;及至少一個永久磁鐵,其用以產生一磁場以促成該B0場。
Description
磁共振成像(MRI)為許多應用提供一重要成像模態且廣泛用於臨床及研究情境來產生人體內側之影像。一般言之,MRI基於偵測磁共振(MR)信號,該等MR信號係回應於源自所施加電磁場之狀態改變藉由原子發射之電磁波。舉例而言,核磁共振(NMR)技術涉及在成像之一物件中之原子(例如,人體之組織中之原子)之核自旋之再對準或弛豫時偵測從受激原子之核發射之MR信號。可處理經偵測之MR信號來產生影像,該等影像在醫療應用之背景內容中,容許出於診斷、治療及/或研究目的而調查人體內之內部結構及/或生物過程。
MRI歸因於產生具有相對高解析度及對比度之非侵入性影像之能力而提供生物成像之一受矚目成像模態而無其他模式之安全顧慮(例如,無需將對象曝露於離子化輻射(例如,x射線)或將放射性材料引入人體)。另外,MRI尤其適用於提供軟組織對比,其可用於使其他成像模態無法令人滿意地成像之標的成像。再者,MR技術能夠捕獲其他模態無法獲取之關於結構及/或生物過程之資訊。然而,習知MRI技術存在數個缺點,針對一給定成像應用,該等缺點可包含設備之相對高成本、有限可用性(例如,獲得臨床
MRI掃描器之困難及費用、影像獲取程序之長度等)。
臨床MRI之趨勢係增大MRI掃描器之場強度以改良掃描時間、影像解析度及影像對比度之一或多者,其繼而增大MRI成像之成本。絕大多數所安裝MRI掃描器使用至少1.5或3特士拉(T)操作,其係指掃描器之主磁場B0之場強度。對一臨床MRI掃描器之一粗略成本估計約為每特士拉約一百萬美元,此甚至不包括操作此等MRI掃描器所涉及之大量操作、服務及維護成本。
另外,習知高場MRI系統通常需要大型超導磁鐵及相關聯電子設備來產生其中使一對象(例如,一病人)成像之一強均勻靜磁場(B0)。超導磁鐵進一步需要低溫設備來將導體保持於一超導狀態中。此等系統之大小巨大,具有一典型MRI設備,其包含用於磁性組件、電子設備、熱管理系統及控制台區域之多個室,該等室包含隔離MRI系統之磁性組件之一特別屏蔽室。MRI系統之大小及費用通常限制其等在設施(諸如醫院及學術研究中心)之使用,該等設施具有足夠空間及資源來購買且維護MRI系統。高場MRI系統之高成本及大空間需求導致MRI掃描器之有限可用性。因而,頻繁存在其中一MRI掃描將係有利的,但歸因於上文描述之限制且如下文進一步詳細討論係不切實際或不可能的臨床情形。
習知地且通常唯一地使用電磁鐵來產生用於磁共振成像中之主磁場B0。然而,電磁鐵需要電力來操作該電磁鐵以產生一磁場。發明者已認識到,產生其等本身之磁場之永久磁鐵可用於幫助產生一或多個磁場(例如,一低場MRI系統及(根據一些實施例)一非常低場MRI系統之B0場)來增大場強度及/或改良B0場之均勻性。
在此方面,一些實施例包含一種用於一磁共振成像系統之磁性系統,該磁性系統包括:一B0磁鐵,其經組態以產生一磁場以促成該磁共振成像系統之一B0磁場;及至少一個鐵磁組件,其經組態以捕獲且引導藉由該B0磁鐵產生之該磁場之至少一些來增大該磁共振成像系統之一成像區內之該磁通量密度,其中該B0磁鐵及該至少一個鐵磁組件經組態以產生依等於或小於約0.2T之一強度之B0磁場。
一些實施例包含一種用於一磁共振成像系統中之磁性系統,該磁性系統包括:至少一個電磁鐵,其經組態以在操作時產生一磁場以促成該磁共振成像系統之一B0場,該電磁鐵包括將使用一非超導導體纏繞來產生一磁場之至少一個電磁線圈;及至少一個鐵磁組件,其經組態以擷取且捕獲藉由該電磁鐵產生之該磁場之至少一些來增大該磁共振成像系統之一成像區內之該磁通量密度。
一些實施例包含一種用於一低場MRI系統之磁性系統,該磁性系統包括:至少一個電磁鐵,其經組態以在操作時產生一磁場以促成該低場MRI系統之一B0場;及至少一個永久磁鐵,其用來產生一磁場來促成該B0場。
一些實施例包含一種提供適用於低場磁共振成像之一B0場之方法,該方法包括:操作至少一個電磁鐵來產生一磁場以促成該B0場;及使用至少一個永久磁鐵來產生一磁場以促成該B0場。
110a‧‧‧外線圈/電磁鐵
110b‧‧‧外線圈/電磁鐵
112a‧‧‧內線圈/電磁鐵
112b‧‧‧內線圈/電磁鐵
120a‧‧‧平面梯度線圈組
120b‧‧‧平面梯度線圈組
170a‧‧‧永久磁鐵
170a'‧‧‧永久磁鐵
170a"‧‧‧永久磁鐵
170b‧‧‧永久磁鐵
170b'‧‧‧永久磁鐵
170b"‧‧‧永久磁鐵
210‧‧‧軛
220‧‧‧磁通量
310‧‧‧鐵磁結構
320‧‧‧鐵磁柱
410‧‧‧C形鐵磁結構
500‧‧‧隅角
510‧‧‧第一積層板
512‧‧‧第二積層板
610‧‧‧鐵磁環
612‧‧‧鐵磁環
710‧‧‧鐵磁件
712‧‧‧鐵磁件
810‧‧‧鐵磁磁極件/磁極件
812‧‧‧鐵磁磁極件/磁極件
910a‧‧‧B0線圈
910b‧‧‧B0線圈
920‧‧‧積層板
930‧‧‧熱組件
940‧‧‧支撐結構
980‧‧‧可變換低場MRI系統
981‧‧‧箭頭
984‧‧‧可滑動床
986A‧‧‧外殼
986B‧‧‧外殼
B0‧‧‧主磁場/磁場
X‧‧‧第一方向
Y‧‧‧第二方向
Z‧‧‧第三方向
將參考下列圖描述所揭示技術之各種態樣及實施例。應瞭解該等圖未必按比例繪製。
圖1A係使用一雙平面磁鐵組態之一低場MRI系統之一示意圖;圖1B至圖1D繪示根據一些實施例之利用(諸)電磁鐵及(諸)永久磁鐵
之磁鐵;圖2A及圖2B展示根據一些實施例之用於與一低場MRI系統一起使用之一鐵磁軛;圖3展示根據一些實施例之用於與一低場MRI系統一起使用之一替代鐵磁軛;圖4展示根據一些實施例之穿透用於與一低場MRI系統一起使用之一C形鐵磁軛之一橫截面;圖5展示根據一些實施例之穿透包含電磁線圈之一鐵磁增強器件之一橫截面;圖6展示根據一些實施例之穿透包含勻場(shim)環之一鐵磁增強器件之一橫截面;圖7展示根據一些實施例之穿透包含勻場材料之一鐵磁增強器件之一橫截面;圖8展示根據一些實施例之穿透包含極板之一鐵磁增強器件之一橫截面;圖9A繪示根據一些實施例之併入鐵磁組件之在一縮回組態中之一可變換低場MRI系統之一實例;圖9B繪示根據一些實施例之在一展開組態中之圖9A之可變換低場MRI系統;圖9C繪示根據一些實施例之具有磁性組件之一分解圖之圖9A之可變換低場MRI系統。
MRI掃描器市場絕大多數由高場系統主導,且尤其用於醫療或臨床
MRI應用。如上文討論,醫療成像之一般趨勢係產生具有愈加大之場強度之MRI掃描器,其中極大多數臨床MRI掃描器依1.5T或3T操作,其中更高場強度7T及9T用於研究情境。如本文中使用,「高場」一般係指當前用於一臨床情境中之MRI系統,且更特定言之係指依1.5T或高於1.5T配合一主磁場(即,一B0場)操作之MRI系統,但在0.5T與1.5T之間操作之臨床系統通常亦特徵化為「高場」。約0.2T與0.5T之間的場強度已特徵化為「中間場」,其中隨著高場型中之場強度增大,0.5T與1T之間的範圍有時亦特徵化為中間場。相比而言,「低場」一般係指配合小於或等於約0.2T之一B0場操作之MRI系統,但是隨著高場型中之場強度已增大,具有在0.2T與約0.3T之間的一B0場之系統有時特徵為低場。作為低場的進一步子類別,「極低場」在本文中係指配合小於0.1T之一B0場操作之低場MRI系統,且「超低場」係指配合小於10mT之一B0場操作之低場MRI系統。
相較於低場系統,高場MRI系統之吸引力包含經改良之解析度及/或經減少之掃描時間,從而激勵對臨床及醫療MRI應用之越來越高之場強度之推動。然而,如上文討論,增大MRI系統之場強度產生愈加昂貴且複雜之MRI掃描器,因此限制可用性且防止其等用作一般目的及/或普遍可用之成像解決方案。如上文討論,對高場MRI之高成本之促成因素係將導線保持於一超導狀態中所需之昂貴之超導導線及低溫冷卻系統。舉例而言,高場MRI系統之B0磁鐵頻繁採用超導導線,其不僅本身昂貴,而且需要昂貴且複雜之低溫設備來維持超導狀態。
已在出於非成像研究目的之受限制背景內容及範圍窄且特定之對比度增強成像應用中探索低場MR,但其習知地被視為不適用於產生臨床上可用之影像。舉例而言,解析度、對比度及/或影像獲取時間一般不視為適用
於臨床目的(諸如但不限於組織分化、血流或灌注成像、擴散加權(DW)或擴散張量(DT)成像、功能MRI(fMRI)等)。
發明者已開發用於產生經改良之品質、可攜式及/或較低成本低場MRI系統之技術,其等可改良MRI技術在醫院及研究設施處之大型MRI設備外之各種環境中之大規模可部署性。發明者之貢獻之一些態樣源自其等對下列之認識:促成高場及低場MRI兩者之成本及複雜度之一重要因素係產生可用於成像應用之MR信號所需之磁性組件以及操作該等磁性組件所需之電力電子裝置。
簡言之,MRI涉及將待成像之一物件(例如,一病人之全部或一部分)放置於一靜態、均勻磁場B0中以在B0場之方向上對準原子之原子自旋。針對高場MRI系統,一般需要由超導導線之線圈製成之超導磁鐵來達成依高場MRI中所採用之場強度之B0之均勻性。超導磁鐵本身不僅係高成本的,而且超導磁鐵一般在操作期間需要低溫冷卻,從而增大高場MRI掃描器之成本及複雜度。除B0磁性組件外,提供梯度線圈以在空間上編碼來自物件之MR信號,且提供傳輸及接收線圈以分別產生依與磁場B0之場強度相關之一頻率之一磁場B1以導致原子自旋從而改變定向,及在原子自旋與磁場B0再對準時偵測自物件發射之MR信號。依高場強度及相關聯之高頻率,此等磁性組件亦係相對複雜且昂貴的。
(諸)發明者已瞭解,低場MRI系統不需要昂貴的超導磁鐵及/或相關聯之低溫冷卻系統,且經減小之場強度可促進系統中之其他磁性組件之複雜度及/或費用之減小。特定言之,依低場強度產生一B0場之電磁鐵可使用電磁線圈(其使用一非超導導體(諸如銅或鋁)纏繞)纏繞,以產生或促成B0磁場。在下文中進一步詳細描述利用電磁鐵之低場MRI系統之一些實例。
然而,電磁鐵需要一電源來提供必要電流以操作各自電磁鐵。舉例而言,需要一相對穩定之電源來使用適當電流驅動(諸)B0線圈以產生具有足夠均勻性之一B0場,且需要梯度放大器來根據所需特性操作梯度線圈。一低場MRI系統之電力電子裝置實質上促成系統之成本,該成本在更高場強度下增大,此既從一電力消耗之觀點又因為組件本身之成本。
另外,當電力需求隨著場強度增大時,將從系統之組件轉移熱量所需之熱管理系統之成本及複雜度亦增大。舉例而言,低場MRI系統之磁性組件一般不採用超導材料,且取而代之,通常採用在操作時產生熱,使得通常需要熱管理來消散藉由MRI系統(例如,系統之磁性組件)產生之熱量之更習知之導電材料(例如,銅、鋁等)。隨著B0場強度在低場範圍中增大,熱管理之成本及複雜度亦增大。因而,從電力電子裝置及熱管理兩個觀點,低場MRI系統之電力需求在低場MRI系統之成本及複雜度方面起重要作用,且可限制低場MRI系統可獲得之場強度。
發明者已認識到,永久磁鐵及/或鐵磁組件可用來輔助產生一低場MRI系統之一或多個磁場。一永久磁鐵係指產生其本身之持久磁場之任何物件。可如此磁化之材料在本文中稱為鐵磁鐵,且包含(作為非限制性實例)鉄、鎳、鈷、其等之合金、稀土磁鐵等。因為一永久磁鐵不需要一電源來產生一磁場,故一或多個永久磁鐵可用於促成磁場而不增大系統之電力需求。因此,使用一永久磁鐵來促成(例如)一B0場,可在經減小之電力需求情況中產生所需強度之一B0場(例如,小於或等於約10mT、20mT、0.1T、0.2T等之一B0場)。
另外,因為永久磁鐵及/或鐵磁材料可用於產生一更高B0場而不相應增大電力需求,故使用永久磁鐵及/或鐵磁組件可促進具有一更高B0場之一
低場MRI系統之構造而不增大電力需求,存在一低場MRI系統配合超過0.2T(例如,大於或等於0.2T及小於或等於.3T)之一B0場操作的可能性。根據一些實施例,至少一個電磁鐵及至少一個永久磁鐵用於(至少部分)產生一低場MRI系統之一B0場。
發明者已進一步瞭解,永久磁鐵及/或鐵磁材料可用於改良用於MRI之一B0場之均勻性。特定言之,一或多個永久磁鐵可經定大小、塑形及/或配置於諸位置處,使得其等之促成磁場支援經改良之均勻性。因而,永久磁鐵及/或鐵磁材料可用於不僅促成場強度,而且促成產生用於(例如)低場MRI中的一B0場之均勻性。
下文係與用於包含低場MRI之低場磁共振應用之方法及裝置及鐵磁材料在此等系統中之使用相關之各種概念及其等之實施例之更詳細描述。應瞭解,本文描述之各種態樣可以許多方式之任一者實施。僅出於繪示性目的在本文中提供特定實施方案之實例。另外,下列實施例中描述之各種態樣可單獨使用或以任何組合使用,且不限於本文明確描述之組合。
如上文討論,低場MRI系統可解決與高場MRI系統相關聯之一或多個問題。舉例而言,例示性低場MRI系統可在不使用超導磁鐵且因此不具有將B0磁鐵維持於一超導狀態中所需之相關聯低溫冷卻裝置的情況下實施,藉此顯著減小所得MRI系統之成本、複雜度及大小。為產生具有適用於高場MRI之一磁場強度及磁場均勻性之一B0場,使用由超導材料形成之一螺線管線圈,其中所產生之B0場在穿透螺線管中心之軸之方向上。因此,使一病人成像需要將病人放置於螺線管線圈內側。雖然螺線管線圈特別適用於產生高場強度之一均勻場,但此幾何形狀不僅增大設備之大小,而且需要將一病人推入一圓柱形孔中以成像。因此,此幾何形狀可不適用於患有
幽閉恐懼症之病人且可能無法容納體型大的病人。因此,產生高場MRI之一適當B0磁鐵一般所需之螺線管線圈幾何形狀具有防止高場MRI成為一實用且可購得通用成像器之進一步限制。
圖1A示意性繪示經組態以至少部分產生適用於低場MRI成像之一B0場之一部分之一雙平面電磁鐵。雙平面電磁鐵包括兩個外線圈110a及110b及兩個內線圈112a及112b。當施加適當電流至線圈時,在藉由箭頭指示之方向上產生一磁場以產生具有線圈之間的一視野之一B0場,其在當適當設計且構造時可適用於低場MRI。術語「線圈」在本文中用於指代具有傳導電流以產生一磁場,藉此形成一電磁鐵之至少一個「匝」之任何幾何形狀之任何導體或導體組合。
應瞭解,圖1A中繪示之雙平面幾何形狀一般不適用於高場MRI,此係歸因於針對高場MRI獲得足夠均勻性之一B0場之難度。在圖1A中繪示之雙平面B0磁鐵提供一般開放式幾何形狀,從而促進其配合患有幽閉恐懼症且可能拒絕使用習知高場螺線管線圈幾何形狀成像之病人使用。此外,由於其開放式設計及(在一些例項中)依低場強度及均勻性需求可能之一般較大之視野,雙平面設計可促進配合較大體型病人使用。
在圖1A中繪示之雙平面B0磁鐵提供比對高場MRI可能的磁鐵複雜度小得多且成本低得多之一B0磁鐵。發明者已瞭解,圖1A中之磁鐵之態樣可在使用積層技術以製造一B0磁鐵或其部分用於低場MRI中時改良。在2015年9月4日申請且題為「Low Field Magnetic Resonance Imaging Methods and Apparatus」之共同申請之美國專利申請案(代理人檔案編號第O0354.70000US01號)中描述適當積層技術及利用積層技術之系統,該案之全部內容以引用之方式併入本文中。作為一個實例,積層技術可用於產生
一B0磁鐵,其替換線圈112a及112b以產生低場MRI之一所需B0場。此等混合技術之實例在上文併入之共用申請之申請案中描述且在下文進一步詳細討論。
在其他實施例中,積層技術可用於實施B0磁鐵的整體。舉例而言,根據一些實施例,一積層板包括經圖案化以形成能夠產生或促成適用於低場MRI之一B0磁場之一或多個B0線圈或一或多個B0線圈之一部分之至少一個導電層。舉例而言,一積層板可包括複數個同心線圈以形成圖1A繪示之雙平面B0線圈對之一「側」。可類似地構造一第二積層板以併入雙平面設計中之視野之另一「側」之B0線圈。如此,用於產生一低場MRI系統之一B0場之磁性組件可使用積層板技術構造。
圖1A亦示意性繪示一對平面梯度線圈組120a、120b,其等用來產生磁場以促進所繪示之低場MRI系統之部分之相位及頻率編碼。如上文討論,MRI系統藉由使用梯度線圈以一已知方式系統性改變B0場以依據頻率或相位編碼經接收之MR信號之空間位置而編碼經接收之MR信號。舉例而言,梯度線圈可經組態以依據沿著一特定方向之空間位置之一線性函數改變頻率或相位,但亦可藉由使用非線性梯度線圈提供更複雜之空間編碼設定檔。舉例而言,一第一梯度線圈可經組態以在一第一(X)方向上選擇性改變B0場以執行該方向上之頻率編碼,一第二梯度線圈可經組態以在實質上垂直於第一方向之一第二(Y)方向上選擇性改變B0場以執行相位編碼,且一第三梯度線圈可經組態以在實質上正交於第一及第二方向之一第三(Z)方向上選擇性改變B0場以實現體積成像應用之切片選擇。
設計梯度線圈以配合一特定B0磁性組件(例如,如在圖1A中展示之一或多個B0線圈)操作,且為令人滿意地操作,通常需要相對精確之製造及與
B0磁性組件之後續對準。發明者已認識到,使用積層技術來製造一或多個梯度線圈(或其等之部分)可促進製造一低場MRI系統之磁性組件之一更簡單的更具成本效益的方法。
根據一些實施例,一積層板包括至少一個導電層,該至少一個導電層經圖案化以形成一或多個梯度線圈或一或多個梯度線圈之一部分,其能夠當在一低場MRI裝置中操作時產生或促成適用於提供經偵測之MR信號之空間編碼之磁場。舉例而言,積層板可包括經圖案化以形成一或多個X梯度線圈(或其等之部分)、一或多個Y梯度線圈(或其等之部分)及/或一或多個Z梯度線圈(或其等之部分)之一或多個導電層。形成一或多個梯度線圈(或其等之部分)之積層板可與一對應B0磁性組件分離或可形成於一相同積層板之一或多個層中。相對於後者,可藉由與一或多個B0線圈(或其等之部分)共用(但與之電隔離)之導電層形成一或多個梯度線圈,或可於與一或多個B0線圈(或其等之部分)分離之一或多個導電層中形成一或多個梯度線圈。在一積層板中整合一或多個梯度線圈(或其等之部分)與一或多個B0線圈(或其等之部分)可促進設計且製造低場MRI之磁性組件之一更簡單更靈活方法,在下文中討論其之進一步態樣。
一低場MRI系統可進一步包含額外磁性組件,諸如一或多個勻場線圈,其等經配置以產生磁場以支援系統(例如)增大B0場之強度及/或改良B0場之均勻性,抵消有害場效應(諸如藉由梯度線圈之操作產生之效應、經成像之物件之負載效應),或另支援低場MRI系統之磁性。當操作一勻場線圈以促成一MRI系統之B0場(例如,促成場強度及/或改良均勻性)時,勻場線圈充當系統之一B0線圈,且應如此理解。在一些實施方案中,一或多個勻場線圈可獨立於系統之其他B0線圈操作,如在下文進一步詳細討論。
此外,一低場MRI系統可進一步包含經配置以抑制環境中及/或組件之間的非所需電磁輻射之(諸)屏蔽組件。(諸)發明者已認識到,積層技術可用於藉由在(諸)單獨積層板中形成此等組件(例如,一或多個勻場線圈(或其等之部分)及/或一或多個屏蔽組件)或將此等組件整合於含有一低場MRI系統之其他磁性組件(或其等之部分)之任一者或組合之一積層板中而製造此等組件,如在下文中進一步詳細討論。
因此,用於產生執行低場MRI所需之一或多個磁場之電磁鐵可使用習知技術(例如,纏繞線圈)而產生,可使用積層技術而製造,或使用兩個技術之一組合(例如,使用混合技術)而提供。然而,如上文討論,相對於電力電子裝置之成本及複雜度及/或熱管理系統之成本及複雜度兩者,唯一地使用電磁鐵可具有與系統之電力需求相關之限制。發明者已瞭解,使用永久磁鐵可解決與唯一地使用電磁鐵相關聯之一或多個問題,如在下文中進一步詳細討論。
圖1B至圖1D繪示使用電磁鐵及永久磁鐵兩者來(至少部分)產生低場MRI之一B0場之一雙平面磁鐵之組態。應瞭解,永久磁鐵亦可用於結合一單側磁鐵或結合一螺線管磁鐵繪示之任何組態中,此係由於永久磁鐵之使用不限於與任何特定類型或幾何形狀之電磁鐵結合使用。為繪示之簡單起見,圖1B至圖1D繪示之永久磁鐵170示意性繪示為圓形磁鐵。然而,可使用任何形狀之永久磁鐵(例如,矩形、圓柱形等)。另外,各永久磁鐵170可係一單一整合磁鐵,或可包括在空間上以任何所需方式分佈之任何形狀及大小之多個磁鐵。此外,所繪示之組態僅係例示性的,此係因為一或多個永久磁鐵可以任何數目、組態及幾何形狀使用以促進一所需B0場之產生,因為該等態樣不在此方面受限。
圖1B繪示包括電磁鐵110a及110b及永久磁鐵170a及170b之一雙平面磁鐵。永久磁鐵170a及170b相對於電磁鐵之間形成之視野分別配置於電磁鐵110a及110b之上方及下方。永久磁鐵提供促成一MRI系統之B0場之一持久磁場,從而容許依增加極少電力需求或不增加額外電力需求產生強度增大之B0場及/或容許減少產生一給定場強度之一B0場所需之電力需求。另外,永久磁鐵可經塑形及/或多個磁鐵可經空間配置以改良B0場之均勻性。另外或替代地,永久磁鐵可經提供於電磁鐵110a及110b之間,此係因為該等態樣不在此方面受限。如上文討論,可藉由移除所繪示之雙平面磁鐵之一「側」(例如,藉由移除電磁鐵110b及永久磁鐵170b)而形成一單側磁鐵。在此配置中,永久磁鐵可經配置於電磁鐵110a之任一側上,或配置於電磁鐵110a之兩側上。應瞭解,可使用額外電磁鐵(例如,圖1A中繪示之電磁鐵112a、112b)及/或額外永久磁鐵,此係因為該等態樣不在此方面受限。
圖1C繪示包括電磁鐵110a、110b及112a、112b及永久磁鐵170a'及170b'之一雙平面磁鐵。永久磁鐵170a'經配置於電磁鐵110a及112a之間且實質上與其等同心,且永久磁鐵170b'經配置於電磁鐵110b及112b之間且實質上與其等同心。雖然永久磁鐵170a'及170b'分別繪示單一整合磁鐵,但磁鐵可包括如所需空間配置之任何數目之單獨磁鐵。圖1D繪示包括電磁鐵110a、110b及永久磁鐵170a"、170b"之一雙平面磁鐵。永久磁鐵170a''包括經配置於電磁鐵110a外側且與電磁鐵110a近似同心之一或多個永久磁鐵及經配置於電磁鐵110a內側且與電磁鐵110a近似同心之一或多個永久磁鐵。類似地,永久磁鐵170b"包括經配置於電磁鐵110b外側且與電磁鐵110b近似同心之一或多個永久磁鐵及經配置於電磁鐵110b內側且與電磁鐵110b近似同心之一或多個永久磁鐵。
應瞭解,可單獨利用或以任何組合利用圖1B至圖1D中繪示之任何組態。舉例而言,任何形狀或大小之一或多個永久磁鐵可相對於任何數目電磁鐵同心及/或非同心地配置以至少部分產生用於MRI中之一B0場,舉例而言,適用於低場MRI之一B0場。可選擇一或多個永久磁鐵之形狀、大小及位置以促進產生所需強度及/或均勻性之一B0場,其等之一些額外實例在下文中進一步詳細討論。應進一步瞭解,可以與本文描述之其他技術之任何組合使用圖1B至圖1D中繪示之組態。
圖2A示意性繪示類似於圖1A之一雙平面磁鐵幾何形狀,其中線圈110a及110b經形成於該等線圈所連接至之一軛210內。在無軛210的情況下,藉由線圈產生之磁通量之一半損失至周圍環境。軛210包含鐵磁材料(例如,鐵、鋼等)及/或由其形成,該材料捕獲藉由該對中之線圈之一者產生之磁通量且將通量返回至該對中之線圈之另一者,藉此針對提供至線圈之相同量的操作電流將該對線圈之間的成像區中之磁通量密度增大達多達兩倍。可使用任何適當鐵磁材料或鐵磁材料組合且實施例不在此方面受限。圖2B繪示穿透軛210之一橫截面視圖,其更清晰繪示磁通量220如何從頂部線圈110a循環穿過軛210至底部線圈110b以增大該對線圈之間的通量密度。
(諸)發明者已認識且瞭解,藉由線圈之一者產生之磁通量可使用數個鐵磁結構之任一者捕獲且返回至另一線圈且形成圍繞線圈110a、110b之一鐵磁框之軛210僅係一個實施方案。下文更詳細描述其他替代實施方案之一些實例。無論所使用之鐵磁結構之類型,需要該對中之一個線圈之外側與該對中之另一線圈之外側之間的一完整連接來容許磁通量在鐵磁結構中依一封閉迴路循環。
圖3展示一替代鐵磁結構310,其中已使用經配置以使該對B0線圈之頂部及底部線圈之間的磁通量循環之複數個鐵磁柱320替換軛210。柱320之使用改良對在低場MRI掃描器中成像之病人之接達。在一些實施例中,柱可係可移動的以進一步改良對所成像之病人之接達。根據一些實施例,可使用任何數目之柱320(僅包含兩個柱)來提供磁通量之一返回路徑。另外,可使用連接該對B0線圈之柱之任何放置,包含柱之一非對稱定位。在一些實施例中,非對稱配置之兩個柱用於提供藉由線圈產生之磁通量之返回路徑。
在圖2及圖3中展示之實施例中,磁通量穿過鐵磁結構之多個路徑(例如,軛210之多側或多個柱320)返回。其他實施例包含僅在結構之一側上容許磁通量之一返回路徑之一鐵磁結構。圖4展示根據一些實施例之一鐵磁結構之一實例,其中僅在一雙平面磁鐵之一側上提供磁通量之一返回路徑。圖4展示C形鐵磁結構410,其捕獲來自線圈110a之磁通量且穿過結構410將經捕獲之通量轉移至線圈110b。鐵磁結構410提供與軛210類似之一磁通量密度,且歸因於結構的諸側之一敞開而提供對於成像之一病人之更佳接達。雖然相較於包含軛210之設計,C形鐵磁結構410之使用可導致一較不均勻之磁場,但C形設計中之場之相對不均勻性可以其他方式適應,包含但不限於使用下文更詳細討論之其他電磁或鐵磁組件。
經由根據一些實施例之一或多個鐵磁結構返回磁通量之封閉迴路路徑形成具有基於所使用之鐵磁材料及與磁通量之返回路徑相關之(諸)鐵磁結構之幾何形狀判定之一特定磁阻之一磁路(magnetic circuit)。(諸)發明者已認識且瞭解,若通量之返回路徑具有一較低磁阻,則用於返回磁通量之鐵磁結構將更有效返回通量(例如,具有更少損失至環境中的通量)。因此,
一些實施例減小至少一個磁通量返回路徑之磁阻以促進磁通量沿著磁路中之路徑之流動。藉由減小磁路返回路徑中之一磁阻而改良返回通量之效率導致成像區中之更高之磁通量密度。
若鐵磁結構中之鐵磁材料飽和,則磁路之磁阻增大。飽和可受若干因素影響,包含但不限於所使用之鐵磁材料之類型及磁通量在材料中必須行進之路徑。舉例而言,當通量歸因於在通量在匝中聚束時增大之通量密度而必須在短距離內改變方向時,飽和可能發生。在圖2B中展示之軛210之90°隅角中繪示沿著一返回路徑聚束之通量之一實例。在一些實施例中,鐵磁結構之一或多個隅角500可如在圖5中展示般平緩化(例如,斜面化)以減小鐵磁結構之隅角處之磁阻以防止或降低該等點處之飽和。用於返回通量之鐵磁結構之設計可以任何其他適當方式修改以減小磁路之磁阻,且態樣不在此方面受限。
除提供磁通量之一返回路徑以增大線圈之間的一視野內之磁通量密度外,一些實施例亦併入額外鐵磁組件以校正及/或控制藉由線圈產生之B0場之不均勻性。可使用若干不同技術改良B0場之均勻性,該等技術之實例在下文中討論。
如上文討論,一些實施例除包含用於產生B0場之B0線圈外亦可包含一或多個電磁勻場線圈。當啟動時,勻場線圈容許調諧B0場以補償場之不均勻性。勻場線圈可係靜態的或可動態通電(例如,回應於來自一電腦處理器之控制指令)以在調諧場時提供額外靈活性。在一些實施例中,經配置以促進產生所需磁場之勻場線圈經圖案化於一積層板之一或多個層上。圖5繪示一第一積層板510及一第二積層板512,其等之各者包含形成於其上之一或多個勻場線圈。在下文更詳細描述其中勻場線圈形成於一積層板上之一特
定實施方案。然而,應瞭解,配合實施例使用之勻場線圈可以任何其他適當方式形成,包含但不限於導線纏繞、條帶纏繞及使用任何適當形狀之(諸)電磁線圈。
根據一些實施例,一積層板可包括經圖案化以形成一或多個勻場線圈或一或多個勻場線圈之一部分之至少一個導電層,一或多個勻場線圈或一或多個勻場線圈之一部分經組態以產生或促成(諸)磁場且經調適以改良藉由一或多個B0線圈產生之B0場之均勻性,另改良一給定視野內之B0場及/或抵消負面影響B0場之其他磁場。針對包含具有至少一個B0線圈及至少一個勻場線圈之一積層板之實施例,至少一個勻場線圈可藉由與至少一個B0線圈(或其之部分)共用(但與之電隔離)之導電層形成或可形成於與至少一個B0線圈(或其之部分)分離之一或多個導電層中。如同上文討論之其他磁性組件,使用積層技術製造之勻場線圈可與使用積層技術(例如,藉由將勻場線圈整合於一共用或單獨積層板中)製造之其他組件一起利用或與使用習知技術製造作為一低場MRI系統之部分之其他組件一起利用。
多個低場MRI組件(或其等之部分)可形成於一積層板之一單一層(即,一單一積層)上。即,多個磁性組件或多個磁性組件之部分可經圖案化於一單一積層之相同導電層上。舉例而言,一積層板之一單一積層可經圖案化以形成用於調諧低場MRI系統之B0場之均勻性之一或多個B0線圈之所有或一部分及一或多個勻場線圈之所有或一部分。(諸)勻場線圈及(諸)B0線圈(或其等之部分)可共用形成於積層上之至少一些導電元件或(諸)勻場線圈及B0線圈(或其等之部分)可單獨形成於相同積層上(即,彼此電隔離)。應瞭解,組件(或其等之部分)之任何組合可根據一特定設計如所需在一或多個共用積層中類似地製造,此係因為態樣不在此方面受限。
應瞭解,可依任何方式及組態提供勻場線圈以促成促進產生所需強度及均勻性之一B0場之磁場。舉例而言,勻場線圈可經圖案化於一單一層上或跨多個層分佈,且各線圈可單獨圖案化於一層上或可與一或多個其他組件(或其等之部分)共用一或多個層。再者,可在一積層板內製造具有所需幾何形狀之任何數目勻場線圈,此係因為態樣不在此方面受限。根據一些實施例,圈製造於與一低場MRI系統之其他磁性材料分離之一積層板內一或多個勻場線。根據一些實施例,勻場線圈可提供為不同幾何形狀及/或提供於不同位置中,使得可回應於其中操作該系統之一給定環境而選擇性啟動勻場線圈之不同組合。動態選擇勻場線圈之一組合來操作之能力可促進產生能夠以一可運輸或可運送方式部署之低場MRI系統。
根據一些實施例,一或多個積層可包含(諸)被動磁性組件(諸如使用磁性材料圖案化之一或多個層)促進依減小之電力需求產生一所需B0場,或在不使用磁性材料的情況下,使用依據需要之相同電力需求產生一更高B0場。舉例而言,一積層板可包含使用含鐵或其他磁性材料圖案化之一或多個積層,該一或多個積層經配置以形成促成藉由一或多個B0線圈產生之磁場以達成一所需B0場之一磁性組件。因為此等磁性材料產生及/或訂製一磁場而無需一電源來提供電流以產生一磁場,故可依減小之電力需求產生一所需B0場,或可依增加極少電力需求或不增加電力需求產生一增大強度之B0場。
形成於一或多個積層上之(諸)磁性組件可包含具有相對高之磁導率(μ)之材料之任一者或組合來輔助產生及/或訂製所需場強度及/或均勻性之一B0場。(諸)磁性組件可藉由提供為一薄片之一或多個圖案化層形成,或另製造及併入在一或多個積層內以產生一所需磁場。被動磁性組件的使用
可減小產生一給定B0場所需之電力需求。即,因為一所需B0之一部分可被動產生(例如,不需要一電源來操作組件),所以主動磁性組件(例如,所需B0線圈之一或多者)上之負擔可降低。因此,一或多個B0線圈可使用減小之電流操作以與(諸)磁性組件組合產生具有一所需場強度及/或均勻性之一B0場。減小主動磁性組件之電力需求簡化驅動磁性組件之電力電子裝置之成本及複雜度,導致積層板之熱輸出的對應減小且亦可另緩解主動磁性組件在產生所需強度及/或均勻性之一B0場時之限制。
如上文討論,鐵磁材料可用來產生磁場而不需要一電源來產生磁場。鐵磁材料可被併入於一積層板之一或多層中或提供為用於增大場強度及/或更改B0場之均勻性之一單獨組件。當使用積層技術來實施時,使用磁性材料圖案化之一或多個層可經提供為被動勻場件以輔助產生所需B0場。被動勻場件(例如,(諸)永久磁鐵)可以任何數目、配置及幾何形狀而提供,且可單獨圖案化於一單一或多個層上或圖案化於與一或多個其他組件共用之層上,此係因為與提供被動勻場件相關之態樣不限於任何特定組態、幾何形狀或配置。被動勻場件可使用由任何所需幾何形狀之磁性材料構成之單獨勻場元件提供。此等勻場元件可藉由在所需位置處將該等元件附接至一積層板(例如,使用一黏合劑或藉由其他附接構件)而被併入板中及/或此等勻場元件可經配置為在所需位置處與積層板分離,此係因為態樣不限於將一或多個被動勻場件併入於一低場MRI系統中之任何特定方式。
如上文討論,在一些實施例中,鐵磁材料用作被動勻場件以藉由將鐵磁材料併入於一積層板之一或多個層中而增大B0場之場強度及/或改良B0場之均勻性。鐵磁粉末、複合物及/或微顆粒化合物亦可用於促成或更改一MRI系統之磁場。另外或替代地,鐵磁材料可形成於與(諸)積層板分離之
組件中以更改B0場之均勻性。在下文中更詳細描述根據一些實施例提供不同組態之被動勻場材料之實例。
圖6展示穿透一鐵磁結構之一橫截面,該結構包含經配置於線圈110a、110b內側以改良B0場之均勻性之鐵磁材料之環610、612。鐵磁環610、612藉由更改通量離開鐵磁材料之處及當通量線離開鐵磁材料時通量線之方向而改變場之均勻性。圖7展示穿透一鐵磁結構之一橫截面,該結構包含多個小型鐵磁材料件710、712。鐵磁件710、712之大小、位置及/或形狀可藉由製造期間之模擬、量測或以任何其他適當方式判定。舉例而言,鐵磁件710、712可包括材料環、材料之小區段、或任何其他形狀的材料。
圖8展示穿透另一鐵磁結構之一橫截面,該結構包含鐵磁磁極件810、812。如展示,磁極件810及812具有一波浪形狀。然而,磁極件810、812可具有任何適當形狀,且態樣不在此方面受限。磁極件810、812之形狀可以任何適當方式而判定,包含但不限於使用製造期間之模擬或量測。在一些實施例中,磁極件810、812係鐵磁材料(例如,鋼)之機械加工圓盤。磁極件810、812可自鐵磁材料之一實心件機械加工或可包括鐵磁材料之多個積層,此係因為態樣不在此方面受限。
在圖5至圖8中繪示之鐵磁結構包含更改藉由一低場MRI系統之磁性組件產生之一不均勻B0場之鐵磁組件。雖然各種鐵磁組件繪示為包含於單獨圖中,但應瞭解,實施例可包含一單一鐵磁組件或電磁或鐵磁組件之任何組合,此係因為態樣不在此方面受限。另外,圖5至圖8中展示之鐵磁組件之各者繪示為定位於該對B0線圈中之線圈之兩者之間。然而,在一些實施例中,一或多個鐵磁組件可定位於該對之線圈之僅一者之間及/或不同鐵磁組件可定位於該對之兩個線圈之間,此係因為態樣不基於包含於鐵磁結
構中之鐵磁組件之特定組合及放置而受限。
另外,圖5至圖8之各者中展示之鐵磁結構經繪示為具有擁有斜面隅角之一軛以提供用於返回軛中之通量之一低磁阻路徑,如上文描述。然而,應瞭解,經組態以捕獲且返回該對B0線圈之間的磁通量之(諸)鐵磁結構(包含但不限於圖3及圖4中展示之鐵磁結構)可替代地單獨使用或配合圖5至圖8中展示之鐵磁結構之任何組合使用,此係因為態樣不基於所使用之鐵磁結構及/或鐵磁組件之特定組合而受限。
任何適當鐵磁材料可用於製造用於返回磁通量之(諸)鐵磁結構及/或製造用於控制B0場之不均勻性之鐵磁組件。舉例而言,可使用一特定等級之「電工鋼」或「磁鐵鋼」。可使用任何等級之鋼,包含但不限於低等級(例如,1010)鋼、具有較低碳含量之更高等級(例如,1005、1006)鋼或任何其他等級之鋼。此等等級之鋼通常用於(例如)返回變壓器中之磁通量。更高等級之鋼雖然更昂貴,但歸因於其等增大之飽和含量而提供一較輕重量設計。根據一些實施例,除鋼外之材料亦可用作一鐵磁材料。舉例而言,在一些實施例中,具有更佳受控制磁性性質及/或更高磁導率之更高等級材料可另外或替代地用作鐵磁材料。
在一些實施例中,用於返回磁通量之(諸)鐵磁結構及用於控制B0場之不均勻性之一或多個鐵磁組件可由不同鐵磁材料製造。舉例而言,用於返回磁通量之軛可由鐵製造,而用於控制B0場之不均勻性之磁極件可由具有更佳受控制磁性性質及/或更高磁飽和度以能夠更精確調諧場之更高等級材料製造。
用於返回磁通量之(諸)鐵磁結構及用於控制B0場之不均勻性之一或多個鐵磁組件可以任何適當方式製造。歸因於AC電流而用於變壓器中以返回
通量之鐵磁結構通常使用積層結構來降低電力損失。因為低場MRI系統回應於DC電流而產生磁通量,故與實施例一起使用之一或多個鐵磁結構之至少一部分可經製造為鐵磁材料之一實心(例如,非積層)件。為便於製造,用於返回B0線圈之間的磁通量之(諸)鐵磁結構可依分段製造且使用任何適當緊固技術緊固在一起,包含但不限於使用暗銷、螺栓、接頭及焊接。應瞭解,一些緊固技術(例如,焊接)可能改變鐵磁材料之磁性性質且在可能的情況下限制此等緊固技術之使用以減少磁場之均勻性之變化可能係有利的。
在一些實施例中,一或多個鐵磁組件可形成為鐵磁材料(例如,鋼)之板之一積層結構。可使用任何適當厚度之鐵磁材料板。舉例而言,取決於實施方案之特定需求,可使用非常薄之板至具有1英寸或更大之一厚度之板。可選擇用於經組態以返回線圈之間的通量之(諸)鐵磁結構中之(諸)鐵磁材料之厚度以達成足夠容納藉由線圈產生之通量之大部分或全部(而不超過(諸)材料之飽和度)之一橫截面,在無鐵磁結構的情況下,該等通量否則將損失至環境中。
雖然可使用實心鐵磁結構,但積層鐵磁結構針對使用低場MRI之應用提供一些益處,包含但不限於在積層之間提供電隔離以減小低場MRI系統之操作期間在鐵磁材料中產生之渦電流之能力。可使用適當技術來製造積層,包含但不限於衝壓、使用水噴射技術及使用電腦化數值控制(CNC)系統。用於製造鐵磁組件之一或多個積層可彼此不同,且積層之各者可個別切割且堆疊以形成任意形狀。
在使用鐵磁材料之實心(例如,非積層)件來製造鐵磁組件之一些實施例中,其他技術(諸如分段)可用於減小當低場MRI系統在操作中時在鐵磁
材料中流動之渦電流之效應。在分段時,在實心材料中形成切口以提供電隔離且減小渦電流。切口之任何適當配置可用於將實心材料分段,且態樣不在此方面受限。在一些實施例中,設計積層及/或分段之切口以取決於由梯度線圈及/或任何其他切換磁場產生之鐵磁區處之磁場圖案而消除一特定類型之渦電流。
在一些實施例中,將一或多個鐵磁結構或組件設計為具有一不均勻厚度以減小組件之重量。舉例而言,取決於磁場在一特定位置係強或弱,一組件在不同位置處可具有不同厚度。針對包含用於以返回B0線圈之間的磁通量之一軛之實施例,軛之重量可實質上促成低場MRI系統之總重量。為減小此重量,可移除具有較低磁場之軛之部分,而具有較高磁場之軛之部分可需要使用更多鐵磁材料來捕集磁通量。
在一些實施例中,用於返回B0線圈之間的磁通量之(諸)鐵磁結構亦可充當B0線圈之一支撐結構,藉此減小具有一單獨支撐結構之需要,從而進一步減小低場MRI系統之重量。鐵磁結構亦可用於其他功能,包含但不限於電纜走線之一結構、冷卻管或低場MRI系統之其他組件。
在一些實施例中,額外支撐結構可用於提供用於返回磁通量之軛或其他鐵磁結構之機械支撐件。舉例而言,形成於鐵磁結構之外側上之垂直支撐件或其他結構可提供機械加固。額外支撐件亦可增加鐵磁結構之通量返回能力,從而進一步改良B0場之均勻性。
在一些實施例中,歸因於鐵磁結構對RF信號之不傳導性,用於返回磁通量之鐵磁結構亦可用於提供RF屏蔽。
(諸)發明者已進一步瞭解,以任何所需配置或組合將磁性組件併入積層板中之能力容許實現許多不同幾何形狀(例如,不同形狀及/或大小)以促
進開發針對特定MRI應用訂製之低場MRI裝置。再者,發明者已認識,使用積層板產生磁性裝置可促進製造相對低成本及/或可運送或另可攜式低場MRI系統。此外,依板形式產生磁性裝置容許製造可摺疊及/或可變形MRI磁組件,此促進可攜性/可運送性兩者以及構造特定於特定MRI應用之MRI磁性裝置之能力或促進使人體之特定部分成像,如在下文進一步詳細描述。因此,如本文描述般使用積層板來產生MRI磁性裝置(或其等之部分)具有從根本上改變MRI可如何用於醫療或臨床情境中且使用深遠影響變革MRI行業,從而大幅擴展可利用MRI之環境及情勢的能力。
圖9A繪示根據一些實施例之一可變換低場MRI系統980之一實例,其可併入本文描述之一或多個鐵磁增強結構或組件。在圖9A中,可變換系統在其未使用時,處於便於運輸系統或儲存系統之一縮回組態中。可變換系統980包含一可滑動床984,該可滑動床984經組態以支撐一病人且容許病人在箭頭981之方向上滑入及滑出外殼986A及986B之間的成像區。外殼986A及986B容納可變換系統980之磁性組件,如在下文中結合可變換系統980之若干視圖進一步詳細討論。可使用任何適當技術或技術組合產生、製造及配置磁性組件。
藉由作為支撐柱之圖9A中展示之支撐結構940提供外殼986A及986B之間的間隔。在一些實施例中,一或多個支撐結構940可包括鐵磁材料,該等鐵磁材料經組態以形成一磁路,該磁路提供藉由包含於外殼986A、986B中之磁性組件產生之磁通量之一返回路徑,如上文描述。替代地,可變換系統980可包含除支撐結構940外之一或多個鐵磁結構,該一或多個鐵磁結構提供用於返回通量之一磁路以改良藉由容納於外殼986A及986B中之磁性組件產生之B0場之均勻性。
圖9B繪示展開之可變換系統980,且其中一病人在進入外殼986A及986B之間以被成像之前,定位於可滑動床984上。圖9C繪示外殼986A及986B之一分解圖。如展示,外殼986A及986B之各者容納磁性組件,該等磁性組件經耦合至一熱管理組件以將熱量抽離磁性組件。特定言之,外殼986A及986B之各者中包含B0線圈910a及910b、積層板920(其在一面朝上配置中在外殼986B內可見)及提供於B0線圈之間之熱組件930。在一些實施例中,外殼986A及986B可另外包含鐵磁組件(其等之實例在上文中討論)以改良藉由B0線圈910a及910b產生之場之均勻性。任何適當數目、類型及/或配置之鐵磁組件可包含於外殼986A及986B中,且態樣不在此方面受限。
在因此已描述本發明中提出之技術之若干態樣及實施例之情況下,應瞭解,熟習此項技術者容易想到各種更改、修改及改良。此等更改、修改及改良意在處於本文描述之技術之精神及範疇內。舉例而言,一般技術者將容易預想到,用於執行功能及/或獲得結果及/或本文中描述之一或多個優勢之各種其他構件及/或結構以及此等變化及/或修改之各者被視為處於本文中描述之實施例之範疇內。熟習此項技術者將認識到或能夠僅使用常規實驗確定對於本文中描述之特定實施例之許多等效物。因此,應理解,前述實施例僅藉由實例呈現,且在隨附申請專利範圍及其等效物之範疇內,可以除如特定描述以外之方式實踐發明實施例。另外,本文描述之兩個或兩個以上特徵、系統、物件、材料、套組及/或方法之任何組合在此等特徵、系統、物件、材料、套組及/或方法並非互不一致的情況下,包含於本發明之範疇內。
同樣地,如所描述,一些態樣可體現為一或多個方法。作為方法之部分執行之行動可以任何適當方式排序。因此,可構造其中以不同於圖解說
明之一順序執行行動之實施例,其可包含同時實行一些行動,即便在闡釋性實施例中展示為依序行動。
如本文中界定及使用之所有定義應被理解為掌控字典定義、以引用的方式併入之文獻中之定義及/或所界定術語之普通含義。
如本文中在說明書及申請專利範圍中使用之不定冠詞「一」及「一個」應被理解為意謂「至少一個」,除非明確相反指示。
如本文中在說明書及申請專利範圍中使用之片語「及/或」應被理解為意謂如此連結之元件之「任一者或兩者」(即,在一些情況中結合地存在且在其他情況中分離地存在之元件)。使用「及/或」列出之多個元件應以相同方式解釋,即,如此連結之元件之「一或多者」。除藉由「及/或」子句具體識別之元件以外,其他元件可視情況存在,無論相關於或不相關於具體識別之該等元件。因此,作為一非限制性實例,當與開放式語言(諸如「包括」)結合使用時,對「A及/或B」之一參考在一項實施例中可僅係指A(視情況包含除B以外的元件);在另一實施例中,可僅係指B(視情況包含除A以外的元件);在又另一實施例中,可係指A及B兩者(視情況包含其他元件);等等。
如本文中在說明書及申請專利範圍中使用,片語「至少一個」在對一或多個元件之一清單之參考中應被理解為意謂從元件清單中之元件之任何一或多者選擇之至少一個元件,但未必包含元件清單內具體列出之各元件及每一元件之至少一者且不排除元件清單中之元件之任何組合。此定義亦允許可視情況存在除在片語「至少一者」所指之元件清單內具體識別之元件以外的元件,而無論與具體識別之該等元件相關或不相關。因此,作為一非限制性實例,「A及B之至少一者」(或等效地,「A或B之至少一者」,
或等效地,「A及/或B之至少一者」)在一項實施例中可係指至少一個(視情況包含一個以上)A,不存在B(且視情況包含除B以外的元件);在另一實施例中,可係指至少一個(視情況包含一個以上)B,不存在A(且視情況包含除A以外的元件);在又另一實施例中,可係指至少一個(視情況包含一個以上)A及至少一個(視情況包含一個以上)B(且視情況包含其他元件);等等。
而且,在本文中使用之措辭及術語出於描述之目的且不應視為限制。「包含」、「包括」或「具有」、「含有」、「涉及」及其等在本文中之變形之使用意欲涵蓋在其後列出之項目及其等之等效物以及額外項目。
在申請專利範圍中以及在上文說明書中,諸如「包括」、「包含」、「攜載」、「具有」、「含有」、「涉及」、「保持」、「由......組成」及類似物之所有連接片語應被理解為開放式,即,意謂包含但不限於。僅連接片語「由......構成」及「本質上由......構成」應為分別封閉式或半封閉式連接片語。
Claims (34)
- 一種用於一磁共振成像系統中之磁性系統,該磁性系統包括:一B0磁鐵,其經組態以產生一磁場以促成(contribute to)該磁共振成像系統之一B0磁場;及至少一個鐵磁組件,其經組態以捕獲且引導藉由該B0磁鐵產生之該磁場之至少一些,以增大該磁共振成像系統之一成像區內之磁通量密度,其中該B0磁鐵(magnet)及該至少一個鐵磁組件經組態以產生等於或小於0.2T之一強度之該B0磁場。
- 如請求項1之磁性系統,其中該B0磁鐵包括經組態以在操作時產生一磁場以促成該磁共振成像系統之該B0磁場之至少一個電磁鐵。
- 如請求項1之磁性系統,其中該磁性系統經組態以產生具有等於或小於0.2T且大於或等於0.1T之一強度之該B0磁場。
- 如請求項1之磁性系統,其中該磁性系統經組態以產生具有等於或小於0.1T且大於或等於50mT之一強度之該B0磁場。
- 如請求項1之磁性系統,其中該磁性系統經組態以產生等於或小於50mT且大於或等於20mT之一強度之該B0磁場。
- 如請求項1之磁性系統,其中該磁性系統經組態以產生等於或小於20mT且大於或等於10mT之一強度之該B0磁場。
- 如請求項1之磁性系統,其中該磁性系統經組態以產生小於10mT之一強度之該B0磁場。
- 如請求項2之磁性系統,其中該至少一個電磁鐵包括一對B0線圈,該對B0線圈包含經配置於一雙平面組態中之一第一B0線圈及一第二B0線圈,且其中該至少一個鐵磁組件經組態以增大場強度及/或更改該B0場在該第一B0線圈與該第二B0線圈之間的該成像區中之均勻性。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件包括一鐵磁結構,該鐵磁結構經連接至該第一B0線圈及該第二B0線圈以形成一磁路,該磁路提供由該第一B0線圈及該第二B0線圈產生之磁通量之穿透該鐵磁結構之至少一個返回路徑。
- 如請求項9之磁性系統,其中該鐵磁結構提供磁通量之沿著該鐵磁結構之至少一側之該至少一個返回路徑。
- 如請求項10之磁性系統,其中該鐵磁結構提供磁通量之沿著該鐵磁結構之側之複數個返回路徑。
- 如請求項10之磁性系統,其中該鐵磁結構包括一C形鐵磁結構,該C形鐵磁結構提供磁通量之僅沿著該鐵磁結構之一側之一返回路徑。
- 如請求項9之磁性系統,其中該鐵磁結構包括至少一個斜面隅角來減小圍繞該至少一個斜面隅角之一磁阻。
- 如請求項9之磁性系統,其中該鐵磁結構包括經組態以提供磁通量之該至少一個返回路徑之複數個鐵磁柱。
- 如請求項14之磁性系統,其中該複數個鐵磁柱之至少一者可從低場MRI系統移除。
- 如請求項9之磁性系統,其中該至少一個鐵磁組件進一步包括經定位鄰近於該第一B0線圈及/或該第二B0線圈以更改該磁通量離開該鐵磁結構之處之至少一個鐵磁組件。
- 如請求項16之磁性系統,其中該鐵磁結構包括一第一鐵磁材料,且其中經定位鄰近於該第一B0線圈及/或該第二B0線圈之該至少一個鐵磁組件包括不同於該第一鐵磁材料之一第二鐵磁材料。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件包括一或多個實心鐵磁組件。
- 如請求項8之磁性系統,其中該磁性系統包括至少一個積層板,該至少一個積層板具有製造於其上之至少一個電磁組件。
- 如請求項19之磁性系統,其中該至少一個積層板包括形成於其上之至少一個B0線圈及/或至少一個梯度線圈。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件包括經定位鄰近於該第一B0線圈及/或該第二B0線圈之至少一個勻場環。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件包括經定位鄰近於該第一B0線圈及/或該第二B0線圈之複數個鐵磁勻場件。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件包括經定位鄰近於該第一B0線圈及/或該第二B0線圈之至少一個鐵磁磁極件。
- 如請求項23之磁性系統,其中該至少一個鐵磁磁極件包括具有一非矩形形狀之一磁極件。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件經組態以提供一支撐結構,該支撐結構提供對該第一B0線圈及/或該第二B0線圈之支撐。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件包括複數個電隔離分段來減小該至少一個鐵磁組件中產生之渦電流。
- 如請求項8之磁性系統,其中該至少一個鐵磁組件具有一非均勻厚度以減小該至少一個鐵磁組件之一重量。
- 如請求項1之磁性系統,其中該B0磁鐵包括產生一磁場以促成該磁共振成像系統之該B0磁場之至少一個永久磁鐵。
- 如請求項28之磁性系統,其中該B0磁鐵包括經組態以在操作時產生一磁場以促成該磁共振成像系統之該B0磁場之至少一個電磁鐵。
- 如請求項2之磁性系統,其中該B0磁鐵包括產生一磁場以促成該磁共振成像系統之該B0磁場之至少一個永久磁鐵。
- 如請求項20之磁性系統,其中該至少一個積層板包括至少一個x梯度線圈、至少一個y梯度線圈及至少一個z梯度線圈來分別提供x、y及z方向上之空間編碼。
- 如請求項31之磁性系統,其中該至少一個積層板包括經組態以促成該B0磁場之至少一個B0線圈,且其中該至少一個積層板包括經配置於一雙平面組態中之一第一積層板及一第二積層板。
- 一種用於一磁共振成像系統中之磁性系統,該磁性系統包括:至少一個電磁鐵,其經組態以在操作時產生一磁場以促成該磁共振成像系統之一B0場,該電磁鐵包括使用非超導(non-superconducting)材料纏繞以產生一磁場之至少一個電磁線圈;及至少一個鐵磁組件,其經組態以捕獲且引導藉由該電磁鐵產生之該磁場之至少一些以增大該磁共振成像系統之一成像區內之磁通量密度。
- 如請求項33之磁性系統,其中該超導材料包括一銅或鋁導體。
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201462046814P | 2014-09-05 | 2014-09-05 | |
US201562110049P | 2015-01-30 | 2015-01-30 | |
US201562111320P | 2015-02-03 | 2015-02-03 | |
US201562174666P | 2015-06-12 | 2015-06-12 | |
US14/846,255 US9638773B2 (en) | 2014-09-05 | 2015-09-04 | Ferromagnetic augmentation for magnetic resonance imaging |
US14/846,255 | 2015-09-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201712357A TW201712357A (zh) | 2017-04-01 |
TWI627428B true TWI627428B (zh) | 2018-06-21 |
Family
ID=55437316
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105128467A TWI627428B (zh) | 2014-09-05 | 2016-09-02 | 用於磁共振成像系統中之磁性系統 |
Country Status (12)
Country | Link |
---|---|
US (27) | US9817093B2 (zh) |
EP (5) | EP3189341A4 (zh) |
JP (9) | JP6684804B2 (zh) |
KR (4) | KR20170048577A (zh) |
CN (8) | CN111896903A (zh) |
AU (7) | AU2015311825B2 (zh) |
BR (4) | BR112017004353A2 (zh) |
CA (8) | CA2960194C (zh) |
IL (5) | IL250939B (zh) |
MX (4) | MX366786B (zh) |
TW (1) | TWI627428B (zh) |
WO (5) | WO2016037030A1 (zh) |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101518751B1 (ko) * | 2013-11-21 | 2015-05-11 | 연세대학교 산학협력단 | 다중 대조도 자기공명영상에서 잡음 제거 방법 및 장치 |
CN111896903A (zh) | 2014-09-05 | 2020-11-06 | 海珀菲纳研究股份有限公司 | 噪声抑制方法和设备 |
EP3217872A4 (en) | 2014-11-11 | 2018-07-18 | Hyperfine Research, Inc. | Pulse sequences for low field magnetic resonance |
US10813564B2 (en) | 2014-11-11 | 2020-10-27 | Hyperfine Research, Inc. | Low field magnetic resonance methods and apparatus |
AU2016250077B2 (en) | 2015-04-13 | 2021-04-15 | Hyperfine Operations, Inc. | Magnetic coil power methods and apparatus |
US10288711B1 (en) * | 2015-04-30 | 2019-05-14 | Life Services, LLC | Device and method for simultaneous TX/RX in strongly coupled MRI coil loops |
JP6784697B2 (ja) | 2015-05-12 | 2020-11-11 | ハイパーファイン リサーチ,インコーポレイテッド | 高周波コイルの方法および装置 |
US10901055B2 (en) * | 2015-05-15 | 2021-01-26 | Eidgenossische Technische Hochschule (Eth) | Active noise suppression for magnetic resonance based magnetic field probes |
US11119171B2 (en) * | 2015-07-16 | 2021-09-14 | Synaptive Medical Inc. | Systems and methods for adaptive multi-resolution magnetic resonance imaging |
CN106483483B (zh) * | 2015-08-27 | 2019-09-06 | 通用电气公司 | 梯度线圈及其制造方法 |
CN109073681B (zh) * | 2016-03-22 | 2020-10-23 | 海珀菲纳研究股份有限公司 | 用于磁场匀场的方法和设备 |
CN115407252A (zh) | 2016-06-22 | 2022-11-29 | 优瑞技术公司 | 低场强磁共振成像 |
EP3236375A3 (de) * | 2016-08-24 | 2018-01-24 | Siemens Healthcare GmbH | Verfahren und system zum ausgeben einer medizinischen information |
US10650621B1 (en) | 2016-09-13 | 2020-05-12 | Iocurrents, Inc. | Interfacing with a vehicular controller area network |
TWI667487B (zh) | 2016-09-29 | 2019-08-01 | 美商超精細研究股份有限公司 | 射頻線圈調諧方法及裝置 |
US10539637B2 (en) | 2016-11-22 | 2020-01-21 | Hyperfine Research, Inc. | Portable magnetic resonance imaging methods and apparatus |
US10627464B2 (en) | 2016-11-22 | 2020-04-21 | Hyperfine Research, Inc. | Low-field magnetic resonance imaging methods and apparatus |
WO2018098141A1 (en) | 2016-11-22 | 2018-05-31 | Hyperfine Research, Inc. | Systems and methods for automated detection in magnetic resonance images |
US10585153B2 (en) | 2016-11-22 | 2020-03-10 | Hyperfine Research, Inc. | Rotatable magnet methods and apparatus for a magnetic resonance imaging system |
DE102017200446A1 (de) * | 2017-01-12 | 2018-07-12 | Siemens Healthcare Gmbh | Korrektur eines MR-Sendesignals |
EP3535594B1 (de) * | 2017-01-13 | 2023-03-29 | Siemens Healthcare GmbH | Magnetresonanztomograph und lokalspulenmatrix zum betrieb bei niedrigen magnetfeldstärken |
WO2018190676A1 (ko) | 2017-04-14 | 2018-10-18 | 국립암센터 | 말산-아스파르트산 왕복수송 억제제 및 항암제를 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물 |
EP3401695A1 (en) | 2017-05-08 | 2018-11-14 | Koninklijke Philips N.V. | Cooling a gradient coil of a magnetic resonance imaging system |
US10732248B2 (en) | 2017-05-22 | 2020-08-04 | Synaptive Medical (Barbados) Inc. | System and method to reduce eddy current artifacts in magnetic resonance imaging |
US20190041481A1 (en) * | 2017-08-04 | 2019-02-07 | Muralidhara Subbarao | Massively parallel magnetic resonance imaging wherein numerous off-surface coils are used to acquire partially under-sampled magnetic resonance signal data |
EP3467531A1 (de) * | 2017-10-05 | 2019-04-10 | Siemens Healthcare GmbH | Magnetresonanztomograph mit aktiver störunterdrückung und verfahren zur störunterdrückung in einem magnetresonanztomographen |
JP6867926B2 (ja) * | 2017-10-12 | 2021-05-12 | 株式会社日立製作所 | ノイズ発生源探索装置及びノイズ発生源探索方法 |
CN109717869B (zh) * | 2017-10-31 | 2024-05-14 | 通用电气公司 | 磁共振成像过程中的运动监测方法、计算机程序、存储设备 |
US10489943B2 (en) * | 2018-02-28 | 2019-11-26 | General Electric Company | System and method for sparse image reconstruction |
US20210050092A1 (en) * | 2018-03-14 | 2021-02-18 | Koninklijke Philips N.V. | Intelligent scheduler for centralized control of imaging examinations |
CN108627789B (zh) * | 2018-03-28 | 2020-07-28 | 重庆大学 | 空心线圈传感器的τ曲线标定方法 |
EP3553547A1 (en) * | 2018-04-12 | 2019-10-16 | Koninklijke Philips N.V. | Shim irons for a magnetic resonance apparatus |
FR3080509B1 (fr) * | 2018-04-19 | 2021-05-14 | Zodiac Data Systems | Dispositif d'acquisition de donnees pour l'instrumentation d'une structure |
CA3096397A1 (en) | 2018-04-20 | 2019-10-24 | Hyperfine Research, Inc. | Deployable guard for portable magnetic resonance imaging devices |
ES2730123A1 (es) * | 2018-05-07 | 2019-11-08 | Tesoro Imaging S L | Bobina magnetica con configuracion geometrica incompleta |
US11209509B2 (en) * | 2018-05-16 | 2021-12-28 | Viewray Technologies, Inc. | Resistive electromagnet systems and methods |
BR112020021872A2 (pt) | 2018-05-21 | 2021-01-26 | Hyperfine Research, Inc. | métodos e aparelhos de magneto b0 para um sistema de ressonância magnética |
AU2019272580A1 (en) | 2018-05-21 | 2020-11-12 | Hyperfine Operations, Inc. | Radio-frequency coil signal chain for a low-field MRI system |
CN108828484B (zh) * | 2018-05-25 | 2024-08-09 | 中国计量科学研究院 | 一种磁共振成像仪的质控模体 |
CN108983134B (zh) * | 2018-05-31 | 2020-07-03 | 上海东软医疗科技有限公司 | 信号接收通道校准方法和磁共振校准系统 |
EP3581953A1 (en) | 2018-06-11 | 2019-12-18 | Koninklijke Philips N.V. | A method for configuring a rf transmit assembly |
TW202015621A (zh) | 2018-07-19 | 2020-05-01 | 美商超精細研究股份有限公司 | 在磁共振成像中患者定位之方法及設備 |
JP2021532875A (ja) | 2018-07-30 | 2021-12-02 | ハイパーファイン,インコーポレイテッド | 磁気共鳴画像再構成のための深層学習技術 |
TW202012951A (zh) | 2018-07-31 | 2020-04-01 | 美商超精細研究股份有限公司 | 低場漫射加權成像 |
JP2021534852A (ja) * | 2018-08-15 | 2021-12-16 | ハイパーファイン,インコーポレイテッド | 磁気共鳴画像においてアーティファクトを抑制するためのディープラーニング技術 |
CA3168499A1 (en) | 2018-09-14 | 2020-03-19 | 10250929 Canada Inc. | Method and system for in-vivo, and non-invasive measurement of metabolite levels |
US10761162B2 (en) * | 2018-09-18 | 2020-09-01 | General Electric Company | Gradient coil cooling systems |
EP3633400B1 (de) * | 2018-10-02 | 2022-09-21 | Siemens Healthcare GmbH | Magnetresonanztomograph sowie system und verfahren zum verhindern von übersprech-störungen |
DE102018128254A1 (de) * | 2018-11-12 | 2020-05-14 | Endress+Hauser SE+Co. KG | Verfahren zur Verbesserung derMessperformance eines zu konfigurierenden Feldgeräts der Automatisierungstechnik |
EP3657193B1 (en) * | 2018-11-20 | 2021-02-17 | Bruker Switzerland AG | Method for magnetizing a superconductor bulk magnet, with generating an auxiliary magnetic field in the superconductor bore |
DE102018221695A1 (de) * | 2018-12-13 | 2020-06-18 | Siemens Healthcare Gmbh | Verfahren zur quantitativen Magnetresonanzbildgebung, Magnetresonanzeinrichtung, Computerprogramm und elektronisch lesbarer Datenträger |
CA3122087A1 (en) | 2018-12-19 | 2020-06-25 | Hyperfine Research, Inc. | System and methods for grounding patients during magnetic resonance imaging |
WO2020139476A2 (en) | 2018-12-28 | 2020-07-02 | Hyperfine Research, Inc. | Correcting for hysteresis in magnetic resonance imaging |
EP3928108A4 (en) * | 2019-02-22 | 2023-03-15 | Promaxo, Inc. | SYSTEMS AND METHODS FOR PERFORMING MAGNETIC RESONANCE IMAGING |
EP3937774A1 (en) | 2019-03-12 | 2022-01-19 | Hyperfine, Inc. | Systems and methods for magnetic resonance imaging of infants |
JP2022526718A (ja) | 2019-03-14 | 2022-05-26 | ハイパーファイン,インコーポレイテッド | 空間周波数データから磁気共鳴画像を生成するための深層学習技術 |
CN109946631B (zh) * | 2019-03-27 | 2021-06-25 | 中国计量大学 | 最小化最大温度值的盘式梯度线圈 |
CN109946630B (zh) * | 2019-03-27 | 2021-05-28 | 中国计量大学 | 最小化最大温度值的盘式梯度线圈设计方法 |
KR20220005492A (ko) | 2019-04-26 | 2022-01-13 | 하이퍼파인, 인크. | 자기 공명 영상 시스템의 동적 제어를 위한 기술 |
KR20220007876A (ko) * | 2019-05-07 | 2022-01-19 | 하이퍼파인, 인크. | 유아의 자기 공명 이미징을 위한 시스템, 디바이스 및 방법 |
US11698430B2 (en) | 2019-08-15 | 2023-07-11 | Hyperfine Operations, Inc. | Eddy current mitigation systems and methods |
WO2021071938A2 (en) | 2019-10-08 | 2021-04-15 | Hyperfine Research, Inc. | System and methods for detecting electromagnetic interference in patients during magnetic resonance imaging |
EP3808265B1 (en) * | 2019-10-16 | 2024-02-28 | Esaote S.p.A. | Patient support device, such as a patient bed, table or chair, for use with magnetic resonance imaging apparatuses |
EP4049052A2 (en) | 2019-10-25 | 2022-08-31 | Hyperfine Operations, Inc. | Artefact reduction in magnetic resonance imaging |
US12013453B2 (en) | 2019-10-25 | 2024-06-18 | Hyperfine Operations, Inc. | Systems and methods for detecting patient motion during magnetic resonance imaging |
DE102019216755A1 (de) * | 2019-10-30 | 2021-05-06 | Robert Bosch Gmbh | Verfahren zum Betrieb eines NMR-Spektrometers sowie NMR-Spektrometer |
DE102019216761A1 (de) * | 2019-10-30 | 2021-05-06 | Robert Bosch Gmbh | Verfahren zum Betrieb eines NMR-Spektrometers sowie NMR-Spektrometer |
DE102019216759A1 (de) * | 2019-10-30 | 2021-05-06 | Robert Bosch Gmbh | Verfahren zum Betrieb eines NMR-Spektrometers sowie NMR-Spektrometer |
US11510588B2 (en) | 2019-11-27 | 2022-11-29 | Hyperfine Operations, Inc. | Techniques for noise suppression in an environment of a magnetic resonance imaging system |
US11415651B2 (en) | 2019-12-10 | 2022-08-16 | Hyperfine Operations, Inc. | Low noise gradient amplification components for MR systems |
US11422213B2 (en) | 2019-12-10 | 2022-08-23 | Hyperfine Operations, Inc. | Ferromagnetic frame for magnetic resonance imaging |
USD932014S1 (en) | 2019-12-10 | 2021-09-28 | Hyperfine, Inc. | Frame for magnets in magnetic resonance imaging |
USD912822S1 (en) | 2019-12-10 | 2021-03-09 | Hyperfine Research, Inc. | Frame for magnets in magnetic resonance imaging |
CN115552269A (zh) | 2019-12-10 | 2022-12-30 | 海珀菲纳运营有限公司 | 用于磁共振成像的具有非铁磁框架的永磁体装配件 |
CN113050010B (zh) * | 2019-12-26 | 2023-03-21 | 上海联影医疗科技股份有限公司 | 噪音分析的系统、方法 |
DE102020200013A1 (de) * | 2020-01-03 | 2021-07-08 | Siemens Healthcare Gmbh | Magnetresonanzeinrichtung und Verfahren zum Betrieb einer Magnetresonanzeinrichtung, Computerprogramm und elektronisch lesbarer Datenträger |
WO2021144876A1 (ja) * | 2020-01-15 | 2021-07-22 | 朝日インテック株式会社 | 測定装置、検出装置、および測定方法 |
CN110873855B (zh) * | 2020-01-20 | 2020-04-21 | 华中科技大学 | 一种基于磁通压缩的脉冲磁体装置及高通量测量方法 |
US20210302518A1 (en) | 2020-03-24 | 2021-09-30 | Hyperfine Research, Inc. | Gradient waveform design for low-field magnetic resonance imaging systems |
US11754650B2 (en) * | 2020-04-10 | 2023-09-12 | Howmedica Osteonics Corp. | MRI shield |
US20230132819A1 (en) * | 2020-04-24 | 2023-05-04 | The General Hospital Corporation | System and method for electromagnetic interference mitigation for portable mri systems |
US20230136830A1 (en) * | 2020-04-24 | 2023-05-04 | The General Hospital Corporation | Point-of-care magnetic resonance imaging system for lumbar puncture guidance |
WO2022026644A1 (en) * | 2020-07-31 | 2022-02-03 | Synex Medical Inc. | Weak signal detection system and method |
US20220133240A1 (en) * | 2020-10-30 | 2022-05-05 | Chengdu Yijian Medical Technology Co., Ltd | System and method for reducting or eliminating artifacts in magnectic resonance imaging |
CN112698256B (zh) * | 2020-12-07 | 2023-08-29 | 深圳航天科技创新研究院 | 降低磁共振成像设备电磁噪声的主动降噪系统的降噪方法 |
DE102020215738B4 (de) * | 2020-12-11 | 2024-08-22 | Siemens Healthineers Ag | Verfahren zum Betreiben eines Magnetresonanztomographie-systems mit iterativer Störungsreduktion mittels wenigstens einer Hilfsempfangsantenne und einer Hauptempfangsantenne |
EP4264304A1 (en) | 2020-12-15 | 2023-10-25 | Hyperfine Operations, Inc. | Opto-isolator circuitry for magnetic resonance imaging applications |
DE102020133923B4 (de) * | 2020-12-17 | 2023-03-23 | Isovolta Gatex GmbH | Verfahren zum lagefixierten Verbinden eines schlauchförmigen Elementes auf einer Trägerplatte |
CN118112474A (zh) | 2021-02-02 | 2024-05-31 | 海珀菲纳运营有限公司 | Mri系统、使用mri系统对被检体进行成像的方法及存储介质 |
DE102021104344A1 (de) * | 2021-02-24 | 2022-08-25 | Otto-Von-Guericke-Universität Magdeburg | MR-Bildgebung mit Reduktion von Zipper-Artefakten |
CN113176528A (zh) * | 2021-04-29 | 2021-07-27 | 杭州微影医疗科技有限公司 | 干扰消除方法、介质及设备 |
KR20220152457A (ko) | 2021-05-07 | 2022-11-16 | 삼성전자주식회사 | 이미지 센서 및 그 동작 방법 |
JP2023002228A (ja) * | 2021-06-22 | 2023-01-10 | 昭和電工株式会社 | 情報処理装置および磁気センサシステム |
FR3130391B1 (fr) * | 2021-12-10 | 2023-11-03 | Multiwave Imaging | Dispositif d’imagerie par résonnance magnétique pourvu d’un assemblage magnétique |
WO2023194228A1 (en) * | 2022-04-04 | 2023-10-12 | Renaissance Fusion | Modular mri machine |
EP4257999A1 (en) * | 2022-04-04 | 2023-10-11 | Renaissance Fusion | Modular mri machine |
EP4270038A1 (de) * | 2022-04-27 | 2023-11-01 | Siemens Healthcare GmbH | Magnetanordnung für eine magnetresonanzvorrichtung |
FR3135787B1 (fr) | 2022-05-17 | 2024-07-19 | Multiwave Imaging | Procédé de formation d’une image d’un corps au moyen d’un dispositif irm |
WO2024025828A1 (en) * | 2022-07-25 | 2024-02-01 | Promaxo, Inc. | Low-field mri texture analysis |
EP4312043A1 (de) * | 2022-07-25 | 2024-01-31 | Siemens Healthcare GmbH | Magnetresonanztomograph und verfahren für einen energiesparenden betrieb des magnetresonanztomographen |
EP4328611A1 (de) * | 2022-08-25 | 2024-02-28 | Siemens Healthineers AG | Vorrichtung und verfahren zur störunterdrückung bei einem magnetresonanztomographen |
US20240094322A1 (en) * | 2022-09-19 | 2024-03-21 | Synaptive Medical Inc. | System and methods for monitoring medical equipment by using cloud-based telemetry |
CN115778395A (zh) * | 2022-11-08 | 2023-03-14 | 成都原力辰教育科技有限公司 | 一种心脏磁场测量系统、方法、电子设备及存储介质 |
US20240168105A1 (en) * | 2022-11-19 | 2024-05-23 | Neuro42 Inc. | System and method for removing electromagnetic interference from low-field magnetic resonance images |
EP4390430A1 (en) * | 2022-12-21 | 2024-06-26 | Koninklijke Philips N.V. | Method and system for determining a position of a portable mri system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5252924A (en) * | 1991-11-18 | 1993-10-12 | Sumitomo Special Metals Co., Ltd. | Magnetic field generating apparatus for MRI |
TW389688B (en) * | 1998-06-05 | 2000-05-11 | Yokogawa Medical Syst | MRI coil and MRI apparatus |
TW570771B (en) * | 2000-03-31 | 2004-01-11 | Univ Rochester | Magnetic resonance imaging with resolution and contrast enhancement |
Family Cites Families (362)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1397244A (en) * | 1920-08-07 | 1921-11-15 | Saco Lowell Shops | Angular driving mechanism |
US3622869A (en) | 1967-06-28 | 1971-11-23 | Marcel J E Golay | Homogenizing coils for nmr apparatus |
US3735306A (en) | 1970-10-22 | 1973-05-22 | Varian Associates | Magnetic field shim coil structure utilizing laminated printed circuit sheets |
US4621299A (en) | 1982-11-05 | 1986-11-04 | General Kinetics Inc. | High energy degausser |
JPS6063972A (ja) | 1983-09-17 | 1985-04-12 | Sumitomo Electric Ind Ltd | クライオスタツト |
US4595899A (en) | 1984-07-06 | 1986-06-17 | The Board Of Trustees Of The Leland Stanford Junior University | Magnetic structure for NMR applications and the like |
JPS6197806A (ja) * | 1984-10-18 | 1986-05-16 | Yokogawa Medical Syst Ltd | Nmr画像装置に用いられるマグネツト部の冷却装置 |
US4638252A (en) * | 1984-12-21 | 1987-01-20 | General Electric Company | Circuit for detecting RF coil assembly position in an MR scanner |
US4680545A (en) * | 1985-01-04 | 1987-07-14 | General Electric Company | Method for reduction of acoustical noise generated by magnetic field gradient pulses |
US4668915A (en) | 1985-03-15 | 1987-05-26 | Honda Giken Kogyo Kabushiki Kaisha | Non-uniform field magnetic resonance dual patient imaging system |
JPH0636789B2 (ja) * | 1985-07-29 | 1994-05-18 | 株式会社島津製作所 | Mri装置 |
US5038785A (en) * | 1985-08-09 | 1991-08-13 | Picker International, Inc. | Cardiac and respiratory monitor with magnetic gradient noise elimination |
US4675609A (en) | 1985-09-18 | 1987-06-23 | Fonar Corporation | Nuclear magnetic resonance apparatus including permanent magnet configuration |
JP2588700B2 (ja) * | 1986-09-05 | 1997-03-05 | 株式会社 日立メディコ | 核磁気共鳴イメ−ジング装置 |
US4770182A (en) * | 1986-11-26 | 1988-09-13 | Fonar Corporation | NMR screening method |
FR2609206B1 (fr) | 1986-12-30 | 1992-02-14 | Thomson Cgr | Dispositif correcteur par elements magnetiques d'inhomogeneites du champ magnetique dans un aimant |
JPS63266804A (ja) * | 1987-04-24 | 1988-11-02 | Hitachi Metals Ltd | 磁界発生装置 |
JPS63311945A (ja) | 1987-06-12 | 1988-12-20 | Matsushita Electric Ind Co Ltd | 核磁気共鳴断層像撮像装置 |
US5203332A (en) | 1987-06-23 | 1993-04-20 | Nycomed Imaging As | Magnetic resonance imaging |
ES2026257T3 (es) * | 1987-06-23 | 1992-04-16 | Hafslund Nycomed Innovation Ab | Mejoras introducidas en la presentacion de imagenes por resonancia magnetica nuclear. |
JPH084044B2 (ja) | 1987-09-04 | 1996-01-17 | 株式会社フジクラ | 超電導シートコイル |
JPS6464637A (en) * | 1987-09-07 | 1989-03-10 | Hitachi Medical Corp | Nuclear magnetic resonance imaging apparatus |
EP0307516A1 (en) | 1987-09-18 | 1989-03-22 | Koninklijke Philips Electronics N.V. | Magnetic resonance imaging apparatus with eddy-current disturbances correction system |
JPH0164637U (zh) | 1987-10-19 | 1989-04-25 | ||
JPH01242057A (ja) | 1988-03-23 | 1989-09-27 | Toshiba Corp | 磁気共鳴イメージング装置 |
JPH0271727A (ja) * | 1988-09-06 | 1990-03-12 | Hitachi Medical Corp | 核磁気共鳴イメージング装置 |
US4893082A (en) * | 1989-02-13 | 1990-01-09 | Letcher Iii John H | Noise suppression in magnetic resonance imaging |
US5134374A (en) | 1989-06-01 | 1992-07-28 | Applied Superconetics | Magnetic field control apparatus |
JPH03188831A (ja) | 1989-12-20 | 1991-08-16 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
FI86506C (fi) * | 1990-05-29 | 1992-09-10 | Instrumentarium Oy | Avbildningsfoerfarande. |
JP2808198B2 (ja) * | 1990-07-02 | 1998-10-08 | 住友特殊金属株式会社 | Mri用磁界発生装置とその製法 |
DE69129687T2 (de) * | 1990-09-29 | 1999-03-11 | Sumitomo Special Metals Co., Ltd., Osaka | Vorrichtung zur Erzeugung eines Magnetfeldes für die Bildgebung mittels magnetischer Resonanz |
JPH04337614A (ja) * | 1991-05-15 | 1992-11-25 | Toshiba Corp | 傾斜磁場コイルの製造方法 |
US5153546A (en) | 1991-06-03 | 1992-10-06 | General Electric Company | Open MRI magnet |
JP2561591B2 (ja) | 1991-12-27 | 1996-12-11 | 住友特殊金属株式会社 | Mri用磁界発生装置 |
US5382904A (en) | 1992-04-15 | 1995-01-17 | Houston Advanced Research Center | Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same |
JPH05344960A (ja) | 1992-06-15 | 1993-12-27 | Hitachi Ltd | 磁気共鳴検査装置 |
US6023165A (en) | 1992-09-28 | 2000-02-08 | Fonar Corporation | Nuclear magnetic resonance apparatus and methods of use and facilities for incorporating the same |
US5291137A (en) * | 1992-11-02 | 1994-03-01 | Schlumberger Technology Corporation | Processing method and apparatus for processing spin echo in-phase and quadrature amplitudes from a pulsed nuclear magnetism tool and producing new output data to be recorded on an output record |
EP0597528B1 (en) * | 1992-11-10 | 1998-02-04 | Koninklijke Philips Electronics N.V. | Magnetic resonance apparatus with noise cancellation |
US5490509A (en) | 1993-03-18 | 1996-02-13 | The Regents Of The University Of California | Method and apparatus for MRI using selectively shaped image volume of homogeneous NMR polarizing field |
US5483158A (en) | 1993-10-21 | 1996-01-09 | The Regents Of The University Of California | Method and apparatus for tuning MRI RF coils |
US5423315A (en) | 1993-11-22 | 1995-06-13 | Picker International, Inc. | Magnetic resonance imaging system with thin cylindrical uniform field volume and moving subjects |
US5390673A (en) | 1994-01-14 | 1995-02-21 | Cordata, Incorporated | Magnetic resonance imaging system |
DE4422781C1 (de) * | 1994-06-29 | 1996-02-01 | Siemens Ag | Aktiv geschirmte planare Gradientenspule für Polplattenmagnete |
JPH0831635A (ja) * | 1994-07-08 | 1996-02-02 | Sumitomo Special Metals Co Ltd | Mri用磁界発生装置 |
JPH10510135A (ja) | 1994-11-28 | 1998-09-29 | アナロジック コーポレーション | 医療用画像作成システムのためのups |
JPH0927416A (ja) * | 1995-07-12 | 1997-01-28 | Toshiba Corp | 超電導コイルおよびその製造方法 |
JP3705861B2 (ja) * | 1996-03-21 | 2005-10-12 | 株式会社日立メディコ | 超電導磁石装置及びその着磁調整方法 |
US5864236A (en) * | 1996-07-05 | 1999-01-26 | Toshiba America Mri, Inc. | Open configuration MRI magnetic flux path |
US6150911A (en) * | 1996-07-24 | 2000-11-21 | Odin Technologies Ltd. | Yoked permanent magnet assemblies for use in medical applications |
US5900793A (en) * | 1997-07-23 | 1999-05-04 | Odin Technologies Ltd | Permanent magnet assemblies for use in medical applications |
DE19721985C2 (de) * | 1997-05-26 | 1999-11-04 | Siemens Ag | Gradientenspulenbaugruppe und Herstellungsverfahren |
US6157278A (en) * | 1997-07-23 | 2000-12-05 | Odin Technologies Ltd. | Hybrid magnetic apparatus for use in medical applications |
US6411187B1 (en) * | 1997-07-23 | 2002-06-25 | Odin Medical Technologies, Ltd. | Adjustable hybrid magnetic apparatus |
WO1999015914A1 (en) | 1997-09-25 | 1999-04-01 | Odin Technologies Ltd. | Magnetic apparatus for mri |
US6144204A (en) * | 1997-11-28 | 2000-11-07 | Picker Nordstar Oy | Gradient coils for magnetic resonance meeting |
US5936502A (en) * | 1997-12-05 | 1999-08-10 | Picker Nordstar Inc. | Magnet coils for MRI |
US5877665A (en) | 1997-12-17 | 1999-03-02 | General Electric Company | Thermally passive magnet mounting system for an MRI signa profile magnet in mobile trailer van |
US6235409B1 (en) | 1997-12-17 | 2001-05-22 | Alcoa Inc. | Aluminum laminate |
US6011396A (en) | 1998-01-02 | 2000-01-04 | General Electric Company | Adjustable interventional magnetic resonance imaging magnet |
EP1058933A4 (en) | 1998-02-09 | 2006-03-01 | Odin Medical Technologies Ltd | CONSTRUCTION PROCEDURE OF OPEN MAGNETS AND OPEN MAGNETIC DEVICE FOR MRI / MRI SENSORS |
US6029081A (en) * | 1998-03-19 | 2000-02-22 | Picker International, Inc. | Movable magnets for magnetic resonance surgery |
RU98106937A (ru) * | 1998-04-14 | 2000-02-10 | Пикер Нордстар ОЮ (FI) | Устройство для формирования изображения с помощью магнитного резонанса |
JP4689040B2 (ja) * | 1998-05-04 | 2011-05-25 | クラッド・メタルズ・エルエルシー | 五層複合材金属調理容器の製造方法 |
US6131690A (en) | 1998-05-29 | 2000-10-17 | Galando; John | Motorized support for imaging means |
US6311389B1 (en) * | 1998-07-01 | 2001-11-06 | Kabushiki Kaisha Toshiba | Gradient magnetic coil apparatus and method of manufacturing the same |
US6417797B1 (en) * | 1998-07-14 | 2002-07-09 | Cirrus Logic, Inc. | System for A multi-purpose portable imaging device and methods for using same |
IT1305971B1 (it) * | 1998-08-31 | 2001-05-21 | Esaote Spa | Macchina per il rilevamento di immagini in risonanza magneticanucleare del tipo dedicato al rilevamento d'immagini di limitate |
JP2000139874A (ja) * | 1998-09-02 | 2000-05-23 | Sumitomo Special Metals Co Ltd | Mri用磁界発生装置 |
US6102497A (en) * | 1998-11-03 | 2000-08-15 | Sherwood Services Ag | Universal cart |
US6259252B1 (en) * | 1998-11-24 | 2001-07-10 | General Electric Company | Laminate tile pole piece for an MRI, a method manufacturing the pole piece and a mold bonding pole piece tiles |
US6396266B1 (en) * | 1998-11-25 | 2002-05-28 | General Electric Company | MR imaging system with interactive MR geometry prescription control |
US6166544A (en) | 1998-11-25 | 2000-12-26 | General Electric Company | MR imaging system with interactive image contrast control |
AU1582400A (en) * | 1998-12-08 | 2000-06-26 | Odin Medical Technologies Ltd | A device and a system for moving and positioning an open magnetic resonance imaging probe |
JP3817383B2 (ja) | 1999-02-24 | 2006-09-06 | 株式会社日立製作所 | Mri装置 |
JP2000287950A (ja) | 1999-04-07 | 2000-10-17 | Ge Yokogawa Medical Systems Ltd | 磁場安定化方法、磁場発生装置および磁気共鳴撮像装置 |
US6317618B1 (en) | 1999-06-02 | 2001-11-13 | Odin Technologies Ltd. | Transportable intraoperative magnetic resonance imaging apparatus |
US7019610B2 (en) | 2002-01-23 | 2006-03-28 | Stereotaxis, Inc. | Magnetic navigation system |
US7313429B2 (en) | 2002-01-23 | 2007-12-25 | Stereotaxis, Inc. | Rotating and pivoting magnet for magnetic navigation |
JP2001137212A (ja) * | 1999-11-11 | 2001-05-22 | Hitachi Medical Corp | 静磁場発生装置及びそれを用いた磁気共鳴イメージング装置 |
DE60026426T2 (de) | 1999-11-16 | 2006-11-16 | Neomax Co., Ltd. | Polstückeinheit für einen Magnet der bildgebenden magnetischen Resonanz |
US6262576B1 (en) | 1999-11-16 | 2001-07-17 | Picker International, Inc. | Phased array planar gradient coil set for MRI systems |
WO2001053847A1 (en) | 2000-01-19 | 2001-07-26 | Millennium Technology Inc. | C-shaped magnetic resonance imaging system |
US6845262B2 (en) | 2000-03-29 | 2005-01-18 | The Brigham And Women's Hospital, Inc. | Low-field MRI |
JP4317646B2 (ja) * | 2000-06-26 | 2009-08-19 | 独立行政法人理化学研究所 | 核磁気共鳴装置 |
WO2002002010A1 (fr) * | 2000-07-05 | 2002-01-10 | Hitachi Medical Corporation | Dispositif d'imagerie par resonance magnetique et bobine de champ magnetique a gradient utilisee dans un tel dispositif |
DE10032836C1 (de) * | 2000-07-06 | 2002-01-17 | Siemens Ag | Magnetresonanzgerät mit einem Gradientenspulensystem |
US6294972B1 (en) * | 2000-08-03 | 2001-09-25 | The Mcw Research Foundation, Inc. | Method for shimming a static magnetic field in a local MRI coil |
AU2001283371A1 (en) | 2000-08-15 | 2002-02-25 | The Regents Of The University Of California | Method and apparatus for reducing contamination of an electrical signal |
JP3728199B2 (ja) * | 2000-11-14 | 2005-12-21 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
JP2002159463A (ja) * | 2000-11-15 | 2002-06-04 | Ge Medical Systems Global Technology Co Llc | Mri装置の磁界変動測定方法、磁界変動補償方法およびmri装置 |
US6677752B1 (en) | 2000-11-20 | 2004-01-13 | Stereotaxis, Inc. | Close-in shielding system for magnetic medical treatment instruments |
US6454293B1 (en) * | 2000-12-01 | 2002-09-24 | Greg H. Anderson | Transport cart for medical-related supplies |
US6529000B2 (en) * | 2000-12-29 | 2003-03-04 | Ge Medical Systems Global Technology Company, Llc | Method and system for processing magnetic resonance signals to remove transient spike noise |
US20020084782A1 (en) * | 2001-01-04 | 2002-07-04 | Warren Guthrie | Noise detector and suppressor for magnetic resonance imaging equipment |
US6662434B2 (en) | 2001-04-03 | 2003-12-16 | General Electric Company | Method and apparatus for magnetizing a permanent magnet |
US6518867B2 (en) | 2001-04-03 | 2003-02-11 | General Electric Company | Permanent magnet assembly and method of making thereof |
US6611702B2 (en) | 2001-05-21 | 2003-08-26 | General Electric Company | Apparatus for use in neonatal magnetic resonance imaging |
ITSV20010020A1 (it) | 2001-06-08 | 2002-12-08 | Esaote Spa | Macchina per l'acquisizione di immagini della zona interna di un corpo in particolare per l'acquisizione di immagini diagnostiche |
ITSV20010017A1 (it) * | 2001-05-28 | 2002-11-28 | Esaote Spa | Dispositivo per il rilevamento d'immagini in risonanza magnetica nucleare |
US6725893B1 (en) * | 2001-06-07 | 2004-04-27 | Tomiko Erickson | Cover assembly for a crash cart |
JP2003024296A (ja) | 2001-07-04 | 2003-01-28 | Ge Medical Systems Global Technology Co Llc | 静磁界調整方法およびmri装置 |
JP2005507278A (ja) * | 2001-10-29 | 2005-03-17 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | 医療検査装置とフレーム及び患者テーブルの結合体との組立体、並びにこのような結合体 |
AP2004003127A0 (en) | 2002-02-06 | 2004-09-30 | Univ California | Squid detected NMR and MR1 at ultralow fields |
ITSV20020014A1 (it) | 2002-04-09 | 2003-10-09 | Esaote Spa | Metodo e dispositivo per la compensazione di campi magnetici di disturbo in volumi di spazio e macchina per il rilevamento di immagini in ri |
WO2003093853A1 (de) * | 2002-05-02 | 2003-11-13 | Siemens Aktiengesellschaft | Gradientenspulensystem für ein magnet-resonanz-tomographiegerät mit effektiverer kühlung |
US7130675B2 (en) | 2002-06-28 | 2006-10-31 | Tristan Technologies, Inc. | High-resolution magnetoencephalography system and method |
JP2004065398A (ja) | 2002-08-02 | 2004-03-04 | Hitachi Medical Corp | 永久磁石と電磁石から成るハイブリット型磁石を有する磁気共鳴イメージング装置 |
US7215231B1 (en) | 2002-08-16 | 2007-05-08 | Fonar Corporation | MRI system |
JP2004081264A (ja) | 2002-08-23 | 2004-03-18 | Hitachi Medical Corp | 遠隔医療システム及び制御モダリティーの遠隔操作装置 |
FI113615B (fi) | 2002-10-17 | 2004-05-31 | Nexstim Oy | Kallonmuodon ja sisällön kolmiulotteinen mallinnusmenetelmä |
ITSV20020057A1 (it) | 2002-11-28 | 2004-05-29 | Esaote Spa | Combinazione di macchina per rilevamento di immagini in risonanza nucleare e lettino porta paziente |
JP2004187945A (ja) | 2002-12-11 | 2004-07-08 | Ge Medical Systems Global Technology Co Llc | 医用イメージング装置及び医用イメージングシステム |
JP4419954B2 (ja) | 2003-02-10 | 2010-02-24 | 日立金属株式会社 | 磁界発生装置 |
US6788063B1 (en) * | 2003-02-26 | 2004-09-07 | Ge Medical Systems Technology Company, Llc | Method and system for improving transient noise detection |
US6819108B2 (en) | 2003-03-21 | 2004-11-16 | General Electric Company | Method of magnetic field controlled shimming |
US7239143B2 (en) | 2003-05-20 | 2007-07-03 | Koninklijke Philips Electronics N.V. | Digital magnetic resonance gradient pre-emphasis |
CN100473336C (zh) | 2003-07-24 | 2009-04-01 | 沙丘医疗设备有限公司 | 用于检查特别是组织的物质以表征其类型的方法和设备 |
US20050035764A1 (en) | 2003-08-14 | 2005-02-17 | Anthony Mantone | Method and apparatus for directly cooling hollow conductor wound transverse gradient coil boards |
US20050154291A1 (en) * | 2003-09-19 | 2005-07-14 | Lei Zhao | Method of using a small MRI scanner |
US8203341B2 (en) * | 2003-09-19 | 2012-06-19 | Xbo Medical Systems Co., Ltd. | Cylindrical bi-planar gradient coil for MRI |
JP2005118098A (ja) | 2003-10-14 | 2005-05-12 | Hitachi Medical Corp | 磁気共鳴イメージング装置 |
US6809619B1 (en) * | 2003-10-16 | 2004-10-26 | G.E. Medical Systems Global Technology Co., Llc | System and method for adjusting magnetic center field for permanent MRI magnetic field generator |
CN1875288A (zh) * | 2003-10-29 | 2006-12-06 | 皇家飞利浦电子股份有限公司 | 用于磁共振成像的可变视野梯度线圈系统 |
US6937018B2 (en) * | 2003-10-31 | 2005-08-30 | General Electric Company | Systems and methods for fabricating pole pieces for magnetic resonance imaging systems |
US7140420B2 (en) * | 2003-11-05 | 2006-11-28 | General Electric Company | Thermal management apparatus and uses thereof |
JP4724668B2 (ja) | 2003-11-26 | 2011-07-13 | アシスト メディカル システムズ,インク. | 医療手順の一部として媒体を投与するための装置、方法、およびコンピュータプログラムプロダクト |
US6956375B2 (en) * | 2004-01-09 | 2005-10-18 | General Electric Company | Magnetic resonance imaging magnetic field generator |
US20050179512A1 (en) * | 2004-02-12 | 2005-08-18 | Ge Medical Systems Global Technology Company, Llc | Mri system with liquid cooled rf space |
JP2005237501A (ja) | 2004-02-25 | 2005-09-08 | Shin Etsu Chem Co Ltd | 磁気回路および磁気回路磁界調整方法 |
CN1669525A (zh) | 2004-03-19 | 2005-09-21 | 西门子公司 | 带有一定位单元的磁共振设备 |
US7126333B2 (en) * | 2004-04-19 | 2006-10-24 | Baker Hughes Incorporated | Method and apparatus for correcting ringing in NMR signals |
ITSV20040020A1 (it) | 2004-05-07 | 2004-08-07 | Esaote Spa | Struttura magnetica per macchine mri e macchina mri |
WO2005116676A1 (en) | 2004-05-25 | 2005-12-08 | Hvidovre Hospital | Encoding and transmission of signals as rf signals for detection using an mr apparatus |
ITSV20040032A1 (it) | 2004-08-05 | 2004-11-05 | Esaote Spa | Metodo e sonda per la compensazione di campi magnetici di disturbo in volumi di spazio in particolare nelle macchine per il rilevamento di immagini in risonanza magnetica nucleare |
JP4279747B2 (ja) * | 2004-08-11 | 2009-06-17 | 株式会社日立製作所 | 核磁気共鳴装置 |
US6906517B1 (en) * | 2004-09-28 | 2005-06-14 | General Electric Company | Method and apparatus for maintaining thermal stability of permanent magnets in MRI systems |
US7135863B2 (en) * | 2004-09-30 | 2006-11-14 | General Electric Company | Thermal management system and method for MRI gradient coil |
GB2419417B (en) | 2004-10-20 | 2007-05-16 | Gen Electric | Gradient bore cooling and RF shield |
GB2419416A (en) * | 2004-10-20 | 2006-04-26 | Gen Electric | Method of manufacturing gradient coil for MRI device |
US8626342B2 (en) | 2004-10-27 | 2014-01-07 | Acist Medical Systems, Inc. | Data collection device, system, method, and computer program product for collecting data related to the dispensing of contrast media |
EP1839065A2 (en) * | 2004-11-23 | 2007-10-03 | M2M Imaging Corp. | Apparatus for cooling an rf coil on a magnetic resonance imaging system |
US8129991B2 (en) * | 2004-11-24 | 2012-03-06 | Fonar Corporation | Anatomical fixture for magnetic resonance position imaging |
US8014867B2 (en) * | 2004-12-17 | 2011-09-06 | Cardiac Pacemakers, Inc. | MRI operation modes for implantable medical devices |
WO2006067746A2 (en) * | 2004-12-22 | 2006-06-29 | Koninklijke Philips Electronics, N.V. | Radio frequency coil with transmission line end-rings |
GB0503622D0 (en) * | 2005-02-22 | 2005-03-30 | Siemens Magnet Technology Ltd | Shielding for mobile MRI systems |
US20090033327A1 (en) * | 2005-04-18 | 2009-02-05 | Koninklijke Philips Electronics N. V. | Magnetic Resonance Imaging of a Continuously Moving Object |
DE602006011749D1 (de) | 2005-04-21 | 2010-03-04 | Ksm Inc | Elektromagnetische behandlungsvorrichtung |
US7307423B2 (en) | 2005-05-05 | 2007-12-11 | Wisconsin A.Umni Research Foundation | Magnetic resonance elastography using multiple drivers |
US8614575B2 (en) | 2005-06-17 | 2013-12-24 | The Regents Of The University Of California | NMR, MRI, and spectroscopic MRI in inhomogeneous fields |
US8514043B2 (en) | 2005-09-14 | 2013-08-20 | General Electric Company | Systems and methods for passively shielding a magnetic field |
US20070063801A1 (en) * | 2005-09-16 | 2007-03-22 | Laskaris Evangelos T | System and method for magnetic resonance imaging |
US7835785B2 (en) | 2005-10-04 | 2010-11-16 | Ascension Technology Corporation | DC magnetic-based position and orientation monitoring system for tracking medical instruments |
EP1943536A1 (en) | 2005-10-27 | 2008-07-16 | Koninklijke Philips Electronics N.V. | Active decoupling of transmitters in mri |
GB2435327B (en) * | 2005-11-01 | 2008-01-09 | Siemens Magnet Technology Ltd | Transportable magnetic resonance imaging (MRI) system |
AU2006331312A1 (en) | 2005-11-17 | 2007-07-05 | Brain Research Institute Pty Ltd | Apparatus and method for detection and monitoring of electrical activity and motion in the presence of a magnetic field |
JP5283839B2 (ja) * | 2005-11-25 | 2013-09-04 | 東芝メディカルシステムズ株式会社 | 医用画像診断システム |
US7659719B2 (en) | 2005-11-25 | 2010-02-09 | Mr Instruments, Inc. | Cavity resonator for magnetic resonance systems |
CN100411585C (zh) * | 2005-11-30 | 2008-08-20 | 西门子(中国)有限公司 | 磁共振成像系统的大视野成像装置 |
JP4665751B2 (ja) * | 2005-12-22 | 2011-04-06 | 株式会社日立製作所 | 高抵抗磁石を用いたmri装置 |
US7573268B2 (en) | 2006-02-22 | 2009-08-11 | Los Alamos National Security, Llc | Direct imaging of neural currents using ultra-low field magnetic resonance techniques |
EP1991888A4 (en) | 2006-03-09 | 2010-01-20 | Insight Neuroimaging Systems L | MICROSTRUCTURE COIL FOR MRI DEVICES |
WO2007106765A2 (en) | 2006-03-11 | 2007-09-20 | Xigo Nanotools Llc | Compact and portable low-field pulsed nmr dispersion analyzer |
US7271591B1 (en) | 2006-03-15 | 2007-09-18 | General Electric Company | Methods and apparatus for MRI shims |
US8120358B2 (en) | 2006-04-13 | 2012-02-21 | The Regents Of The University Of California | Magnetic resonance imaging with high spatial and temporal resolution |
CN1831552B (zh) * | 2006-04-20 | 2010-05-12 | 华东师范大学 | 基于usb总线的一体化核磁共振谱仪控制台 |
CN101427150B (zh) | 2006-04-24 | 2012-09-05 | 皇家飞利浦电子股份有限公司 | 多元件rf线圈的去耦系统以及方法 |
US7592807B2 (en) * | 2006-04-25 | 2009-09-22 | The Board Of Trustees Of The Leland Stanford Junior University | Maximum likelihood estimator in the presence of non-identically distributed noise for decomposition of chemical species in MRI |
US7821402B2 (en) | 2006-05-05 | 2010-10-26 | Quality Electrodynamics | IC tags/RFID tags for magnetic resonance imaging applications |
JP4969148B2 (ja) * | 2006-05-17 | 2012-07-04 | 株式会社日立メディコ | シムコイルの製造方法および磁気共鳴イメージング装置 |
US8626266B1 (en) * | 2006-06-01 | 2014-01-07 | Perinatronics Medical Systems, Inc. | ECG triggered heart and arterial magnetic resonance imaging |
US20070285197A1 (en) | 2006-06-08 | 2007-12-13 | General Electric Company | Method for disassembling a magnetic field generator |
JP4847236B2 (ja) * | 2006-07-07 | 2011-12-28 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
WO2008008447A2 (en) | 2006-07-12 | 2008-01-17 | The Regents Of The University Of California | Portable device for ultra-low field magnetic resonance imaging (ulf-mri) |
US7253627B1 (en) * | 2006-07-19 | 2007-08-07 | Univ King Fahd Pet & Minerals | Method for removing noise from nuclear magnetic resonance signals and images |
US20080027306A1 (en) | 2006-07-31 | 2008-01-31 | General Electric Company | System and method for initiating a diagnostic imaging scan |
US20080048658A1 (en) * | 2006-08-24 | 2008-02-28 | Stephen Gerard Hushek | Automatic noise cancellation for unshielded mr systems |
US7436180B2 (en) | 2006-10-04 | 2008-10-14 | General Electric Company | Gradient coil apparatus and method of fabricating a gradient coil to reduce artifacts in MRI images |
US8850338B2 (en) | 2006-10-13 | 2014-09-30 | Siemens Medical Solutions Usa, Inc. | System and method for selection of anatomical images for display using a touch-screen display |
US20080139896A1 (en) | 2006-10-13 | 2008-06-12 | Siemens Medical Solutions Usa, Inc. | System and Method for Graphical Annotation of Anatomical Images Using a Touch Screen Display |
WO2008057578A1 (en) | 2006-11-08 | 2008-05-15 | T2 Biosystems, Inc. | Nmr systems for in vivo detection of analytes |
GB2445759A (en) * | 2006-11-28 | 2008-07-23 | Inst Of Food Res | Magnetic resonance imaging scanner |
US7511502B2 (en) * | 2007-01-05 | 2009-03-31 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging apparatus |
US7759938B2 (en) | 2007-02-05 | 2010-07-20 | Morpho Detection, Inc. | Apparatus and method for varying magnetic field strength in magnetic resonance measurements |
JP5222735B2 (ja) * | 2007-02-06 | 2013-06-26 | 株式会社日立メディコ | 磁気共鳴イメージング装置および傾斜磁場コイル |
EP1962100A1 (en) * | 2007-02-20 | 2008-08-27 | Esaote S.p.A. | Magnetic structure for MRI machines and MRI machine particularly for orthopedic or rheumatologic applications |
DE102007009203B4 (de) | 2007-02-26 | 2012-03-22 | Siemens Ag | Verfahren zur Bestimmung oder Anpassung eines Shims zur Homogenisierung eines Magnetfeldes einer Magnetresonanzeinrichtung und zugehörige Magnetresonanzeinrichtung |
US7414401B1 (en) | 2007-03-26 | 2008-08-19 | General Electric Company | System and method for shielded dynamic shimming in an MRI scanner |
US7489131B2 (en) * | 2007-04-23 | 2009-02-10 | General Electric Co. | System and apparatus for direct cooling of gradient coils |
WO2008137485A2 (en) | 2007-05-04 | 2008-11-13 | California Institute Of Technology | Low field squid mri devices, components and methods |
US8175677B2 (en) | 2007-06-07 | 2012-05-08 | MRI Interventions, Inc. | MRI-guided medical interventional systems and methods |
WO2008153036A1 (ja) * | 2007-06-14 | 2008-12-18 | Hitachi Medical Corporation | オープン型磁気共鳴イメージング装置 |
US20080315879A1 (en) * | 2007-06-19 | 2008-12-25 | General Electric Company | System and apparatus for electromagnetic noise detection in an mr imaging scanner environment |
US20120003160A1 (en) | 2007-06-29 | 2012-01-05 | Amag Pharmaceuticals, Inc. | Macrophage-Enhanced MRI (MEMRI) in a Single Imaging Session |
CN104316953B (zh) * | 2007-07-02 | 2018-05-15 | 皇家飞利浦电子股份有限公司 | 用于混合pet-mr系统的热稳定的pet探测器 |
US8335359B2 (en) | 2007-07-20 | 2012-12-18 | General Electric Company | Systems, apparatus and processes for automated medical image segmentation |
US20100219833A1 (en) | 2007-07-26 | 2010-09-02 | Emscan Limited | Magnet assembly |
US8466681B2 (en) * | 2007-08-30 | 2013-06-18 | Hitachi Medical Corporation | Open-type MRI apparatus, and open-type superconducting MRI apparatus |
WO2009029896A1 (en) | 2007-08-31 | 2009-03-05 | The Regents Of The University Of California | Adjustable permanent magnet assembly for nmr and mri |
CN101388271A (zh) * | 2007-09-14 | 2009-03-18 | Ge医疗系统环球技术有限公司 | 磁体系统和mri设备 |
CN101162637B (zh) * | 2007-09-17 | 2011-05-11 | 山西省平遥县新星磁材有限公司 | 超高场强磁选机用永磁体装置 |
US8169221B2 (en) * | 2007-10-31 | 2012-05-01 | Griswold Mark A | Multi-frequency excitation coils for MRI |
AU2008325088A1 (en) | 2007-11-06 | 2009-05-14 | T2 Biosystems, Inc. | Small magnet and RF coil for magnetic resonance relaxometry |
EP2229097A4 (en) | 2007-11-09 | 2011-01-26 | Vista Clara Inc | MULTILAYER NUCLEAR CORE MAGNETIC RESONANCE DETECTION AND IMAGING APPARATUS AND METHOD |
US7812604B2 (en) | 2007-11-14 | 2010-10-12 | General Electric Company | Thermal management system for cooling a heat generating component of a magnetic resonance imaging apparatus |
ITTO20070840A1 (it) | 2007-11-23 | 2009-05-24 | Paramed Medical Systems S R L | Sistema di posizionamento per un'apparecchiatura medicale, ed apparecchiatura di imaging a risonanza magnetica comprendente un tale sistema |
US8232799B2 (en) * | 2007-11-27 | 2012-07-31 | Arjae Spectral Enterprises | Noise reduction apparatus, systems, and methods |
US8570035B2 (en) | 2007-12-14 | 2013-10-29 | The Regents Of The University Of California | Magnetic resonance imaging of living systems by remote detection |
US7753165B2 (en) * | 2007-12-21 | 2010-07-13 | Robert Bosch Gmbh | Device and method for active noise cancellation in exhaust gas channel of a combustion engine |
JP2009240767A (ja) | 2008-03-10 | 2009-10-22 | Toshiba Corp | 磁気共鳴イメージング装置 |
EP2262570A1 (en) | 2008-03-12 | 2010-12-22 | Navotek Medical Ltd. | Combination mri and radiotherapy systems and methods of use |
JP5170540B2 (ja) | 2008-04-24 | 2013-03-27 | 株式会社日立メディコ | 磁気共鳴イメージング装置 |
WO2009137354A1 (en) | 2008-05-05 | 2009-11-12 | Mayo Foundation For Medical Education And Research | Method for assessing the probability of disease development in tissue |
US7834270B2 (en) | 2008-07-07 | 2010-11-16 | Imris Inc. | Floating segmented shield cable assembly |
US7936170B2 (en) * | 2008-08-08 | 2011-05-03 | General Electric Co. | RF coil and apparatus to reduce acoustic noise in an MRI system |
US8255038B2 (en) | 2008-08-28 | 2012-08-28 | Siemens Medical Solutions Usa, Inc. | System and method for non-uniform image scanning and acquisition |
JP5567305B2 (ja) * | 2008-09-10 | 2014-08-06 | 株式会社竹中工務店 | 磁気シールドシステム及び磁気シールド方法 |
US8692412B2 (en) | 2008-09-27 | 2014-04-08 | Witricity Corporation | Temperature compensation in a wireless transfer system |
AR073770A1 (es) * | 2008-10-20 | 2010-12-01 | Imclone Llc | Anticuerpo aislado que se enlaza especificamente con, e induce la degradacion del receptor-3 del factor de crecimiento del fibroblasto humano (fgfr-3), fragmento de enlace fgfr-3 humano del mismo, composicion farmaceutica y producto que lo comprenden |
EP2184615A1 (en) | 2008-11-05 | 2010-05-12 | Koninklijke Philips Electronics N.V. | A magnetic resonance imaging system comprising a power supply unit adapted for providing direct current electrical power |
US7902826B2 (en) * | 2008-12-12 | 2011-03-08 | General Electric Company | Transverse gradient coil for MRI systems and method for manufacturing the same |
US9222998B2 (en) | 2008-12-18 | 2015-12-29 | Grum Teklemariam | Compact inhomogeneous permanent magnetic field generator for magnetic resonance imaging |
US8328732B2 (en) | 2008-12-18 | 2012-12-11 | Devicor Medical Products, Inc. | Control module interface for MRI biopsy device |
JP4852091B2 (ja) * | 2008-12-22 | 2012-01-11 | 株式会社日立メディコ | 傾斜磁場コイル装置、核磁気共鳴撮像装置、および、コイルパターンの設計方法 |
JP4982881B2 (ja) * | 2008-12-26 | 2012-07-25 | 国立大学法人 熊本大学 | 位相差強調画像化法(PhaseDifferenceEnhancedImaging;PADRE)、機能画像作成法、位相差強調画像化プログラム、位相差強調画像化装置、機能画像作成装置および磁気共鳴画像化(MagneticResonanceImaging;MRI)装置 |
CN101788655A (zh) | 2009-01-24 | 2010-07-28 | Ge医疗系统环球技术有限公司 | 磁共振成像系统以及使该系统中主磁体的温度稳定的方法 |
US8253416B2 (en) * | 2009-03-10 | 2012-08-28 | Time Medical Holdings Company Limited | Superconductor magnetic resonance imaging system and method (super-MRI) |
EP2230530A1 (en) * | 2009-03-20 | 2010-09-22 | Koninklijke Philips Electronics N.V. | A tesseral shim coil for a magnetic resonance system |
DE212010000045U1 (de) * | 2009-04-21 | 2012-01-23 | Aspect Magnet Technologies Ltd. | Permanentmagnetenanordnung mit fest gegenüberliegender Platte |
US20100292564A1 (en) * | 2009-05-18 | 2010-11-18 | Cantillon Murphy Padraig J | System and Method For Magnetic-Nanoparticle, Hyperthermia Cancer Therapy |
US8064183B2 (en) * | 2009-06-01 | 2011-11-22 | Olliges William E | Capacitor based bi-directional degaussing device with chamber |
WO2010144419A2 (en) | 2009-06-08 | 2010-12-16 | Surgivision, Inc. | Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time |
US8198891B2 (en) * | 2009-06-15 | 2012-06-12 | General Electric Company | System, method, and apparatus for magnetic resonance RF-field measurement |
DE102009027119B4 (de) * | 2009-06-23 | 2013-01-17 | Sirona Dental Systems Gmbh | Magnetfeldeinheit eines MRT-Systems zur bildgebenden Erfassung eines Kopfbereichs |
GB2471705B (en) | 2009-07-09 | 2011-07-27 | Siemens Magnet Technology Ltd | Methods and apparatus for storage of energy removed from superconducting magnets |
ITGE20090059A1 (it) | 2009-07-28 | 2011-01-29 | Esaote Spa | Macchina per il rilevamento di immagini mri |
JP5570910B2 (ja) * | 2009-09-28 | 2014-08-13 | 株式会社東芝 | 磁気共鳴イメージング装置 |
WO2011047376A2 (en) | 2009-10-16 | 2011-04-21 | Emprimus, Inc. | Modular electromagnetically shielded enclosure |
US20110142316A1 (en) | 2009-10-29 | 2011-06-16 | Ge Wang | Tomography-Based and MRI-Based Imaging Systems |
US10162026B2 (en) | 2009-11-09 | 2018-12-25 | Vista Clara Inc. | Noise canceling in-situ NMR detection |
US8816684B2 (en) * | 2009-11-09 | 2014-08-26 | Vista Clara Inc. | Noise canceling in-situ NMR detection |
US8378682B2 (en) | 2009-11-17 | 2013-02-19 | Muralidhara Subbarao | Field image tomography for magnetic resonance imaging |
US8593141B1 (en) | 2009-11-24 | 2013-11-26 | Hypres, Inc. | Magnetic resonance system and method employing a digital squid |
JP5782450B2 (ja) * | 2009-12-10 | 2015-09-24 | コーニンクレッカ フィリップス エヌ ヴェ | 高周波遮蔽若しくはエンクロージャを持つ磁気共鳴対応電気機器 |
WO2011075770A1 (en) * | 2009-12-21 | 2011-06-30 | Nmr Holdings No. 2 Pty Limited | Open-bore magnet for use in magnetic resonance imaging |
RU2573545C2 (ru) | 2009-12-28 | 2016-01-20 | Конинклейке Филипс Электроникс Н.В. | Трубчатый тепловой переключатель для магнита, не использующего криогенные среды |
BR112012015630A2 (pt) | 2009-12-28 | 2018-04-10 | Koninklijke Philips Eletronics N V | "aparelho terapêutico e produto de programa de computador que contém instruções executáveis por maquina para execução por um controlador de um aparelho terapêutico" |
US8427148B2 (en) | 2009-12-31 | 2013-04-23 | Analogic Corporation | System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy |
CN106388823B (zh) | 2010-02-24 | 2019-11-29 | 优瑞技术公司 | 分体式磁共振成像系统 |
US8970217B1 (en) * | 2010-04-14 | 2015-03-03 | Hypres, Inc. | System and method for noise reduction in magnetic resonance imaging |
WO2011127946A1 (en) | 2010-04-15 | 2011-10-20 | Elekta Ab (Publ) | Radiotherapy apparatus |
EP2388610A1 (en) * | 2010-05-20 | 2011-11-23 | Koninklijke Philips Electronics N.V. | Magnetic Resonance Imaging Gradient Coil, Magnet Assembly, and System |
GB201009101D0 (en) * | 2010-06-01 | 2010-07-14 | Nordic Bioscience As | Computer based analysis of MRI images |
CN101869479B (zh) * | 2010-06-13 | 2012-04-18 | 苏州纽迈电子科技有限公司 | 可移动式低场核磁共振成像系统 |
BR112013001488A2 (pt) * | 2010-07-23 | 2016-05-31 | Konink Philps Electronics Nv | dispositivo de detecção do estado fisiológico para a detecção de um estado fisiológico de um paciente e a minimização da quantidade de interferência gerada durante uma varredura de ressonância magnética por um sistema de ressonância magnética, sistema de irm, método para a detecção de um estado fisiológico de um paciente e a minimização de uma quantidade de interferência gerada durante uma verradura de ressonância magnética, método para a operação de um sistema de irm e dispositivo de detecção de pressão para a detecção de um sinal de pressão e a minimização da quantidade de interferência gerada durante uma varredura de ressonância magnética por um sistema de ressonância magnética com um orifício. |
JP5618683B2 (ja) * | 2010-08-03 | 2014-11-05 | 株式会社日立メディコ | 磁気共鳴イメージング装置及び輝度不均一補正方法 |
JP5482554B2 (ja) * | 2010-08-04 | 2014-05-07 | 株式会社村田製作所 | 積層型コイル |
EP2418516A3 (en) * | 2010-08-12 | 2014-02-19 | E-Pharma Trento S.p.A. | Apparatus and method for detecting the presence of a particle of a ferromagnetic metal in a packaging of a paramagnetic material |
EP2609443A1 (en) * | 2010-08-25 | 2013-07-03 | Koninklijke Philips Electronics N.V. | Rf shield for mri comprising conductive coating as shielding material |
EP2423699A1 (en) * | 2010-08-30 | 2012-02-29 | Koninklijke Philips Electronics N.V. | Magnetic resonance imaging system, computer system, and computer program product for sending control messages to an anesthesia system |
GB2483890A (en) * | 2010-09-22 | 2012-03-28 | Tesla Engineering Ltd | MRIS gradient coil assembly with screening layers connected to respective coil layers |
GB2483889A (en) * | 2010-09-22 | 2012-03-28 | Tesla Engineering Ltd | Gradient coil sub assemblies |
US9500731B2 (en) | 2010-10-15 | 2016-11-22 | Eleazar Castillo | Shimming device and method to improve magnetic field homogeneity in magnetic resonance imaging devices |
US8638096B2 (en) * | 2010-10-19 | 2014-01-28 | The Board Of Trustees Of The Leland Stanford Junior University | Method of autocalibrating parallel imaging interpolation from arbitrary K-space sampling with noise correlations weighted to reduce noise of reconstructed images |
US8563298B2 (en) | 2010-10-22 | 2013-10-22 | T2 Biosystems, Inc. | NMR systems and methods for the rapid detection of analytes |
US8409807B2 (en) | 2010-10-22 | 2013-04-02 | T2 Biosystems, Inc. | NMR systems and methods for the rapid detection of analytes |
US8901928B2 (en) | 2010-11-09 | 2014-12-02 | Imris Inc. | MRI safety system |
KR101152835B1 (ko) * | 2010-12-27 | 2012-06-12 | 한국표준과학연구원 | 자기장 상쇄 장치 및 자기장 상쇄 방법 |
CN102073024B (zh) * | 2011-01-31 | 2013-03-06 | 汕头市超声仪器研究所有限公司 | 一种手持式超低场mri的成像装置 |
US8374663B2 (en) | 2011-01-31 | 2013-02-12 | General Electric Company | Cooling system and method for cooling superconducting magnet devices |
US20140178901A1 (en) | 2011-03-22 | 2014-06-26 | The General Hospital Corporation | Molecular Analysis of Tumor Samples |
CN103597370B (zh) * | 2011-04-21 | 2016-01-06 | 马普协会 | 空间编码的相位对比磁共振成像 |
US8558547B2 (en) * | 2011-05-05 | 2013-10-15 | General Electric Company | System and method for magnetic resonance radio-frequency field mapping |
US9833168B2 (en) * | 2011-06-06 | 2017-12-05 | St. Jude Medical, Atrial Fibrillation Division, Inc. | Noise tolerant localization systems and methods |
WO2012173635A1 (en) | 2011-06-13 | 2012-12-20 | Vanderbilt University | Multiple resonance nmr spectroscopy using a single transmitter |
US9351662B2 (en) | 2011-06-17 | 2016-05-31 | Microsoft Technology Licensing, Llc | MRI scanner that outputs bone strength indicators |
CN102360691B (zh) * | 2011-06-24 | 2013-03-13 | 中国科学院电工研究所 | 一种带有铁环结构的开放式核磁共振磁体系统 |
EP2736409A4 (en) | 2011-07-28 | 2015-04-22 | Brigham & Womens Hospital | Systems and methods for mobile magnetic resonance measurements of lung properties |
US9254097B2 (en) | 2011-09-19 | 2016-02-09 | Los Alamos National Security, Llc | System and method for magnetic current density imaging at ultra low magnetic fields |
DE102011083204B4 (de) * | 2011-09-22 | 2018-12-20 | Siemens Healthcare Gmbh | Kühleinrichtung für eine Gradientenspule und deren Verwendung |
WO2013058062A1 (ja) * | 2011-10-21 | 2013-04-25 | 株式会社 日立メディコ | 磁気共鳴イメージング装置およびその運転方法 |
FI125397B (en) * | 2012-01-24 | 2015-09-30 | Elekta Ab | A method for using spatial and temporal oversampling in multichannel measurements |
TWI587597B (zh) * | 2012-02-17 | 2017-06-11 | Lg伊諾特股份有限公司 | 無線電力傳輸器,無線電力接收器,以及無線電力傳輸系統的電力傳輸方法 |
JP2013175028A (ja) | 2012-02-24 | 2013-09-05 | Alps Electric Co Ltd | 操作感触付与型入力装置 |
US9316707B2 (en) | 2012-04-18 | 2016-04-19 | General Electric Company | System and method of receive sensitivity correction in MR imaging |
US9500727B2 (en) | 2012-04-20 | 2016-11-22 | Regents Of The University Of Minnesota | System and method for control of RF circuits for use with an MRI system |
US9883878B2 (en) | 2012-05-15 | 2018-02-06 | Pulse Therapeutics, Inc. | Magnetic-based systems and methods for manipulation of magnetic particles |
US9244139B2 (en) | 2012-05-18 | 2016-01-26 | Neocoil, Llc | Method and apparatus for MRI compatible communications |
PL2852423T3 (pl) * | 2012-05-21 | 2019-03-29 | Boehringer Ingelheim International Gmbh | System z inhalatora i kapsułki |
KR102020534B1 (ko) | 2012-06-15 | 2019-09-10 | 더 제너럴 하스피탈 코포레이션 | 영구 자석들의 로테이팅 어레이를 사용하는 자기 공명 이미징을 위한 시스템 및 방법 |
US8993898B2 (en) | 2012-06-26 | 2015-03-31 | ETS-Lindgren Inc. | Movable EMF shield, method for facilitating rapid imaging and treatment of patient |
US8825132B2 (en) * | 2012-07-04 | 2014-09-02 | Bruker Biospin Gmbh | Field cycling method for magnetic resonance |
GB201212813D0 (en) | 2012-07-19 | 2012-09-05 | Univ Aberdeen | Apparatus for use with an MRI scanner |
US20140066739A1 (en) | 2012-08-29 | 2014-03-06 | Bin He | System and method for quantifying or imaging pain using electrophysiological measurements |
CN102800057A (zh) * | 2012-09-18 | 2012-11-28 | 苏州安科医疗系统有限公司 | 一种用于磁共振成像基于相位一致性的图像去噪方法 |
US9910115B2 (en) | 2012-10-22 | 2018-03-06 | The General Hospital Corporation | System and method for portable magnetic resonance imaging using a rotating array of magnets |
JP5902317B2 (ja) | 2012-11-16 | 2016-04-13 | 株式会社日立製作所 | 磁気共鳴イメージング装置および定量的磁化率マッピング法 |
CN103852740B (zh) * | 2012-11-30 | 2016-12-07 | 通用电气公司 | 降低涡电流磁场的系统和方法 |
US10060997B2 (en) | 2012-12-05 | 2018-08-28 | Hitachi, Ltd. | Magnetic resonance imaging apparatus and operating method of cooling fan motor of magnetic resonance imaging apparatus |
US9268572B2 (en) | 2012-12-11 | 2016-02-23 | International Business Machines Corporation | Modify and execute next sequential instruction facility and instructions therefor |
EP2749318A1 (en) | 2012-12-28 | 2014-07-02 | Theraclion SA | Image-guided therapeutic apparatus and method of preparation of an image-guided therapeutic apparatus for treatment of tissue |
US9355774B2 (en) * | 2012-12-28 | 2016-05-31 | General Electric Company | System and method for manufacturing magnetic resonance imaging coils using ultrasonic consolidation |
US9782141B2 (en) | 2013-02-01 | 2017-10-10 | Kineticor, Inc. | Motion tracking system for real time adaptive motion compensation in biomedical imaging |
EP2765437B1 (en) * | 2013-02-12 | 2020-05-06 | Siemens Healthcare GmbH | A simple method to denoise ratio images in magnetic resonance imaging |
WO2014133186A1 (ja) * | 2013-03-01 | 2014-09-04 | 株式会社東芝 | 磁気共鳴イメージング装置及び傾斜磁場コイル |
WO2014143796A2 (en) | 2013-03-15 | 2014-09-18 | Mobius Imaging, Llc | Mobile x-ray imaging system |
US9814390B2 (en) | 2013-03-15 | 2017-11-14 | Synaptive Medical (Barbados) Inc. | Insert imaging device for surgical procedures |
US10311598B2 (en) | 2013-05-16 | 2019-06-04 | The Regents Of The University Of California | Fully automated localization of electroencephalography (EEG) electrodes |
US20160011290A1 (en) | 2013-05-21 | 2016-01-14 | Victor Iannello | Non-Invasive, In-Vivo Measurement of Blood Constituents Using a Portable Nuclear Magnetic Resonance Device |
DE102013210237B4 (de) | 2013-06-03 | 2016-12-29 | Siemens Healthcare Gmbh | Verfahren zum Betreiben eines mobilen Magnetresonanztomographiesystems |
EP3047292B1 (en) | 2013-09-17 | 2021-06-30 | Synaptive Medical Inc. | Coil assembly for magnetic resonance imaging |
DE202013105212U1 (de) | 2013-11-17 | 2013-12-19 | Aspect Imaging Ltd. | Schließvorrichtung eines MRT-Inkubators |
US10264995B2 (en) * | 2013-12-04 | 2019-04-23 | Obalon Therapeutics, Inc. | Systems and methods for locating and/or characterizing intragastric devices |
WO2015085257A1 (en) | 2013-12-06 | 2015-06-11 | Sonitrack Systems, Inc. | Mechanically driven ultrasound scanning system and method |
US20150198684A1 (en) * | 2014-01-13 | 2015-07-16 | Tamer BASHA | System and Method For Flexible Automated Magnetic Resonance Imaging Reconstruction |
DE202014101104U1 (de) | 2014-03-09 | 2014-04-03 | Aspect Imaging Ltd. | Eine wärmeisolierende MRT-Ummantelung |
EP3126861B1 (en) * | 2014-03-31 | 2023-10-18 | Koninklijke Philips N.V. | Magnetic resonance imaging with rf noise detection coils |
US20150285882A1 (en) | 2014-04-03 | 2015-10-08 | University Of Maryland, Baltimore | Portable system and method for mri imaging and tissue analysis |
CN103913778B (zh) * | 2014-04-10 | 2017-02-15 | 吉林大学 | 多个近端参考线圈的核磁共振信号实时噪声抵消装置 |
EP3132276A2 (en) | 2014-04-15 | 2017-02-22 | Imperial Innovations Ltd | Mri apparatus and methods |
DK3151663T3 (da) | 2014-06-02 | 2020-11-30 | Transmedics Inc | Ex vivo-organplejesystem |
US9678183B2 (en) | 2014-08-14 | 2017-06-13 | General Electric Company | Wireless actuator circuit for wireless actuation of micro electromechanical system switch for magnetic resonance imaging |
CN111896903A (zh) | 2014-09-05 | 2020-11-06 | 海珀菲纳研究股份有限公司 | 噪声抑制方法和设备 |
US20160069967A1 (en) * | 2014-09-10 | 2016-03-10 | General Electric Company | Apparatus and system for imaging an intubated patient |
JP6464637B2 (ja) * | 2014-09-26 | 2019-02-06 | 株式会社ノーリツ | コージェネレーションシステム |
EP3217872A4 (en) | 2014-11-11 | 2018-07-18 | Hyperfine Research, Inc. | Pulse sequences for low field magnetic resonance |
US10813564B2 (en) | 2014-11-11 | 2020-10-27 | Hyperfine Research, Inc. | Low field magnetic resonance methods and apparatus |
JP6268108B2 (ja) * | 2015-01-30 | 2018-01-24 | 株式会社日立製作所 | 超電導磁石ならびに磁気共鳴撮像装置 |
AU2016250077B2 (en) | 2015-04-13 | 2021-04-15 | Hyperfine Operations, Inc. | Magnetic coil power methods and apparatus |
JP6784697B2 (ja) | 2015-05-12 | 2020-11-11 | ハイパーファイン リサーチ,インコーポレイテッド | 高周波コイルの方法および装置 |
US9958521B2 (en) | 2015-07-07 | 2018-05-01 | Q Bio, Inc. | Field-invariant quantitative magnetic-resonance signatures |
US10194829B2 (en) | 2015-07-07 | 2019-02-05 | Q Bio, Inc. | Fast scanning based on magnetic resonance history |
US10031198B2 (en) * | 2015-08-04 | 2018-07-24 | General Electric Company | Methods and systems for a dual wind gradient coil |
CN106483483B (zh) * | 2015-08-27 | 2019-09-06 | 通用电气公司 | 梯度线圈及其制造方法 |
KR102454746B1 (ko) * | 2015-10-01 | 2022-10-17 | 삼성전자주식회사 | 통신 시스템에서 미디어 리소스 식별 정보를 송수신하는 장치 및 방법 |
CN109073681B (zh) | 2016-03-22 | 2020-10-23 | 海珀菲纳研究股份有限公司 | 用于磁场匀场的方法和设备 |
US10359486B2 (en) | 2016-04-03 | 2019-07-23 | Q Bio, Inc. | Rapid determination of a relaxation time |
DE102016211072A1 (de) * | 2016-06-21 | 2017-12-21 | Siemens Healthcare Gmbh | Verfahren zu einem Bereitstellen einer Auswahl von zumindest einem Protokollparameter aus einer Vielzahl von Protokollparametern sowie eine Magnetresonanzvorrichtung hierzu |
TWI667487B (zh) | 2016-09-29 | 2019-08-01 | 美商超精細研究股份有限公司 | 射頻線圈調諧方法及裝置 |
US10539637B2 (en) | 2016-11-22 | 2020-01-21 | Hyperfine Research, Inc. | Portable magnetic resonance imaging methods and apparatus |
US10585153B2 (en) | 2016-11-22 | 2020-03-10 | Hyperfine Research, Inc. | Rotatable magnet methods and apparatus for a magnetic resonance imaging system |
WO2018098141A1 (en) | 2016-11-22 | 2018-05-31 | Hyperfine Research, Inc. | Systems and methods for automated detection in magnetic resonance images |
US10627464B2 (en) | 2016-11-22 | 2020-04-21 | Hyperfine Research, Inc. | Low-field magnetic resonance imaging methods and apparatus |
EP3467531A1 (de) * | 2017-10-05 | 2019-04-10 | Siemens Healthcare GmbH | Magnetresonanztomograph mit aktiver störunterdrückung und verfahren zur störunterdrückung in einem magnetresonanztomographen |
CA3096397A1 (en) | 2018-04-20 | 2019-10-24 | Hyperfine Research, Inc. | Deployable guard for portable magnetic resonance imaging devices |
AU2019272580A1 (en) | 2018-05-21 | 2020-11-12 | Hyperfine Operations, Inc. | Radio-frequency coil signal chain for a low-field MRI system |
BR112020021872A2 (pt) | 2018-05-21 | 2021-01-26 | Hyperfine Research, Inc. | métodos e aparelhos de magneto b0 para um sistema de ressonância magnética |
TW202015621A (zh) | 2018-07-19 | 2020-05-01 | 美商超精細研究股份有限公司 | 在磁共振成像中患者定位之方法及設備 |
JP2021532875A (ja) | 2018-07-30 | 2021-12-02 | ハイパーファイン,インコーポレイテッド | 磁気共鳴画像再構成のための深層学習技術 |
TW202012951A (zh) | 2018-07-31 | 2020-04-01 | 美商超精細研究股份有限公司 | 低場漫射加權成像 |
CA3106683A1 (en) | 2018-07-31 | 2020-02-06 | Hyperfine Research, Inc. | Medical imaging device messaging service |
JP2021534852A (ja) | 2018-08-15 | 2021-12-16 | ハイパーファイン,インコーポレイテッド | 磁気共鳴画像においてアーティファクトを抑制するためのディープラーニング技術 |
CA3122087A1 (en) | 2018-12-19 | 2020-06-25 | Hyperfine Research, Inc. | System and methods for grounding patients during magnetic resonance imaging |
WO2020139476A2 (en) | 2018-12-28 | 2020-07-02 | Hyperfine Research, Inc. | Correcting for hysteresis in magnetic resonance imaging |
EP3937774A1 (en) | 2019-03-12 | 2022-01-19 | Hyperfine, Inc. | Systems and methods for magnetic resonance imaging of infants |
JP2022526718A (ja) | 2019-03-14 | 2022-05-26 | ハイパーファイン,インコーポレイテッド | 空間周波数データから磁気共鳴画像を生成するための深層学習技術 |
KR20220005492A (ko) | 2019-04-26 | 2022-01-13 | 하이퍼파인, 인크. | 자기 공명 영상 시스템의 동적 제어를 위한 기술 |
KR20220007876A (ko) | 2019-05-07 | 2022-01-19 | 하이퍼파인, 인크. | 유아의 자기 공명 이미징을 위한 시스템, 디바이스 및 방법 |
US11698430B2 (en) | 2019-08-15 | 2023-07-11 | Hyperfine Operations, Inc. | Eddy current mitigation systems and methods |
US11510588B2 (en) | 2019-11-27 | 2022-11-29 | Hyperfine Operations, Inc. | Techniques for noise suppression in an environment of a magnetic resonance imaging system |
DE102020202830A1 (de) * | 2020-03-05 | 2021-09-09 | Siemens Healthcare Gmbh | Magnetresonanztomograph und Verfahren zum Betrieb mit dynamischer B0-Kompensation |
-
2015
- 2015-09-04 CN CN202010597758.3A patent/CN111896903A/zh active Pending
- 2015-09-04 BR BR112017004353A patent/BR112017004353A2/pt not_active Application Discontinuation
- 2015-09-04 AU AU2015311825A patent/AU2015311825B2/en not_active Ceased
- 2015-09-04 CA CA2960194A patent/CA2960194C/en not_active Expired - Fee Related
- 2015-09-04 MX MX2017002938A patent/MX366786B/es active IP Right Grant
- 2015-09-04 BR BR112017004336A patent/BR112017004336A2/pt not_active Application Discontinuation
- 2015-09-04 US US14/845,652 patent/US9817093B2/en active Active
- 2015-09-04 EP EP15838192.1A patent/EP3189341A4/en active Pending
- 2015-09-04 CA CA3043061A patent/CA3043061A1/en not_active Abandoned
- 2015-09-04 CN CN201580054059.1A patent/CN107110931B/zh active Active
- 2015-09-04 IL IL250939A patent/IL250939B/en unknown
- 2015-09-04 MX MX2017002939A patent/MX2017002939A/es unknown
- 2015-09-04 KR KR1020177009312A patent/KR20170048577A/ko not_active Application Discontinuation
- 2015-09-04 WO PCT/US2015/048484 patent/WO2016037030A1/en active Application Filing
- 2015-09-04 US US14/846,255 patent/US9638773B2/en active Active
- 2015-09-04 US US14/846,042 patent/US9645210B2/en active Active
- 2015-09-04 EP EP15838773.8A patent/EP3189343A4/en active Pending
- 2015-09-04 CN CN202010843413.1A patent/CN112098912B/zh active Active
- 2015-09-04 CA CA2960200A patent/CA2960200A1/en not_active Abandoned
- 2015-09-04 KR KR1020177008944A patent/KR20170052621A/ko active IP Right Grant
- 2015-09-04 AU AU2015311830A patent/AU2015311830B2/en not_active Ceased
- 2015-09-04 EP EP15837569.1A patent/EP3189340A4/en active Pending
- 2015-09-04 CA CA2960191A patent/CA2960191A1/en not_active Abandoned
- 2015-09-04 BR BR112017004369A patent/BR112017004369A2/pt not_active Application Discontinuation
- 2015-09-04 CN CN201580053879.9A patent/CN107110930B/zh active Active
- 2015-09-04 CN CN202010717926.8A patent/CN111983536A/zh active Pending
- 2015-09-04 CN CN201580054097.7A patent/CN107110932B/zh active Active
- 2015-09-04 KR KR1020177009185A patent/KR20170048560A/ko active IP Right Grant
- 2015-09-04 CN CN201580055003.8A patent/CN107110933B/zh not_active Expired - Fee Related
- 2015-09-04 WO PCT/US2015/048470 patent/WO2016037025A1/en active Application Filing
- 2015-09-04 CN CN202010767527.2A patent/CN112083365B/zh active Active
- 2015-09-04 JP JP2017531981A patent/JP6684804B2/ja active Active
- 2015-09-04 JP JP2017531982A patent/JP6761416B2/ja active Active
- 2015-09-04 EP EP15838618.5A patent/EP3189342A4/en active Pending
- 2015-09-04 CA CA2960178A patent/CA2960178C/en not_active Expired - Fee Related
- 2015-09-04 WO PCT/US2015/048631 patent/WO2016037101A1/en active Application Filing
- 2015-09-04 AU AU2015311749A patent/AU2015311749B2/en not_active Ceased
- 2015-09-04 KR KR1020177009177A patent/KR20170048558A/ko active IP Right Grant
- 2015-09-04 CA CA3066755A patent/CA3066755A1/en not_active Abandoned
- 2015-09-04 CA CA3043063A patent/CA3043063A1/en not_active Abandoned
- 2015-09-04 EP EP15838504.7A patent/EP3189344A4/en not_active Withdrawn
- 2015-09-04 AU AU2015311828A patent/AU2015311828B2/en not_active Ceased
- 2015-09-04 AU AU2015311725A patent/AU2015311725A1/en not_active Abandoned
- 2015-09-04 CA CA2960189A patent/CA2960189C/en not_active Expired - Fee Related
- 2015-09-04 WO PCT/US2015/048515 patent/WO2016037042A1/en active Application Filing
- 2015-09-04 JP JP2017531985A patent/JP6832852B2/ja active Active
- 2015-09-04 US US14/846,158 patent/US10768255B2/en not_active Expired - Fee Related
- 2015-09-04 WO PCT/US2015/048479 patent/WO2016037028A1/en active Application Filing
- 2015-09-04 US US14/845,949 patent/US9547057B2/en active Active
- 2015-09-04 BR BR112017004357A patent/BR112017004357A2/pt active Search and Examination
- 2015-09-04 MX MX2017002940A patent/MX2017002940A/es unknown
- 2015-09-04 MX MX2017002937A patent/MX2017002937A/es unknown
- 2015-09-04 JP JP2017531980A patent/JP6674645B2/ja active Active
-
2016
- 2016-02-22 US US15/049,596 patent/US9625543B2/en active Active
- 2016-02-22 US US15/049,309 patent/US9541616B2/en active Active
- 2016-04-06 US US15/091,971 patent/US9625544B2/en active Active
- 2016-04-19 US US15/132,617 patent/US20160231402A1/en not_active Abandoned
- 2016-04-19 US US15/132,671 patent/US10145922B2/en active Active
- 2016-04-19 US US15/132,703 patent/US10379186B2/en active Active
- 2016-04-19 US US15/132,742 patent/US10591564B2/en active Active
- 2016-09-02 TW TW105128467A patent/TWI627428B/zh not_active IP Right Cessation
- 2016-12-21 US US15/387,320 patent/US9797971B2/en active Active
-
2017
- 2017-03-05 IL IL250933A patent/IL250933B/en active IP Right Grant
- 2017-03-05 IL IL250935A patent/IL250935B/en unknown
- 2017-03-05 IL IL250934A patent/IL250934A0/en unknown
- 2017-04-26 US US15/498,432 patent/US10241177B2/en active Active
- 2017-09-29 US US15/721,340 patent/US10495712B2/en active Active
- 2017-09-29 US US15/721,309 patent/US10139464B2/en active Active
-
2018
- 2018-10-04 US US16/152,126 patent/US10613181B2/en active Active
- 2018-11-19 US US16/195,518 patent/US10488482B2/en active Active
- 2018-12-03 US US16/207,971 patent/US10466327B2/en active Active
-
2019
- 2019-01-31 US US16/264,241 patent/US11397233B2/en active Active
- 2019-03-12 AU AU2019201685A patent/AU2019201685B2/en not_active Ceased
- 2019-09-18 US US16/574,727 patent/US20200011952A1/en active Pending
- 2019-09-25 US US16/583,175 patent/US11175364B2/en active Active
- 2019-09-25 US US16/583,190 patent/US11221386B2/en active Active
-
2020
- 2020-02-19 JP JP2020025749A patent/JP6955595B2/ja active Active
- 2020-03-30 JP JP2020059620A patent/JP6882569B2/ja active Active
- 2020-04-23 JP JP2020076553A patent/JP2020127750A/ja active Pending
-
2021
- 2021-05-06 JP JP2021078699A patent/JP2021120001A/ja active Pending
- 2021-05-21 AU AU2021203286A patent/AU2021203286A1/en not_active Abandoned
- 2021-07-08 IL IL284727A patent/IL284727B/en unknown
- 2021-10-01 JP JP2021162485A patent/JP2022000241A/ja active Pending
- 2021-10-26 US US17/510,919 patent/US20220043088A1/en not_active Abandoned
- 2021-12-02 US US17/541,070 patent/US11662412B2/en active Active
-
2022
- 2022-07-19 US US17/868,212 patent/US20220349975A1/en not_active Abandoned
-
2023
- 2023-04-24 US US18/138,261 patent/US20230333188A1/en not_active Abandoned
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5252924A (en) * | 1991-11-18 | 1993-10-12 | Sumitomo Special Metals Co., Ltd. | Magnetic field generating apparatus for MRI |
TW389688B (en) * | 1998-06-05 | 2000-05-11 | Yokogawa Medical Syst | MRI coil and MRI apparatus |
TW570771B (en) * | 2000-03-31 | 2004-01-11 | Univ Rochester | Magnetic resonance imaging with resolution and contrast enhancement |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI627428B (zh) | 用於磁共振成像系統中之磁性系統 | |
TWI743481B (zh) | 用於磁共振成像系統的b磁鐵方法及設備 | |
US9927500B2 (en) | Device for generating a magnetic field profile which meets the requirements for MPI and for MRI | |
US11333727B2 (en) | Ferromagnetic frame for magnetic resonance imaging | |
US11656308B2 (en) | Permanent magnet assembly for magnetic resonance imaging with non-ferromagnetic frame | |
US20210173024A1 (en) | Swaged component magnet assembly for magnetic resonance imaging | |
JP6560680B2 (ja) | Mriシステム用電磁干渉シールドコイル |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |