US20100219833A1 - Magnet assembly - Google Patents

Magnet assembly Download PDF

Info

Publication number
US20100219833A1
US20100219833A1 US12/670,781 US67078108A US2010219833A1 US 20100219833 A1 US20100219833 A1 US 20100219833A1 US 67078108 A US67078108 A US 67078108A US 2010219833 A1 US2010219833 A1 US 2010219833A1
Authority
US
United States
Prior art keywords
electromagnet
coil
yoke
pole piece
arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/670,781
Inventor
Mario Vincent John McGinley
Mihailo Ristic
Bowden Colin Besant
Robert Ian Young
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emscan Ltd
Original Assignee
Emscan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from GB0714600A external-priority patent/GB0714600D0/en
Priority claimed from GB0810607A external-priority patent/GB0810607D0/en
Application filed by Emscan Ltd filed Critical Emscan Ltd
Assigned to EMSCAN LIMITED reassignment EMSCAN LIMITED ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: YOUNG, ROBERT IAN, MCGINLEY, MARIO VINCENT JOHN, RISTIC, MIHAILO, BESANT, BOWDEN COLIN
Publication of US20100219833A1 publication Critical patent/US20100219833A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/10Composite arrangements of magnetic circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F6/00Superconducting magnets; Superconducting coils
    • H01F6/04Cooling

Definitions

  • the present invention relates to an assembly for an electromagnet, particularly an electromagnet of the kind intended for producing a very high intensity magnetic field such as may be used in a magnetic resonance imaging (MRI) system.
  • MRI magnetic resonance imaging
  • NMR nuclear magnetic resonance spectrometry
  • ESR electron spin resonance spectroscopy
  • general physics laboratory research such as, but not limited to, nuclear magnetic resonance spectrometry (NMR), electron spin resonance spectroscopy (ESR) or general physics laboratory research.
  • MRI machines are large expensive devices which have to be located in a specially constructed or adapted MRI room and require the operator to have a high degree of skill. These aspects preclude the use of MRI as a diagnostic tool in applications where space is at a premium and where it would be desirable for the machine to be operated by, for example, nursing staff with only a limited degree of training. An example of such an application would be in an accident and emergency (A & E) unit.
  • a & E accident and emergency
  • a magnet design should ideally have one or more of the following attributes:
  • the present invention addresses a solution to this problem by provision of a counterbalancing member which extends beyond the plane of a coil. It is known for pole pieces in MRI machines to be formed with a “lip” which extends over the outer surface of the coils, such as disclosed in GB-A-2 282 451 but conventionally, this lip is not fabricated or configured so as to counterbalance the aforementioned forces.
  • the present invention is aimed at provision of a compact, open and low-cost magnet for a magnetic resonance imaging (MRI) system.
  • the magnet can offer a substantial imaging field of typically around 0.5 Tesla at moderate weight and fringe field which would facilitate its location in a wide range of environments.
  • the present invention provides an electromagnet comprising a yoke and a pair of mutually facing pole pieces, one or both of which is provided with a respective coil, the coil or coils being provided with a respective balancing member which at least partially counterbalances the attractive force between the coil or coils and the yoke.
  • the or each balancing member may be considered to be positioned closest to a side of the relevant coil which is opposite to that side of the coil closest to the part of the yoke which carries the associated pole piece.
  • the coil may be considered to be situated between that part of the yoke which supports the associated pole piece and the balancing member (or a radial plane through the balancing member, substantially parallel to the coil axis).
  • At least part of the balancing member or members may, for example, have a higher magnetic permeability and/or a higher saturation magnetisation value than the yoke or, at least, than that part of the yoke carrying the associate pole piece(s).
  • a first aspect of the present invention may now provide an electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms may be provided respectively with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil to counterbalance the attractive force between the planar coil and the first arm.
  • a second aspect of the present invention may provide an electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms may be provided with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil, at least part of the balancing member having a higher magnetic permeability than that of the first arm and/or at least part of the balancing member having a higher saturation magnetisation than that of the first arm.
  • a third aspect of the present invention may provide an electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms may be provided with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil, wherein the ferromagnetic balancing member is non-ferromagnetically separated from the first pole piece and the first arm.
  • the ferromagnetic balancing member is preferably non-ferromagnetically separated from the entire yoke and when present, so is a further ferromagnetic balancing member.
  • Non-ferromagnetic separation of one member from another means that the two members are not physically connected by ferromagnetic material, e.g., by virtue of being separated by an air gap or being joined by a material which is not ferromagnetic, etc.
  • the second pole piece which is associated with the second arm may not be provided with a corresponding coil but may be configured such that between the pole pieces, a substantially homogeneous magnetic field may be generated in a subject examination region when the planar coil associated with the first pole piece is energised.
  • the second pole piece which is associated with the second arm may also be provided with a further planar coil having a first side facing the second arm and a second side facing the first, a further balancing member being arranged on the second side of the further planer coil to counterbalance the attractive force between the further planar coil and the second arm, e.g., (i) the further balancing member having a higher magnetic permeability than that of the second arm and/or at least part of the further balancing member having a higher saturation magnetism than that of the second arm; and/or (ii) the further ferromagnetic balancing member being non-ferromagnetically separated from the second pole piece and the second arm.
  • a magnet assembly may provide an electromagnet comprising a ferromagnetic yoke supporting at least one pair of mutually facing planar coils, each coil in said at least one pair having a first side facing the yoke and a second side facing the other coil, wherein a respective ferromagnetic balancing member is arranged on the second side of each coil to counterbalance the attractive force between the coil and the yoke.
  • Any electromagnet or electromagnet assembly according to any single aspect of the present invention may incorporate any one or more preferred and/or specifically described features of any electromagnet or electromagnet assembly according to any one or more of the other aspects of the invention.
  • the present invention also extends to a machine, in particular an MRI, NMR or ESR machine comprising an electromagnet or electromagnet assembly according to the invention.
  • These machines may also comprise the requisite r.f. coils (transmitter and receiver coils) or the r.f. coils may be part of a free-standing separate unit.
  • An MRI machine will normally also include gradient coils.
  • the term MRI may include fMRI (functional magnetic resonance imaging).
  • any or each balancing member may have a higher magnetic permeability than that of its associated yoke arm and/or for at least part of the balancing member to have a higher saturation magnetisation than that of the relevant arm.
  • the yoke may be made of low carbon steel, preferably with the pole regions being laminated, the balancing member to be composed of steel with a significant cobalt and/or nickel content.
  • the electromagnetic assembly according to any of the first to third aspects of the present invention may employ at least one pair of pole pieces.
  • Some embodiments may comprise a second pair of pole pieces, e.g., with an axis of symmetry orthogonal to that of the first pair pole pieces.
  • the second and any further pairs of pole pieces need not have the same geometry as the first pair of pole pieces, or of each other and need not conform to the definition of the present invention, although preferably they will also meet this definition.
  • the electromagnetic assembly according to the fourth aspect of the present invention may employ at least one pair of planar coils.
  • Some embodiments may comprise a second pair of planar coils, e.g., with an axis of symmetry orthogonal to that of the first pair of coils.
  • the second and any further pairs of coils need not have the same geometry as the first pair of coils, or of each other and need not conform to the definition of the present invention, although preferably they will also meet this definition.
  • planar coils is meant coils which are generally annular and although having a finite thickness (height), the windings generally lie within a single plane, as opposed to having the structure of an elongate (cylindrical) winding such as used in a solenoid coil.
  • a coil can be considered to have two sides.
  • the coil or coils for producing the main field i.e., the coil(s) associated with the pole pieces is, or are, planar, or rather “substantially planar”.
  • any such coil has a finite thickness.
  • a “solenoidal coil” can be recognised as having a diameter:height ratio of 1:1 or less, e.g., 1:2 or less.
  • a planar coil would normally be recognised as having a diameter:height ratio of more than 1:1, e.g., at least 2:1.
  • preferred planar coils have a diameter:height ratio of least 5:1, more preferably at least 10:1 and still more preferably at least 15:1.
  • the diameter:height ratio is unlikely to exceed 50:1 and preferably, in order to ensure that sufficient turns can be incorporated in the windings, that ratio would not normally exceed 25:1.
  • the coil or coils are mounted on a yoke, substantially facing each other. Therefore, preferably, the yoke is H-shaped or C-shaped although to enable access of a subject in a range of orientations, C-shaped is the preferred embodiment.
  • C-shaped includes a curved ‘C’ configuration as well as a yoke configuration which resembles three sides of a square or rectangle (i.e., a substantially straight spine with respective substantially straight arms extending substantially parallel to each other from either end of the spine.
  • the yoke may be considered to comprise two curved arms joined by a curved spine contiguous therewith.
  • the pole pieces may extend and face inwardly, extending towards each other from the ends of the arms.
  • the balancing member for any or each coil functions to counterbalance, preferably to substantially totally counterbalance, the attractive force between the coil and the yoke.
  • a number of approaches may be employed, either singly or in combination.
  • the electromagnet of the present invention may provide one or more of the following advantageous constructional features:
  • any or each coil it is preferred for any or each coil to be situated closer to its associated balancing member than to the yoke. It is also preferred for any or each balancing member to have a higher magnetic permeability than that of the yoke. This means that given the high flux generated by a coil suitable for use in applications such as in an MRI machine, if the coil is sufficiently close to the balancing member, it can achieve a higher degree of magnetisation than the yoke, before saturation, bearing in mind the need for the balancing member to have smaller mass/dimensions than the body of the yoke. For similar reasons, it is also preferable for at least part of any or each balancing member to have a higher magnetic permeability than that of the yoke.
  • the balancing member may, for example, be in the form of one or more independently supported ferromagnetic rings.
  • any or each balancing member is preferably constituted by part of a respective pole piece, i.e., is integral therewith.
  • the pole pieces are ferromagnetic members extending towards each other from the yoke in the vicinity of, preferably passing through the coils.
  • any or each pole piece is generally annular when viewed axially, although as will be explained in more detail hereinbelow, the outer circumferential surface and/or inner surface of the annulus may be provided with one or more projections and/or indentations and/or irregularities, preferably continuously around the annulus of the pole piece and/or in the yoke in the vicinity of the pole piece, to provide advantageous properties, in particular with regard to the functioning of the balancing member. Provision of shims to fine-line the magnetic field is also advantageous, e.g., to compensate for lack of axial symmetry in the yoke.
  • a pole piece may be constructed as a composite, for example, comprising two or more constituent members made from different materials, e.g., two or more generally annular shaped pieces which may be joined by any suitable means such as, but not limited to, bolting.
  • One or more of these individual members may constitute the balancing member and therefore, may be formed of material(s) having a higher magnetic permeability and/or higher saturation than the yoke.
  • substantially each constituent member of the composite may play a role in balancing the force. Members having a higher permeability will contribute more than those having a relatively lower permeability.
  • One or more of the constituent members are preferably generally annular and most preferably, have a substantially square or substantially rectangular profile when viewed in axial cross-section. In one or more embodiments, it is especially preferred for one or more of the corners of the substantially square or substantially rectangular profile to be chamfered, preferably on a corner facing the relevant coil.
  • the constituent members may be of such a configuration that each pole piece has azimuthally-varying non-uniform height for correcting components of field inhomogeneity which are not axially symmetric.
  • the pole pieces may be constructed with one or more other advantageous features to ensure substantial homogeneity of the generated field.
  • one or more ferromagnetic or permanent magnet field-tuning rings may be provided, preferably situated inside the inner radial profile of each pole piece.
  • a pole piece comprises a plurality of substantially annular constituent members made of different materials, these may have non-uniform height (thickness) around the circumference to correct fields in homogeneity in at least one direction, for example in a linear direction substantially perpendicular to side supporting member(s) in a C-shaped or H-shaped yoke, which will generate non-axially symmetric components of magnetic field.
  • any or each coil is preferably superconducting coils provided with a suitable cooling means.
  • Particularly preferred are coils made from one or more high temperature superconducting materials.
  • a ‘high temperature superconducting material’ may be a material which demonstrates superconductivity at a temperature above 20° K.
  • a ‘high temperature superconducting material’ may also be a material with a superconducting working temperature operating as a magnet of above 10° K. That is because for many of these materials, the onset of superconductivity in the characteristic curve of the superconductor is not very sharp. Therefore, lower temperatures than the highest at which superconductivity is first demonstrated are preferred for better performance.
  • a particularly preferred high temperature superconductor is magnesium diboride (MgB 2 ) or MgB 2 doped with another suitable material such as silicon carbide, hosted in a matrix of copper.
  • suitable high temperature superconductors include niobium nitride, niobium carbide, niobium boride and molybdenum diboride, although these materials require lower temperatures than MgB 2 .
  • high temperatures superconductors which could be used include NbTi, NbSb, bismuth strontium calcium copper oxide (BSCCO) and yttrium barium copper oxide (YBCO) which have a higher critical temperature but are generally less suited to high current density and long wire applications, as well as being more expensive.
  • FIG. 1 shows a three dimensional view of a first embodiment of the overall structure of a magnet assembly according to the present invention
  • FIG. 2 shows a more detailed two dimensional cross-section in the x-z plane of the assembly shown in FIG. 1 ;
  • FIG. 3 shows how the coils in the assembly of FIGS. 1 and 2 are joined by a supporting member
  • FIG. 4 shows the first quadrant of the central region of the assembly of FIGS. 1-3 , showing further details
  • FIGS. 5A through 5G show some basic alternative pole piece balancing member geometries
  • FIG. 6 shows a three-dimensional cross-section through a second embodiment of the present invention.
  • FIG. 7 shows a partial two dimensional cross-section through the embodiment of FIG. 6 , showing the lines of magnetic flux.
  • a magnet assembly 1 comprises a C-shaped steel yoke 3 .
  • the yoke itself comprises an upper arm 5 , and a lower arm 7 linked by a spine 9 .
  • the coils drive magnetic flux around the yoke to produce a substantially uniform magnetic field in the central region between the poles.
  • the drive coil 23 has a first side 22 facing the upper yoke arm 5 and a second side 24 facing the other coil 25 .
  • the drive coil 25 has a first side 26 facing the lower yoke arm 7 and a second side 28 facing the other coil 23 .
  • the pair of drive coils 23 , 25 carry equal currents current i in the same sense and in series with one another.
  • the coil formers are joined by mechanical supporting member 27 to one side of the coil in the +x direction.
  • the coils 23 , 25 and supporting member 27 are enclosed in a single cryostat assembly (not shown) which is needed to cool the coils to superconducting temperatures.
  • This single-sided supporting member is needed to provide free access to the imaging region of the magnet assembly 1 from three sides.
  • the supporting member 27 is on the same side x of the magnet as the spine 9 of the yoke 3 .
  • a cold head 29 of a cryocooler system Attached to the supporting member 27 at the midpoint thereof is a cold head 29 of a cryocooler system which provided the cooling required for both coils through thermal conduction along the support.
  • the cryocooler can most conveniently be fed through a hole in the centre of the spine 9 of the yoke 3 , preventing any interference to access on the open three sides.
  • the yoke and pole design of this embodiment are such that the axial forces on the coils are substantially balanced.
  • the coils 23 , 25 are recessed into respective annular recesses 31 , 33 in the side of the pole pieces 19 , 21 so that the magnetic pull of the coils 23 , 25 onto the yoke 3 is substantially counterbalanced by the force of the coils 23 , 25 onto the pole pieces 19 , 21 . Therefore, this single-sided support system may bear only the weight of the coils and their respective formers, which need not be excessive. There is a moderate static load on the force in the x direction owing to the lack of axial symmetry of the yoke 3 .
  • the net force on the combined coil system thus comprises the combination of weight and static x load which can be made a fraction of one tonne.
  • the winding cross section of the upper coil 23 is shown as 35 .
  • Such a winding tends to produce regions of high magnetic flux density and stress at opposite corners of the winding cross-section.
  • Chamfers 37 , 39 in the shape of the winding 35 may be included in the design to eliminate such hot spots and help keep the winding in conditions of magnetic field stress below their critical levels and favourable for superconductivity.
  • the magnet winding 35 is formed of High Temperature Superconductor (HTSC) wire fabricated from magnesium diboride (MgB 2 ).
  • HTSC High Temperature Superconductor
  • MgB 2 magnesium diboride
  • the advantage is that the operating temperature can be in the region of 20K rather than the 4.2 K required for conventional superconductors. This makes conductive cooling by a single cryocooler possible and at a relatively low cooling power.
  • the top arm 5 of the yoke 3 is joined to the support member 9 on the +x side only.
  • the pole assembly comprises a set of concentric rings 41 , 43 , 45 , 47 (four are shown here for example but this number could vary) the purpose of which is to provide a varying inner and outer radial profile for the pole.
  • the outer radial profile is dominant in determining the force balance in the coil, in particular the outer diameters of rings 41 and 43 .
  • the coil is positioned such that its inner radius is significantly less than the outer radius of ring 45 , thereby creating an annular recess for the coil 23 .
  • the coil 23 should preferably be positioned close to the outer radius 44 of ring 43 and the outermost surface 46 of ring 45 , one alternative form of construction may be to incorporate these surfaces into the composition of the room-temperature walls of the coil cryostat.
  • a second feature of the outer radial profile of the pole which helps balance the force is the recess 42 , formed by the radial step between the outer radii, between members 41 and 43 of the pole assembly.
  • a third feature which helps to balance the force is the recess 48 in the inside surface 11 of the upper arm 5 of the yoke 3 , extending from the inner radial surface of concentric ring 41 to just beyond the coil 23 . This helps to reduce the outer axial force on the coil.
  • a combination of two or all three of these measures may be combined to achieve an optimal force balance.
  • rings 43 and 45 may be made of a material of higher magnetic saturation such as, but not limited to, a steel of high-cobalt content.
  • the lower rings 43 , 45 , 47 constitute a ‘balancing member’ of the pole piece.
  • this arrangement is situated closer to the second side 24 of the coil 23 than the first side 22 of the coil 23 is to the upper arm 5 of the yoke 3 .
  • the inner radii of the pole piece rings 41 , 43 , 45 , 47 are designed mainly to shape the magnetic field for optimal homogeneity. As well as the pole piece rings having the vertical inner walls shown, they may also contain chamfers, tapers or more general curved surfaces to this end. This includes the inner-facing wall of the yoke top inside the ring 41 . Ring 45 indicates a recess with respect to ring 43 to allow additional space for the presence of shim rings. The four or more shim rings 49 provide a means of fine tuning the systematic magnet homogeneity design in combination with the pole ring geometries.
  • the shim rings 49 may comprise a combination of high permeability steel or permanently magnetized material such as, but not limited to, neodymium iron boron in a general orientation of magnetization including that opposite to the main field or in a radial direction. It should be noted that the entire hollow space inside the pole rings 41 , 43 , 45 , 47 is available for shim rings as required although they will tend to be more powerful nearer the imaging volume as shown. The net result of the field optimization is a region of high homogeneity suitable for MRI imaging inside the spherical shell indicated by 48 . For some applications of magnet however it may be advantageous to optimize the homogeneity toward an oblate or prolate spheroid instead of the sphere.
  • the asymmetry of the magnet due to the presence of the yoke 3 will produce a transverse (i.e. non-axially symmetric) variation in field.
  • a set of azimuthal variations may be employed to compensate for which there are several measures which can be combined. These include tilt of the poles, selective cutaways or chokes in the interfacing surfaces between the interfaces between pole piece members 41 , 43 , 45 , 47 and the inner surface 11 of the upper yoke arm 5 . Further sculpting of the cross section of the support member 9 can also be employed.
  • the inner radius of the rose ring 47 is further recessed with respect to ring 43 to accommodate three further assemblies namely the shimset 51 , the gradient set 53 and the rf transmit coil 55 .
  • the order of shimset 51 and gradient set 53 in the stack is reversible in principle.
  • the shimset 51 comprises an array of passive steel or permanent magnet dipoles which may be adjusted to compensate for non-systematic variations in magnet homogeneity such as manufacturing tolerances or the magnetic environment of the room.
  • the shims are adjusted according to a field map in the target homogeneous volume 48 .
  • the gradient set may be an actively shielded or non-actively-shielded set. Should the non-actively shielded option be chosen for maximum efficiency, the inward facing surfaces 14 of the pole assembly 41 , 43 , 45 , 47 may optionally be formed of high-permeability powdered or laminated iron. The effect of this arrangement is to carry gradient coil flux whilst inhibiting eddy current flow when current levels in the gradient coils are switched.
  • FIGS. 5A through 5G show different basic geometries of pole piece with integral balancing member, to better explain the most important features of, and some possible variations in the embodiment shown in FIG. 4 .
  • reference numeral 5 denotes the upper arm of the yoke as depicted in FIG. 4 .
  • Reference numeral 61 shows an integral pole piece/balancing member as referred to in the previous figures, which may be of composite form and with relevant chamfers but for convenience, these are not depicted here.
  • Reference numeral 23 depicts the coil.
  • numeral 61 depicts a conventional pole piece without any configuration to act as a balancing member and is therefore conventional, and not in accordance with the present invention.
  • FIG. 5B The geometry shown in FIG. 5B is like that in FIG. 5A , but a recess 63 is formed in the side wall 65 of the pole piece, thereby providing a laterally extending portion 67 to act as a balancing member.
  • the portion denoted 67 is made from cobalt steel whereas the upper arm 5 of the yoke is made from laminated carbon steel.
  • FIG. 5C The configuration in FIG. 5C is the same as that in FIG. 5B , except the coil 23 is situated to one side of the laterally extending balancing member 67 which is of greater thickness than that depicted in FIG. 5B .
  • FIG. 5D it can be seen that there is a recess 69 in the upper arm 5 of the yoke.
  • FIG. 5E The configuration in FIG. 5E can be seen to combine the arrangements of FIGS. 5B and 5C and the configuration of FIG. 5F combines the configurations of all of FIGS. 5B , 5 C and 5 D.
  • FIG. 5G shows the situation where there is an annular counterbalancing member 64 not attached to the side wall 65 .
  • FIG. 5G is an example of non-ferromagnetic separation.
  • FIG. 6 shows a second embodiment of an electromagnetic assembly of an MRI machine in accordance with a second embodiment of the present invention.
  • Reference numeral 71 is a circle depicting a notional patient or subject examination area.
  • reference numerals which are the same as those used in FIGS. 1-5 denote integers which are the same as in those latter Figures.
  • This second embodiment differs from the first embodiment in that there is only one coil, namely the lower coil 25 surrounding the lower pole piece 21 .
  • An upper pole piece 73 is not provided with a coil and is dimensioned so as to have a smaller radial cross-sectional diameter than that of the lower pole piece 21 .
  • a ‘floating’ balancing member 75 is separated by an air gap 77 from the lower pole piece 71 .
  • FIG. 7 shows a partial two-dimensional cross-section through the view of FIG. 6 , in which the feint lines show the lines of magnetic flux. It can be seen that through the patient or subject examination region 71 , these are substantially homogeneous.

Abstract

An electromagnet comprising a ferromagnetic yoke which comprises a yoke. Mutually opposing first and second pole pieces are provided. The first pole piece is provided with a planar coil having a first side facing the yoke and a second side facing the yoke. A balancing member is arranged on the second side of the planar coil to counterbalance the attractive force between the planar coil and the yoke. The other pole piece may also be provided with a corresponding balancing member.

Description

    FIELD OF THE INVENTION
  • The present invention relates to an assembly for an electromagnet, particularly an electromagnet of the kind intended for producing a very high intensity magnetic field such as may be used in a magnetic resonance imaging (MRI) system. However, it is also applicable to other high field applications such as, but not limited to, nuclear magnetic resonance spectrometry (NMR), electron spin resonance spectroscopy (ESR) or general physics laboratory research.
  • BACKGROUND OF THE INVENTION
  • Traditionally, MRI machines are large expensive devices which have to be located in a specially constructed or adapted MRI room and require the operator to have a high degree of skill. These aspects preclude the use of MRI as a diagnostic tool in applications where space is at a premium and where it would be desirable for the machine to be operated by, for example, nursing staff with only a limited degree of training. An example of such an application would be in an accident and emergency (A & E) unit.
  • To meet the aforementioned requirements, a magnet design should ideally have one or more of the following attributes:
      • Open, to facilitate patient handling and to reduce and/or minimise the risk of patient claustrophobia;
      • Compact and light, for ease of installation;
      • Small fringe field, to reduce and/or minimise the need for magnetic shielding of the room;
      • Low power consumption thus, low cryocooler power supply requirements;
      • Low cost; and
      • Suitable for stand-by use, allowing rapid field ramp-up and ramp-down.
  • An impediment to such a design is the strong attractive force between the primary field coils and the magnet yoke which may severely limit the achievable performance and practicality of the magnet design.
  • The present invention addresses a solution to this problem by provision of a counterbalancing member which extends beyond the plane of a coil. It is known for pole pieces in MRI machines to be formed with a “lip” which extends over the outer surface of the coils, such as disclosed in GB-A-2 282 451 but conventionally, this lip is not fabricated or configured so as to counterbalance the aforementioned forces.
  • SUMMARY OF THE INVENTION
  • The present invention is aimed at provision of a compact, open and low-cost magnet for a magnetic resonance imaging (MRI) system. The magnet can offer a substantial imaging field of typically around 0.5 Tesla at moderate weight and fringe field which would facilitate its location in a wide range of environments.
  • In accordance with at least one aspect, the present invention provides an electromagnet comprising a yoke and a pair of mutually facing pole pieces, one or both of which is provided with a respective coil, the coil or coils being provided with a respective balancing member which at least partially counterbalances the attractive force between the coil or coils and the yoke. Generally speaking, the or each balancing member may be considered to be positioned closest to a side of the relevant coil which is opposite to that side of the coil closest to the part of the yoke which carries the associated pole piece. Thus, along the axis of a coil, the coil may be considered to be situated between that part of the yoke which supports the associated pole piece and the balancing member (or a radial plane through the balancing member, substantially parallel to the coil axis). At least part of the balancing member or members may, for example, have a higher magnetic permeability and/or a higher saturation magnetisation value than the yoke or, at least, than that part of the yoke carrying the associate pole piece(s).
  • Thus, a first aspect of the present invention may now provide an electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms may be provided respectively with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil to counterbalance the attractive force between the planar coil and the first arm.
  • A second aspect of the present invention may provide an electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms may be provided with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil, at least part of the balancing member having a higher magnetic permeability than that of the first arm and/or at least part of the balancing member having a higher saturation magnetisation than that of the first arm.
  • A third aspect of the present invention may provide an electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms may be provided with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil, wherein the ferromagnetic balancing member is non-ferromagnetically separated from the first pole piece and the first arm.
  • In respect of the third aspect of the present invention, the ferromagnetic balancing member is preferably non-ferromagnetically separated from the entire yoke and when present, so is a further ferromagnetic balancing member. Non-ferromagnetic separation of one member from another means that the two members are not physically connected by ferromagnetic material, e.g., by virtue of being separated by an air gap or being joined by a material which is not ferromagnetic, etc.
  • In one or more embodiments, the second pole piece which is associated with the second arm may not be provided with a corresponding coil but may be configured such that between the pole pieces, a substantially homogeneous magnetic field may be generated in a subject examination region when the planar coil associated with the first pole piece is energised.
  • In one or more additional embodiments, the second pole piece which is associated with the second arm may also be provided with a further planar coil having a first side facing the second arm and a second side facing the first, a further balancing member being arranged on the second side of the further planer coil to counterbalance the attractive force between the further planar coil and the second arm, e.g., (i) the further balancing member having a higher magnetic permeability than that of the second arm and/or at least part of the further balancing member having a higher saturation magnetism than that of the second arm; and/or (ii) the further ferromagnetic balancing member being non-ferromagnetically separated from the second pole piece and the second arm.
  • A magnet assembly according to a fourth aspect of the present invention may provide an electromagnet comprising a ferromagnetic yoke supporting at least one pair of mutually facing planar coils, each coil in said at least one pair having a first side facing the yoke and a second side facing the other coil, wherein a respective ferromagnetic balancing member is arranged on the second side of each coil to counterbalance the attractive force between the coil and the yoke.
  • Any electromagnet or electromagnet assembly according to any single aspect of the present invention may incorporate any one or more preferred and/or specifically described features of any electromagnet or electromagnet assembly according to any one or more of the other aspects of the invention. The present invention also extends to a machine, in particular an MRI, NMR or ESR machine comprising an electromagnet or electromagnet assembly according to the invention. These machines may also comprise the requisite r.f. coils (transmitter and receiver coils) or the r.f. coils may be part of a free-standing separate unit. An MRI machine will normally also include gradient coils. As used herein, the term MRI may include fMRI (functional magnetic resonance imaging).
  • Depending on the particular aspect or aspects of the invention, it may be preferable for at least part of any or each balancing member to have a higher magnetic permeability than that of its associated yoke arm and/or for at least part of the balancing member to have a higher saturation magnetisation than that of the relevant arm. Typically, the yoke may be made of low carbon steel, preferably with the pole regions being laminated, the balancing member to be composed of steel with a significant cobalt and/or nickel content.
  • The electromagnetic assembly according to any of the first to third aspects of the present invention may employ at least one pair of pole pieces. Some embodiments may comprise a second pair of pole pieces, e.g., with an axis of symmetry orthogonal to that of the first pair pole pieces. The second and any further pairs of pole pieces need not have the same geometry as the first pair of pole pieces, or of each other and need not conform to the definition of the present invention, although preferably they will also meet this definition.
  • The electromagnetic assembly according to the fourth aspect of the present invention may employ at least one pair of planar coils. Some embodiments may comprise a second pair of planar coils, e.g., with an axis of symmetry orthogonal to that of the first pair of coils. The second and any further pairs of coils need not have the same geometry as the first pair of coils, or of each other and need not conform to the definition of the present invention, although preferably they will also meet this definition.
  • By ‘planar’ coils is meant coils which are generally annular and although having a finite thickness (height), the windings generally lie within a single plane, as opposed to having the structure of an elongate (cylindrical) winding such as used in a solenoid coil. Thus, considering the plane through the maximum circumference of the annulus, such a coil can be considered to have two sides.
  • Thus, preferably the coil or coils for producing the main field, i.e., the coil(s) associated with the pole pieces is, or are, planar, or rather “substantially planar”. Obviously, any such coil has a finite thickness. A “solenoidal coil” can be recognised as having a diameter:height ratio of 1:1 or less, e.g., 1:2 or less. A planar coil would normally be recognised as having a diameter:height ratio of more than 1:1, e.g., at least 2:1. In the case of the present invention, preferred planar coils have a diameter:height ratio of least 5:1, more preferably at least 10:1 and still more preferably at least 15:1. In practice, the diameter:height ratio is unlikely to exceed 50:1 and preferably, in order to ensure that sufficient turns can be incorporated in the windings, that ratio would not normally exceed 25:1.
  • The coil or coils are mounted on a yoke, substantially facing each other. Therefore, preferably, the yoke is H-shaped or C-shaped although to enable access of a subject in a range of orientations, C-shaped is the preferred embodiment. “C-shaped” includes a curved ‘C’ configuration as well as a yoke configuration which resembles three sides of a square or rectangle (i.e., a substantially straight spine with respective substantially straight arms extending substantially parallel to each other from either end of the spine. However, even in the case of a continuously curved C-shaped configuration, the yoke may be considered to comprise two curved arms joined by a curved spine contiguous therewith. Generally speaking, the pole pieces may extend and face inwardly, extending towards each other from the ends of the arms.
  • The balancing member for any or each coil functions to counterbalance, preferably to substantially totally counterbalance, the attractive force between the coil and the yoke. To assist this, a number of approaches may be employed, either singly or in combination.
  • Thus, depending on the particular embodiment, the electromagnet of the present invention may provide one or more of the following advantageous constructional features:
      • An open magnet involving a yoke (C or H shaped) to offer naturally low fringe field;
      • Compact design derived from smaller diameter coils and poles, made possible by the complexity of design of the pole pieces;
      • Balanced forces on the main coils resulting in reduced load bearing requirements for the cold mass support;
      • A single cryostat, even in the case where two coils are used;
      • A low thermal load (in combination with a cryostat) owing to the reduced cross section of cold mass support and hence, reduced head load; and
      • Reduced peak power owing to unshielded gradients, can be made possible by the use of powder metal in critical areas of the pole pieces (to reduce eddy currents in the pole pieces due to rapidly switching gradient coils).
  • In one approach, it is preferred for any or each coil to be situated closer to its associated balancing member than to the yoke. It is also preferred for any or each balancing member to have a higher magnetic permeability than that of the yoke. This means that given the high flux generated by a coil suitable for use in applications such as in an MRI machine, if the coil is sufficiently close to the balancing member, it can achieve a higher degree of magnetisation than the yoke, before saturation, bearing in mind the need for the balancing member to have smaller mass/dimensions than the body of the yoke. For similar reasons, it is also preferable for at least part of any or each balancing member to have a higher magnetic permeability than that of the yoke.
  • The balancing member may, for example, be in the form of one or more independently supported ferromagnetic rings. However, in one or more preferred embodiments, any or each balancing member is preferably constituted by part of a respective pole piece, i.e., is integral therewith. The pole pieces are ferromagnetic members extending towards each other from the yoke in the vicinity of, preferably passing through the coils. A particularly preferred configuration is wherein any or each pole piece is generally annular when viewed axially, although as will be explained in more detail hereinbelow, the outer circumferential surface and/or inner surface of the annulus may be provided with one or more projections and/or indentations and/or irregularities, preferably continuously around the annulus of the pole piece and/or in the yoke in the vicinity of the pole piece, to provide advantageous properties, in particular with regard to the functioning of the balancing member. Provision of shims to fine-line the magnetic field is also advantageous, e.g., to compensate for lack of axial symmetry in the yoke.
  • A pole piece may be constructed as a composite, for example, comprising two or more constituent members made from different materials, e.g., two or more generally annular shaped pieces which may be joined by any suitable means such as, but not limited to, bolting. One or more of these individual members may constitute the balancing member and therefore, may be formed of material(s) having a higher magnetic permeability and/or higher saturation than the yoke. In general, substantially each constituent member of the composite may play a role in balancing the force. Members having a higher permeability will contribute more than those having a relatively lower permeability.
  • One or more of the constituent members are preferably generally annular and most preferably, have a substantially square or substantially rectangular profile when viewed in axial cross-section. In one or more embodiments, it is especially preferred for one or more of the corners of the substantially square or substantially rectangular profile to be chamfered, preferably on a corner facing the relevant coil. The constituent members may be of such a configuration that each pole piece has azimuthally-varying non-uniform height for correcting components of field inhomogeneity which are not axially symmetric.
  • The pole pieces may be constructed with one or more other advantageous features to ensure substantial homogeneity of the generated field. For example, one or more ferromagnetic or permanent magnet field-tuning rings may be provided, preferably situated inside the inner radial profile of each pole piece. In addition, where a pole piece comprises a plurality of substantially annular constituent members made of different materials, these may have non-uniform height (thickness) around the circumference to correct fields in homogeneity in at least one direction, for example in a linear direction substantially perpendicular to side supporting member(s) in a C-shaped or H-shaped yoke, which will generate non-axially symmetric components of magnetic field.
  • For MRI or similar high field applications, any or each coil is preferably superconducting coils provided with a suitable cooling means. Particularly preferred are coils made from one or more high temperature superconducting materials. A ‘high temperature superconducting material’ may be a material which demonstrates superconductivity at a temperature above 20° K. Alternatively, a ‘high temperature superconducting material’ may also be a material with a superconducting working temperature operating as a magnet of above 10° K. That is because for many of these materials, the onset of superconductivity in the characteristic curve of the superconductor is not very sharp. Therefore, lower temperatures than the highest at which superconductivity is first demonstrated are preferred for better performance. A particularly preferred high temperature superconductor is magnesium diboride (MgB2) or MgB2 doped with another suitable material such as silicon carbide, hosted in a matrix of copper. Other suitable high temperature superconductors include niobium nitride, niobium carbide, niobium boride and molybdenum diboride, although these materials require lower temperatures than MgB2. Yet other high temperatures superconductors which could be used include NbTi, NbSb, bismuth strontium calcium copper oxide (BSCCO) and yttrium barium copper oxide (YBCO) which have a higher critical temperature but are generally less suited to high current density and long wire applications, as well as being more expensive.
  • When a plurality of superconducting coils is mounted on a generally C-shaped yoke, they would normally be fixed to a respective arm member which is joined by a support member and can share a common cryo-cooling system.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • Without wishing to restrict the invention to the embodiments shown here, the present invention will now be explained in more detail by way of the following description of preferred embodiments and with reference to the accompanying drawings in which:
  • FIG. 1 shows a three dimensional view of a first embodiment of the overall structure of a magnet assembly according to the present invention;
  • FIG. 2 shows a more detailed two dimensional cross-section in the x-z plane of the assembly shown in FIG. 1;
  • FIG. 3 shows how the coils in the assembly of FIGS. 1 and 2 are joined by a supporting member;
  • FIG. 4 shows the first quadrant of the central region of the assembly of FIGS. 1-3, showing further details;
  • FIGS. 5A through 5G show some basic alternative pole piece balancing member geometries;
  • FIG. 6 shows a three-dimensional cross-section through a second embodiment of the present invention; and
  • FIG. 7 shows a partial two dimensional cross-section through the embodiment of FIG. 6, showing the lines of magnetic flux.
  • DETAILED DESCRIPTION OF THE EMBODIMENTS OF THE INVENTION
  • Referring now to FIG. 1, a magnet assembly 1 comprises a C-shaped steel yoke 3. The yoke itself comprises an upper arm 5, and a lower arm 7 linked by a spine 9. Mounted on the inside surfaces 11, 13 of the free ends 15, 17 of the arms 5, 7, respectively, are upper and lower pole pieces 19, 21, surrounded by respective planar annular drive coils 23, 25. In use, the coils drive magnetic flux around the yoke to produce a substantially uniform magnetic field in the central region between the poles.
  • The drive coil 23 has a first side 22 facing the upper yoke arm 5 and a second side 24 facing the other coil 25. Similarly, the drive coil 25 has a first side 26 facing the lower yoke arm 7 and a second side 28 facing the other coil 23.
  • Referring to FIGS. 2 and 3, the pair of drive coils 23, 25 carry equal currents current i in the same sense and in series with one another. The coil formers are joined by mechanical supporting member 27 to one side of the coil in the +x direction. The coils 23, 25 and supporting member 27 are enclosed in a single cryostat assembly (not shown) which is needed to cool the coils to superconducting temperatures. This single-sided supporting member is needed to provide free access to the imaging region of the magnet assembly 1 from three sides. The supporting member 27 is on the same side x of the magnet as the spine 9 of the yoke 3. Attached to the supporting member 27 at the midpoint thereof is a cold head 29 of a cryocooler system which provided the cooling required for both coils through thermal conduction along the support. The cryocooler can most conveniently be fed through a hole in the centre of the spine 9 of the yoke 3, preventing any interference to access on the open three sides.
  • In a conventional C-coil magnet the axial Lorentz magnetic forces acting on a coil can be of the order of many tonnes. If this were the case, then a single-sided support would not be practicable since the moment of the forces would be too great for such a support to bear.
  • However the yoke and pole design of this embodiment are such that the axial forces on the coils are substantially balanced. The coils 23, 25 are recessed into respective annular recesses 31, 33 in the side of the pole pieces 19, 21 so that the magnetic pull of the coils 23, 25 onto the yoke 3 is substantially counterbalanced by the force of the coils 23, 25 onto the pole pieces 19, 21. Therefore, this single-sided support system may bear only the weight of the coils and their respective formers, which need not be excessive. There is a moderate static load on the force in the x direction owing to the lack of axial symmetry of the yoke 3.
  • Any remaining unbalanced axial component of the force on each coil is absorbed as a tension in the support member 27.
  • The net force on the combined coil system thus comprises the combination of weight and static x load which can be made a fraction of one tonne. This means that the supports for the coils 23, 25 may be made relatively light which in turn reduces the thermal load into the system and hence the power needed for the cryocooler.
  • FIG. 4 shows a cross section of the central radial region of the magnet assembly 1 in one quadrant. There is mirror symmetry about the z=0 axis. There is also rotational symmetry about the r (radial) axis apart from the vertical portion of the yoke 3 which is included for reference.
  • The winding cross section of the upper coil 23 is shown as 35. Such a winding tends to produce regions of high magnetic flux density and stress at opposite corners of the winding cross-section. Chamfers 37, 39 in the shape of the winding 35 may be included in the design to eliminate such hot spots and help keep the winding in conditions of magnetic field stress below their critical levels and favourable for superconductivity.
  • The magnet winding 35 is formed of High Temperature Superconductor (HTSC) wire fabricated from magnesium diboride (MgB2). For operating fields between 0.5 T and 1 T, MgB2 has been proved to be usable in these conditions. The advantage is that the operating temperature can be in the region of 20K rather than the 4.2 K required for conventional superconductors. This makes conductive cooling by a single cryocooler possible and at a relatively low cooling power.
  • The top arm 5 of the yoke 3 is joined to the support member 9 on the +x side only.
  • The pole assembly comprises a set of concentric rings 41, 43, 45, 47 (four are shown here for example but this number could vary) the purpose of which is to provide a varying inner and outer radial profile for the pole. The outer radial profile is dominant in determining the force balance in the coil, in particular the outer diameters of rings 41 and 43. The coil is positioned such that its inner radius is significantly less than the outer radius of ring 45, thereby creating an annular recess for the coil 23. As the coil 23 should preferably be positioned close to the outer radius 44 of ring 43 and the outermost surface 46 of ring 45, one alternative form of construction may be to incorporate these surfaces into the composition of the room-temperature walls of the coil cryostat.
  • A second feature of the outer radial profile of the pole which helps balance the force is the recess 42, formed by the radial step between the outer radii, between members 41 and 43 of the pole assembly.
  • A third feature which helps to balance the force is the recess 48 in the inside surface 11 of the upper arm 5 of the yoke 3, extending from the inner radial surface of concentric ring 41 to just beyond the coil 23. This helps to reduce the outer axial force on the coil.
  • A combination of two or all three of these measures may be combined to achieve an optimal force balance.
  • The material of the rings may vary as is required to carry the required flux. In particular rings 43 and 45 may be made of a material of higher magnetic saturation such as, but not limited to, a steel of high-cobalt content.
  • The lower rings 43, 45, 47 constitute a ‘balancing member’ of the pole piece. In the context of the present invention, it may be understood that this arrangement is situated closer to the second side 24 of the coil 23 than the first side 22 of the coil 23 is to the upper arm 5 of the yoke 3.
  • The inner radii of the pole piece rings 41, 43, 45, 47 are designed mainly to shape the magnetic field for optimal homogeneity. As well as the pole piece rings having the vertical inner walls shown, they may also contain chamfers, tapers or more general curved surfaces to this end. This includes the inner-facing wall of the yoke top inside the ring 41. Ring 45 indicates a recess with respect to ring 43 to allow additional space for the presence of shim rings. The four or more shim rings 49 provide a means of fine tuning the systematic magnet homogeneity design in combination with the pole ring geometries.
  • The shim rings 49 may comprise a combination of high permeability steel or permanently magnetized material such as, but not limited to, neodymium iron boron in a general orientation of magnetization including that opposite to the main field or in a radial direction. It should be noted that the entire hollow space inside the pole rings 41, 43, 45, 47 is available for shim rings as required although they will tend to be more powerful nearer the imaging volume as shown. The net result of the field optimization is a region of high homogeneity suitable for MRI imaging inside the spherical shell indicated by 48. For some applications of magnet however it may be advantageous to optimize the homogeneity toward an oblate or prolate spheroid instead of the sphere.
  • The asymmetry of the magnet due to the presence of the yoke 3 will produce a transverse (i.e. non-axially symmetric) variation in field. To compensate for this, a set of azimuthal variations may be employed to compensate for which there are several measures which can be combined. These include tilt of the poles, selective cutaways or chokes in the interfacing surfaces between the interfaces between pole piece members 41, 43, 45, 47 and the inner surface 11 of the upper yoke arm 5. Further sculpting of the cross section of the support member 9 can also be employed.
  • The inner radius of the rose ring 47 is further recessed with respect to ring 43 to accommodate three further assemblies namely the shimset 51, the gradient set 53 and the rf transmit coil 55. The order of shimset 51 and gradient set 53 in the stack is reversible in principle.
  • The shimset 51 comprises an array of passive steel or permanent magnet dipoles which may be adjusted to compensate for non-systematic variations in magnet homogeneity such as manufacturing tolerances or the magnetic environment of the room. The shims are adjusted according to a field map in the target homogeneous volume 48.
  • The gradient set may be an actively shielded or non-actively-shielded set. Should the non-actively shielded option be chosen for maximum efficiency, the inward facing surfaces 14 of the pole assembly 41, 43, 45, 47 may optionally be formed of high-permeability powdered or laminated iron. The effect of this arrangement is to carry gradient coil flux whilst inhibiting eddy current flow when current levels in the gradient coils are switched.
  • FIGS. 5A through 5G show different basic geometries of pole piece with integral balancing member, to better explain the most important features of, and some possible variations in the embodiment shown in FIG. 4. In FIGS. 5A-5G, reference numeral 5 denotes the upper arm of the yoke as depicted in FIG. 4. Reference numeral 61 shows an integral pole piece/balancing member as referred to in the previous figures, which may be of composite form and with relevant chamfers but for convenience, these are not depicted here. Reference numeral 23 depicts the coil.
  • In FIG. 5A, numeral 61 depicts a conventional pole piece without any configuration to act as a balancing member and is therefore conventional, and not in accordance with the present invention.
  • The geometry shown in FIG. 5B is like that in FIG. 5A, but a recess 63 is formed in the side wall 65 of the pole piece, thereby providing a laterally extending portion 67 to act as a balancing member. The portion denoted 67 is made from cobalt steel whereas the upper arm 5 of the yoke is made from laminated carbon steel.
  • The configuration in FIG. 5C is the same as that in FIG. 5B, except the coil 23 is situated to one side of the laterally extending balancing member 67 which is of greater thickness than that depicted in FIG. 5B.
  • In FIG. 5D, it can be seen that there is a recess 69 in the upper arm 5 of the yoke.
  • The configuration in FIG. 5E can be seen to combine the arrangements of FIGS. 5B and 5C and the configuration of FIG. 5F combines the configurations of all of FIGS. 5B, 5C and 5D. FIG. 5G shows the situation where there is an annular counterbalancing member 64 not attached to the side wall 65. FIG. 5G is an example of non-ferromagnetic separation.
  • FIG. 6 shows a second embodiment of an electromagnetic assembly of an MRI machine in accordance with a second embodiment of the present invention.
  • Reference numeral 71 is a circle depicting a notional patient or subject examination area. In this Figure, reference numerals which are the same as those used in FIGS. 1-5 denote integers which are the same as in those latter Figures.
  • One difference between this second embodiment and the first embodiment is that there is only one coil, namely the lower coil 25 surrounding the lower pole piece 21. An upper pole piece 73 is not provided with a coil and is dimensioned so as to have a smaller radial cross-sectional diameter than that of the lower pole piece 21. In addition, a ‘floating’ balancing member 75 is separated by an air gap 77 from the lower pole piece 71.
  • FIG. 7 shows a partial two-dimensional cross-section through the view of FIG. 6, in which the feint lines show the lines of magnetic flux. It can be seen that through the patient or subject examination region 71, these are substantially homogeneous.
  • In the light of the described embodiments, modifications of those embodiments, as well as other embodiments, for example as defined by any one or more of the appended claims, will now become apparent to persons skilled in the art. Although the invention herein has been described with reference to particular embodiments, it is to be understood that these embodiments are merely illustrative of the principles and applications of the present invention. It is therefore to be understood that numerous modifications may be made to the illustrative embodiments and that other arrangements may be devised without departing from the spirit and scope of the present invention as defined by the appended claims.

Claims (38)

1. An electromagnet comprising a yoke and a pair of mutually facing pole pieces, one or both of which is surrounded by a respective coil, the coil or coils being supported by a supporting member enclosed in a cryostat assembly and also being provided with a respective balancing member which at least partially counterbalances the attractive force between the coil or coils and the yoke.
2. The electromagnet of claim 1, wherein the yoke is a ferromagnetic yoke.
3. The electromagnet of claim 2, wherein the ferromagnetic yoke comprises first and second arms linked by a spine, wherein the first and second arms are provided respectively with said pole pieces which are first and second pole pieces, the first pole piece being provided with said at least one coil in the form of a planar coil having a first side facing the first arm and a second side facing the second arm, the balancing member being a ferromagnetic balancing member arranged on the second side of the planar coil.
4. The electromagnet of claim 3, wherein the second pole piece is provided with a second one of said coils in the form of a planar coil having a first side facing the second arm and a second side facing the first arm, a second of said at least one balancing members being a ferromagnetic balancing member arranged on the second side of the second coil.
5. The electromagnet of claim 3, wherein at least part of either or both of said at least one balancing members has a higher magnetic permeability than that of its respective associated arm and/or a higher magnetic saturation than that of the respective associated arm.
6. The electromagnet of claim 3, wherein either or both of said at least one balancing members counterbalances the attractive force between the respective coil and arm by virtue of its position.
7. The electromagnet of claim 3, wherein either or both of said at least one balancing members is non-ferromagnetically separated from its respective pole piece and yoke arm.
8. The electromagnet of claim 3, wherein the yoke is C-shaped, or H shaped and the arms and spine are straight or curved.
9. The electromagnet of claim 1, wherein the or each balancing member is constituted by part of its associated pole piece.
10. The electromagnet of claim 9, wherein each pole piece is generally annular and extends toward the other pole piece thereby defining an outer wall in which is provided with a circumferential recess, the balancing member being that part of the pole piece extending beyond and at least partially below the second side of the coil.
11. The electromagnet of claim 9, wherein the yoke is provided with a recess, near or in which the associated coil is at least partially situated.
12. The electromagnet of claim 9, wherein the pole piece is constructed as a composite comprising two or more constituent members, the balancing member comprising at least two of said constituent members.
13. The electromagnet of claim 12, wherein at least one of the constituent members has a substantially square or substantially rectangular profile in cross section and wherein at least one corner of the substantially square or substantially rectangular profile is chamfered.
14. The electromagnet of claim 13, wherein the chamfering is on a corner facing the coil.
15. The electromagnet of claim 12, wherein the constituent members are respectively composed of different materials.
16. The electromagnet of claim 12, wherein one or more of the constituent members of the pole piece is substantially annular such that each pole piece has azimuthally-varying non-uniform height for correcting components of field inhomogeneity which are not axially symmetric.
17. The electromagnet of claim 11, wherein the pole piece is generally annular and inside one of the annular pole pieces is situated one or more ferromagnetic or permanent magnet annular field tuning rings.
18. An electromagnet comprising a ferromagnetic yoke being provided with at least one pair of mutually facing planar coils, each coil in said at least one pair being supported by a supporting member enclosed in a cryostat assembly and having a first side facing the yoke and a second side facing the other coil, wherein a respective ferromagnetic balancing member is arranged on the second side of each coil to counterbalance the attractive force between the coil and the yoke.
19. The electromagnet of claim 18, wherein each coil is situated closer to its associated balancing member than to the yoke.
20. The electromagnet of claim 18, wherein at least part of each balancing member has a higher magnetic permeability than that of the yoke.
21. The electromagnet of claim 18, wherein at least part of each balancing member has a higher saturation magnetisation than that of the yoke.
22. The electromagnet of claim 18, wherein each balancing member is constituted by part of a respective pole piece.
23. The electromagnet of claim 22, wherein each pole piece is generally annular and extends toward the other pole piece thereby defining an outer wall in which is provided with a circumferential recess, near or in which the associated coil is at least partially situated, the balancing member being that part of the pole piece extending beyond and at least partially below the second side of the coil.
24. The electromagnet of claim 22, wherein the yoke is provided with a recess, near or in which the associated coil is at least partially situated.
25. The electromagnet of claim 22, wherein each pole piece is constructed as a composite comprising two or more constituent members, each balancing member comprising at least two of said constituent members.
26. The electromagnet of claim 25, wherein at least one of the constituent members has a substantially square or substantially rectangular profile in cross section and wherein at least one corner of the substantially square or substantially rectangular profile is chamfered.
27. The electromagnet of claim 26, wherein the chamfering is on a corner facing the coil.
28. The electromagnet of claim 24, wherein the constituent members are respectively composed of different materials.
29. The electromagnet of claim 24, wherein one or more of the constituent members of each pole piece is substantially annular such that each pole piece has azimuthally-varying non-uniform height for correcting components of field inhomogeneity which are not axially symmetric.
30. The electromagnet of claim 22, wherein both pole pieces are generally annular and inside one or both generally annular pole pieces is situated one or more ferromagnetic or permanent magnet annular field tuning rings.
31. The electromagnet of claim 1, wherein each coil of said at least one pair is supported on a respective yoke member, the yoke members being joined by a support member, the coils being superconducting coils sharing a common cryo-cooling system.
32. An electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms are provided respectively with mutually opposing first and second pole pieces, the first pole piece being surrounded by a planar coil supported by a supporting member enclosed in a cryostat assembly and also having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil to counterbalance the attractive force between the planar coil and the first arm.
33. An electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms are provided with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arrange arranged on the second side of the planar coil, at least part of the balancing member having a higher magnetic permeability than that of the first arm and/or at least part of the balancing member having a higher saturation magnetisation than that of the first arm.
34. An electromagnet comprising a ferromagnetic yoke which comprises first and second arms linked by a spine, wherein the first and second arms are provided with mutually opposing first and second pole pieces, the first pole piece being provided with a planar coil having a first side facing the first arm and a second side facing the second arm, a ferromagnetic balancing member being arranged on the second side of the planar coil, wherein the ferromagnetic balancing member is non-ferromagnetically separated from the first pole piece and the first arm.
35. The electromagnet of claim 32, wherein the or each coil is situated closer to its associated balancing member than to the yoke.
36. The electromagnet of claim 32, wherein at least part of the or each balancing member has a higher magnetic permeability than that of the yoke.
37. The electromagnet of claim 32, wherein at least part of each balancing member has a higher saturation magnetisation than that of the yoke.
38. An MRI, NMR or ESR machine comprising an electromagnet which comprises a yoke and a pair of mutually facing pole pieces, one or both of which is surrounded by a respective coil, the coil or coils being supported by a supporting member enclosed in a cryostat assembly and also being provided with a respective balancing member which at least partially counterbalances the attractive force between the coil or coils and the yoke.
US12/670,781 2007-07-26 2008-07-22 Magnet assembly Abandoned US20100219833A1 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
GB0714600.4 2007-07-26
GB0714600A GB0714600D0 (en) 2007-07-26 2007-07-26 Magnet assembly
GB0810607.2 2008-06-10
GB0810607A GB0810607D0 (en) 2008-06-10 2008-06-10 Magnet assembly
PCT/GB2008/002496 WO2009013478A1 (en) 2007-07-26 2008-07-22 Magnet assembly

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/GB2008/002496 A-371-Of-International WO2009013478A1 (en) 2007-07-26 2008-07-22 Magnet assembly

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/250,078 Division US9269484B2 (en) 2007-07-26 2014-04-10 Magnet assembly

Publications (1)

Publication Number Publication Date
US20100219833A1 true US20100219833A1 (en) 2010-09-02

Family

ID=39768962

Family Applications (2)

Application Number Title Priority Date Filing Date
US12/670,781 Abandoned US20100219833A1 (en) 2007-07-26 2008-07-22 Magnet assembly
US14/250,078 Expired - Fee Related US9269484B2 (en) 2007-07-26 2014-04-10 Magnet assembly

Family Applications After (1)

Application Number Title Priority Date Filing Date
US14/250,078 Expired - Fee Related US9269484B2 (en) 2007-07-26 2014-04-10 Magnet assembly

Country Status (3)

Country Link
US (2) US20100219833A1 (en)
EP (1) EP2179300B1 (en)
WO (1) WO2009013478A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103094994A (en) * 2011-11-08 2013-05-08 索尼公司 Magnetic coupling unit and magnetic coupling system
US20140354385A1 (en) * 2012-01-30 2014-12-04 Mitsubishi Electric Corporation Magnetic circuit
US20160069972A1 (en) * 2014-09-05 2016-03-10 Hyperfine Research, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US20160144200A1 (en) * 2013-06-21 2016-05-26 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
CN107515525A (en) * 2017-09-12 2017-12-26 飞亚达(集团)股份有限公司 A kind of superpower antimagnetic performance testing device and its plus magnetic structure
WO2018021507A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Bulk magnet structure, magnet system for nmr using said bulk magnet structure, and magnetization method for bulk magnet structure
US20180143274A1 (en) * 2016-11-22 2018-05-24 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US20180224512A1 (en) * 2016-11-22 2018-08-09 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US10310037B2 (en) 2016-11-22 2019-06-04 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
JP2019526789A (en) * 2016-08-08 2019-09-19 アスペクト イメージング リミテッド Device, system and method for obtaining magnetic measurement results using a permanent magnet
US10813564B2 (en) 2014-11-11 2020-10-27 Hyperfine Research, Inc. Low field magnetic resonance methods and apparatus
CN112967857A (en) * 2020-04-17 2021-06-15 北京中科三环高技术股份有限公司 Permanent magnet device
US20210341556A1 (en) * 2020-05-04 2021-11-04 Siemens Healthcare Gmbh Magnetic resonance scanner and magnetic resonance imaging system
US11215685B2 (en) 2018-05-21 2022-01-04 Hyperfine, Inc. B0 magnet methods and apparatus for a magnetic resonance imaging system
US20220196775A1 (en) * 2020-12-22 2022-06-23 Bruker Biospin Gmbh Epr spectrometer with at least one pole piece made at least partially of a function material
US20220413071A1 (en) * 2021-06-29 2022-12-29 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus
CN115762953A (en) * 2023-01-10 2023-03-07 苏州八匹马超导科技有限公司 Superconducting magnet cooling device and superconducting magnet equipment

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB201114045D0 (en) 2011-08-15 2011-09-28 Emscan Ltd Magnet
GB201217782D0 (en) * 2012-10-04 2012-11-14 Tesla Engineering Ltd Magnet apparatus
CN109036758B (en) * 2018-07-16 2020-06-23 中国科学院合肥物质科学研究院 Cold volume transmission structure of high temperature superconducting magnet is placed to level

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445102A (en) * 1981-11-19 1984-04-24 The United States Of America As Represented By The United States Department Of Energy Magnet pole tips
US4506240A (en) * 1982-09-01 1985-03-19 Tektronix, Inc. Magnet assembly for a YIG tuned filter having adjustment means to elastically strain a pole piece
US4672346A (en) * 1984-04-11 1987-06-09 Sumotomo Special Metal Co., Ltd. Magnetic field generating device for NMR-CT
US4766378A (en) * 1986-11-28 1988-08-23 Fonar Corporation Nuclear magnetic resonance scanners
US4870380A (en) * 1988-02-26 1989-09-26 Picker International, Ltd. Magnet arrangements
US5436607A (en) * 1992-08-05 1995-07-25 General Electric Company Open (non-enclosed) magnets for magnetic resonance imaging
US5448213A (en) * 1993-09-16 1995-09-05 Northrup Grumman Corporation Electromagnetic shielding concept for superconducting levitating magnets
US5982260A (en) * 1996-01-19 1999-11-09 Oxford Magnet Technology Limited MRI magnets
US6335670B1 (en) * 2000-04-14 2002-01-01 Marconi Medical Systems Finland, Inc. Mri system with split rose ring with high homogeneity
US20020097122A1 (en) * 2001-01-25 2002-07-25 Uri Rapoport Field adjusting mechanisms and methods for permanent magnet arrangement with backplate
US20030048163A1 (en) * 2001-09-12 2003-03-13 Hiroyuki Watanabe Superconducting magnet and magnetic resonance imaging apparatus using the same
US20040100261A1 (en) * 2002-11-25 2004-05-27 General Electric Company Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
US7071694B1 (en) * 1999-10-29 2006-07-04 Oxford Magnet Technology Limited Magnet assembly of an MRI system with concentric annular ferromagnetic laminations
US20070170921A1 (en) * 2006-01-23 2007-07-26 Hitachi, Ltd. Electromagnet apparatus

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250901A (en) 1991-11-07 1993-10-05 The Regents Of The University Of California Open architecture iron core electromagnet for MRI using superconductive winding
IL106779A0 (en) * 1992-09-11 1993-12-08 Magna Lab Inc Permanent magnetic structure
EP0645641B1 (en) * 1993-09-29 1999-06-16 Oxford Magnet Technology Limited Improvements in or relating to MRI magnets
GB9320043D0 (en) 1993-09-29 1993-11-17 Oxford Magnet Rechnology Limit Improvements in or relating to mri magnets

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4445102A (en) * 1981-11-19 1984-04-24 The United States Of America As Represented By The United States Department Of Energy Magnet pole tips
US4506240A (en) * 1982-09-01 1985-03-19 Tektronix, Inc. Magnet assembly for a YIG tuned filter having adjustment means to elastically strain a pole piece
US4672346A (en) * 1984-04-11 1987-06-09 Sumotomo Special Metal Co., Ltd. Magnetic field generating device for NMR-CT
US4766378A (en) * 1986-11-28 1988-08-23 Fonar Corporation Nuclear magnetic resonance scanners
US4870380A (en) * 1988-02-26 1989-09-26 Picker International, Ltd. Magnet arrangements
US5436607A (en) * 1992-08-05 1995-07-25 General Electric Company Open (non-enclosed) magnets for magnetic resonance imaging
US5448213A (en) * 1993-09-16 1995-09-05 Northrup Grumman Corporation Electromagnetic shielding concept for superconducting levitating magnets
US5982260A (en) * 1996-01-19 1999-11-09 Oxford Magnet Technology Limited MRI magnets
US7071694B1 (en) * 1999-10-29 2006-07-04 Oxford Magnet Technology Limited Magnet assembly of an MRI system with concentric annular ferromagnetic laminations
US6335670B1 (en) * 2000-04-14 2002-01-01 Marconi Medical Systems Finland, Inc. Mri system with split rose ring with high homogeneity
US20020097122A1 (en) * 2001-01-25 2002-07-25 Uri Rapoport Field adjusting mechanisms and methods for permanent magnet arrangement with backplate
US20030048163A1 (en) * 2001-09-12 2003-03-13 Hiroyuki Watanabe Superconducting magnet and magnetic resonance imaging apparatus using the same
US20040100261A1 (en) * 2002-11-25 2004-05-27 General Electric Company Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
US7242191B2 (en) * 2002-11-25 2007-07-10 General Electric Company Cold mass support structure and helium vessel of actively shielded high field open MRI magnets
US20070170921A1 (en) * 2006-01-23 2007-07-26 Hitachi, Ltd. Electromagnet apparatus

Cited By (75)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130113297A1 (en) * 2011-11-08 2013-05-09 Sony Corporation Magnetic coupling unit and magnetic coupling system
CN103094994A (en) * 2011-11-08 2013-05-08 索尼公司 Magnetic coupling unit and magnetic coupling system
US9570935B2 (en) * 2011-11-08 2017-02-14 Sony Corporation Magnetic coupling unit and magnetic coupling system
US9691533B2 (en) * 2012-01-30 2017-06-27 Mitsubishi Electric Corporation Magnetic circuit
US20140354385A1 (en) * 2012-01-30 2014-12-04 Mitsubishi Electric Corporation Magnetic circuit
US10008315B2 (en) 2012-01-30 2018-06-26 Mitsubishi Electric Corporation Magnetic circuit
US10661098B2 (en) * 2013-06-21 2020-05-26 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
US20160144200A1 (en) * 2013-06-21 2016-05-26 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
US11291860B2 (en) 2013-06-21 2022-04-05 Koninklijke Philips N.V. Shim system for a magnetic resonance hybrid scanner
US9638773B2 (en) * 2014-09-05 2017-05-02 Hyperfine Research, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US20220043088A1 (en) * 2014-09-05 2022-02-10 Hyperfine, Inc. Low field magnetic resonance imaging methods and apparatus
US9817093B2 (en) 2014-09-05 2017-11-14 Hyperfine Research, Inc. Low field magnetic resonance imaging methods and apparatus
US11397233B2 (en) 2014-09-05 2022-07-26 Hyperfine Operations, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US10495712B2 (en) 2014-09-05 2019-12-03 Hyperfine Research, Inc. Low field magnetic resonance imaging methods and apparatus
US10379186B2 (en) 2014-09-05 2019-08-13 Hyperfine Research, Inc. Automatic configuration of a low field magnetic resonance imaging system
US10466327B2 (en) 2014-09-05 2019-11-05 Hyperfine Research, Inc. Automatic configuration of a low field magnetic resonance imaging system
US9625544B2 (en) * 2014-09-05 2017-04-18 Hyperfine Research, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US9541616B2 (en) 2014-09-05 2017-01-10 Hyperfine Research, Inc. Low field magnetic resonance imaging methods and apparatus
US10145922B2 (en) 2014-09-05 2018-12-04 Hyperfine Research, Inc. Automatic configuration of a low field magnetic resonance imaging system
US10591564B2 (en) 2014-09-05 2020-03-17 Hyperfine Research, Inc. Automatic configuration of a low field magnetic resonance imaging system
CN107110931A (en) * 2014-09-05 2017-08-29 海珀菲纳研究股份有限公司 Ferromagnetic enhancing for magnetic resonance imaging
US10241177B2 (en) 2014-09-05 2019-03-26 Hyperfine Research, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US11175364B2 (en) 2014-09-05 2021-11-16 Hyperfine, Inc. Low field magnetic resonance imaging methods and apparatus
US10613181B2 (en) 2014-09-05 2020-04-07 Hyperfine Research, Inc. Automatic configuration of a low field magnetic resonance imaging system
US10768255B2 (en) 2014-09-05 2020-09-08 Hyperfine Research, Inc. Automatic configuration of a low field magnetic resonance imaging system
US20160069972A1 (en) * 2014-09-05 2016-03-10 Hyperfine Research, Inc. Ferromagnetic augmentation for magnetic resonance imaging
US10813564B2 (en) 2014-11-11 2020-10-27 Hyperfine Research, Inc. Low field magnetic resonance methods and apparatus
JP2020129685A (en) * 2016-07-27 2020-08-27 日本製鉄株式会社 Bulk magnet structure, magnet system for nmr using the same, and magnetization method for bulk magnet structure
JPWO2018021507A1 (en) * 2016-07-27 2019-06-27 日本製鉄株式会社 Bulk magnet structure, NMR magnet system using the same, and magnetizing method of bulk magnet structure
JP7060034B2 (en) 2016-07-27 2022-04-26 日本製鉄株式会社 Magnetization method of bulk magnet structure, magnet system for NMR using this
WO2018021507A1 (en) * 2016-07-27 2018-02-01 新日鐵住金株式会社 Bulk magnet structure, magnet system for nmr using said bulk magnet structure, and magnetization method for bulk magnet structure
JP7041122B2 (en) 2016-08-08 2022-03-23 アスペクト イメージング リミテッド Devices, systems and methods for obtaining magnetic measurement results using permanent magnets
JP2019526789A (en) * 2016-08-08 2019-09-19 アスペクト イメージング リミテッド Device, system and method for obtaining magnetic measurement results using a permanent magnet
US20180238980A1 (en) * 2016-11-22 2018-08-23 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10775454B2 (en) 2016-11-22 2020-09-15 Hyperfire Research, Inc. Portable magnetic resonance imaging methods and apparatus
US20190250228A1 (en) * 2016-11-22 2019-08-15 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
US10520566B2 (en) * 2016-11-22 2019-12-31 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10527692B2 (en) * 2016-11-22 2020-01-07 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
US10539637B2 (en) * 2016-11-22 2020-01-21 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US10545207B2 (en) * 2016-11-22 2020-01-28 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10564239B2 (en) 2016-11-22 2020-02-18 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10585153B2 (en) 2016-11-22 2020-03-10 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
US10371773B2 (en) 2016-11-22 2019-08-06 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10353030B2 (en) * 2016-11-22 2019-07-16 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10627464B2 (en) 2016-11-22 2020-04-21 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10641852B2 (en) 2016-11-22 2020-05-05 Hyperfine Research, Inc. Low power magnetic resonance imaging methods and apparatus
US10649050B2 (en) 2016-11-22 2020-05-12 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10330755B2 (en) 2016-11-22 2019-06-25 Hyperfine Research, Inc. Low power magnetic resonance imaging methods and apparatus
US10684335B2 (en) 2016-11-22 2020-06-16 Hyperfine Research, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
US10698048B2 (en) 2016-11-22 2020-06-30 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
US10698050B2 (en) 2016-11-22 2020-06-30 Hyperfine Research, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
US10718835B2 (en) 2016-11-22 2020-07-21 Hyperfine Research, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
US10324147B2 (en) * 2016-11-22 2019-06-18 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
US10310037B2 (en) 2016-11-22 2019-06-04 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
US10444310B2 (en) 2016-11-22 2019-10-15 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US10281541B2 (en) * 2016-11-22 2019-05-07 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10921404B2 (en) 2016-11-22 2021-02-16 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US11841408B2 (en) 2016-11-22 2023-12-12 Hyperfine Operations, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
US11105873B2 (en) 2016-11-22 2021-08-31 Hyperfine, Inc. Low-field magnetic resonance imaging methods and apparatus
US11119168B2 (en) 2016-11-22 2021-09-14 Hyperfine, Inc. Low-field magnetic resonance imaging methods and apparatus
US11366188B2 (en) 2016-11-22 2022-06-21 Hyperfine Operations, Inc. Portable magnetic resonance imaging methods and apparatus
US10274561B2 (en) 2016-11-22 2019-04-30 Hyperfine Research, Inc. Electromagnetic shielding for magnetic resonance imaging methods and apparatus
US20180143274A1 (en) * 2016-11-22 2018-05-24 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US10222434B2 (en) 2016-11-22 2019-03-05 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US20190011514A1 (en) * 2016-11-22 2019-01-10 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
US20180224512A1 (en) * 2016-11-22 2018-08-09 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
CN107515525A (en) * 2017-09-12 2017-12-26 飞亚达(集团)股份有限公司 A kind of superpower antimagnetic performance testing device and its plus magnetic structure
US11215685B2 (en) 2018-05-21 2022-01-04 Hyperfine, Inc. B0 magnet methods and apparatus for a magnetic resonance imaging system
US11726155B2 (en) 2018-05-21 2023-08-15 Hyperfine Operations, Inc. B0 magnet methods and apparatus for a magnetic resonance imaging system
CN112967857A (en) * 2020-04-17 2021-06-15 北京中科三环高技术股份有限公司 Permanent magnet device
US20210341556A1 (en) * 2020-05-04 2021-11-04 Siemens Healthcare Gmbh Magnetic resonance scanner and magnetic resonance imaging system
US11675034B2 (en) * 2020-05-04 2023-06-13 Siemens Healthcare Gmbh Magnetic resonance scanner and magnetic resonance imaging system
US20220196775A1 (en) * 2020-12-22 2022-06-23 Bruker Biospin Gmbh Epr spectrometer with at least one pole piece made at least partially of a function material
US20220413071A1 (en) * 2021-06-29 2022-12-29 Fujifilm Healthcare Corporation Magnetic resonance imaging apparatus
CN115762953A (en) * 2023-01-10 2023-03-07 苏州八匹马超导科技有限公司 Superconducting magnet cooling device and superconducting magnet equipment

Also Published As

Publication number Publication date
US20140218145A1 (en) 2014-08-07
WO2009013478A1 (en) 2009-01-29
EP2179300B1 (en) 2013-04-10
US9269484B2 (en) 2016-02-23
EP2179300A1 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
US9269484B2 (en) Magnet assembly
US5936498A (en) Superconducting magnet apparatus and magnetic resonance imaging system using the same
US6529005B1 (en) Device for homogenizing a magnetic field
US7567083B2 (en) Superconductive magnetic apparatus for magnetic resonance imaging unit
US11422213B2 (en) Ferromagnetic frame for magnetic resonance imaging
US9588198B2 (en) Open-type nuclear magnetic resonance magnet system having an iron ring member
US8965468B2 (en) Persistent-mode high-temperature superconducting shim coils to enhance spatial magnetic field homogeneity for superconducting magnets
US20200064424A1 (en) Permanent magnet arrangement for generating a homogeneous field ("3d halbach")
JP4179578B2 (en) Open superconducting magnet and magnetic resonance imaging system using the same
US5864236A (en) Open configuration MRI magnetic flux path
US6950001B2 (en) Superconducting open MRI magnet with transverse magnetic field
US5825187A (en) Magnetic circuit system with opposite permanent magnets
EP0609604A1 (en) Magnetic field generation device of use in superconductive type MRI
US6166617A (en) Pole piece assembly and open magnet having same
US6504461B2 (en) Open magnet with recessed field shaping coils
Liebel High-field superconducting magnets
Overweg MRI main field magnets
US6504372B1 (en) High field open magnetic resonance magnet with reduced vibration
US11971465B2 (en) Ferromagnetic frame for magnetic resonance imaging
JP2020187109A (en) Superconducting magnet apparatus and method for magnetizing superconductor bulk magnet by field cooling through ferromagnetic shield
JPS63281411A (en) Magnetostatic field magnet for magnetic resonance imaging system
JPH09276246A (en) Superconducting magnet device
Voccio et al. A 1.5-T/75-mm magic-angle-spinning NMR magnet

Legal Events

Date Code Title Description
AS Assignment

Owner name: EMSCAN LIMITED, UNITED KINGDOM

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MCGINLEY, MARIO VINCENT JOHN;RISTIC, MIHAILO;BESANT, BOWDEN COLIN;AND OTHERS;SIGNING DATES FROM 20100224 TO 20100408;REEL/FRAME:024338/0408

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION