JP6955595B2 - 低磁場磁気共鳴撮像方法及び装置 - Google Patents

低磁場磁気共鳴撮像方法及び装置 Download PDF

Info

Publication number
JP6955595B2
JP6955595B2 JP2020025749A JP2020025749A JP6955595B2 JP 6955595 B2 JP6955595 B2 JP 6955595B2 JP 2020025749 A JP2020025749 A JP 2020025749A JP 2020025749 A JP2020025749 A JP 2020025749A JP 6955595 B2 JP6955595 B2 JP 6955595B2
Authority
JP
Japan
Prior art keywords
magnetic field
coil
low
laminated
coils
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020025749A
Other languages
English (en)
Other versions
JP2020078579A (ja
Inventor
ロスバーグ,ジョナサン,エム
ローゼン,マシュー,スコット
チャーヴァット,グレゴリー,エル
マイルスキー,ウィリアム,ジェイ
リアリック,トッド
ポール,マイケル,スティーブン
キース,ジー.ファイフ
Original Assignee
ハイパーファイン,インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=55437316&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP6955595(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ハイパーファイン,インコーポレイテッド filed Critical ハイパーファイン,インコーポレイテッド
Publication of JP2020078579A publication Critical patent/JP2020078579A/ja
Priority to JP2021162485A priority Critical patent/JP2022000241A/ja
Application granted granted Critical
Publication of JP6955595B2 publication Critical patent/JP6955595B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/5608Data processing and visualization specially adapted for MR, e.g. for feature analysis and pattern recognition on the basis of measured MR data, segmentation of measured MR data, edge contour detection on the basis of measured MR data, for enhancing measured MR data in terms of signal-to-noise ratio by means of noise filtering or apodization, for enhancing measured MR data in terms of resolution by means for deblurring, windowing, zero filling, or generation of gray-scaled images, colour-coded images or images displaying vectors instead of pixels
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/34Constructional details, e.g. resonators, specially adapted to MR
    • G01R33/34007Manufacture of RF coils, e.g. using printed circuit board technology; additional hardware for providing mechanical support to the RF coil assembly or to part thereof, e.g. a support for moving the coil assembly relative to the remainder of the MR system
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/32Excitation or detection systems, e.g. using radio frequency signals
    • G01R33/36Electrical details, e.g. matching or coupling of the coil to the receiver
    • G01R33/3614RF power amplifiers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3802Manufacture or installation of magnet assemblies; Additional hardware for transportation or installation of the magnet assembly or for providing mechanical support to components of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3804Additional hardware for cooling or heating of the magnet assembly, for housing a cooled or heated part of the magnet assembly or for temperature control of the magnet assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/3806Open magnet assemblies for improved access to the sample, e.g. C-type or U-type magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/381Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using electromagnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/383Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3852Gradient amplifiers; means for controlling the application of a gradient magnetic field to the sample, e.g. a gradient signal synthesizer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3854Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils means for active and/or passive vibration damping or acoustical noise suppression in gradient magnet coil systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3856Means for cooling the gradient coils or thermal shielding of the gradient coils
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/385Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using gradient magnetic field coils
    • G01R33/3858Manufacture and installation of gradient coils, means for providing mechanical support to parts of the gradient-coil assembly
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/38Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
    • G01R33/387Compensation of inhomogeneities
    • G01R33/3875Compensation of inhomogeneities using correction coil assemblies, e.g. active shimming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/28Details of apparatus provided for in groups G01R33/44 - G01R33/64
    • G01R33/42Screening
    • G01R33/422Screening of the radio frequency field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/445MR involving a non-standard magnetic field B0, e.g. of low magnitude as in the earth's magnetic field or in nanoTesla spectroscopy, comprising a polarizing magnetic field for pre-polarisation, B0 with a temporal variation of its magnitude or direction such as field cycling of B0 or rotation of the direction of B0, or spatially inhomogeneous B0 like in fringe-field MR or in stray-field imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/543Control of the operation of the MR system, e.g. setting of acquisition parameters prior to or during MR data acquisition, dynamic shimming, use of one or more scout images for scan plane prescription
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/546Interface between the MR system and the user, e.g. for controlling the operation of the MR system or for the design of pulse sequences
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/54Signal processing systems, e.g. using pulse sequences ; Generation or control of pulse sequences; Operator console
    • G01R33/56Image enhancement or correction, e.g. subtraction or averaging techniques, e.g. improvement of signal-to-noise ratio and resolution
    • G01R33/565Correction of image distortions, e.g. due to magnetic field inhomogeneities
    • G01R33/56518Correction of image distortions, e.g. due to magnetic field inhomogeneities due to eddy currents, e.g. caused by switching of the gradient magnetic field
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/20Arrangements or instruments for measuring magnetic variables involving magnetic resonance
    • G01R33/44Arrangements or instruments for measuring magnetic variables involving magnetic resonance using nuclear magnetic resonance [NMR]
    • G01R33/48NMR imaging systems
    • G01R33/58Calibration of imaging systems, e.g. using test probes, Phantoms; Calibration objects or fiducial markers such as active or passive RF coils surrounding an MR active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Power Engineering (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Epidemiology (AREA)
  • Magnetic Resonance Imaging Apparatus (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Laminated Bodies (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Aeration Devices For Treatment Of Activated Polluted Sludge (AREA)
  • Gas Separation By Absorption (AREA)

Description

磁気共鳴映像法(MRI)は、数多くの用途のために重要な撮像モダリティを提供し、人体の内側の画像を生成するために臨床環境及び研究環境において広く利用されている。一般論として、MRIは、適用される磁場に起因する状態変化に応答して原子によって放出される電磁波である、磁気共鳴(MR)信号を検出することに基づく。例えば、核磁気共鳴(NMR)技法は、撮像される物体内の原子(例えば、人体の組織内の原子)の核スピンの再整列(re-alignment)又は緩和(relaxation)の後に励起される原子の原子核から放射されるMR信号を検出することを含む。検出されるMR信号を処理して画像を生成してよく、画像は、医療用途の脈絡において、診断目的、治療目的、及び/又は研究目的のための、体内の内部構造及び/又は生物学的プロセスの研究を可能にする。
MRIは、他のモダリティの安全の懸念を伴わずに(例えば、被験者を電離放射線、例えば、X線に晒すことを必要とせずに、或いは、放射性材料を体に持ち込まずに)、比較的高い解像度及びコントラストを有する非侵襲的画像を生成する能力の故に、生物学的撮像のための魅力的な撮像モダリティを提供する。加えて、MRIは、他の撮像モダリティが成功裡に撮像し得ない対象(subject matter)を撮像するために活用し得る柔組織コントラストを提供するのに特に適する。その上、MR技法は、他のモダリティが取得し得ない構造及び/又は生物学的プロセスについての情報を取り込み得る。しかしながら、従来的なMRI技法には数多くの欠点があり、それらは、所与の撮像用途について、比較的高い機器コスト、限定的な利用可能性(例えば、臨床MRIスキャナへのアクセスを得ることの困難及び費用)、画像取得プロセスの長さ等を含むことがある。
臨床MRIにおけるトレンドは、MRIスキャナの磁場強度(field strength)を増大させて、スキャン時間(走査時間)、画像解像度、及び画像コントラストのうちの1つ又はそれよりも多くを改良することであり、ひいては、それはMRI撮像のコストを押し上げる。据え付けられているMRIスキャナの圧倒的多数は、少なくとも1.5又は3テスラ(T)を用いて作動し、テスラは、スキャナの主磁場Bの場の強さを指す。臨床MRIスキャナの概算コストは、1テスラ当たり100万ドルのオーダであり、それはそのようなMRIスキャナを稼動させることに含められる実質的な運転コスト、償却コスト、維持コストを織り込んでさえいない。
加えて、従来的な高磁場MRIシステムは、典型的には、被験者(例えば、患者)を撮像する強い均一な静磁場(B)を生成するために、大きな超伝導磁石及び関連する電子機器を必要とする。超伝導磁石は、導体を超伝導状態に維持するために、低温機器を更に必要とする。そのようなシステムの大きさは相当であり、MRIシステムの磁性コンポーネントを隔離する特別に遮蔽された部屋を含む、磁性コンポーネント、電子機器、熱管理システム、及び制御コンソール領域のための多数の部屋を含む、典型的なMRI据付けを伴う。MRIシステムの大きさ及び費用は、それらの利用を、それらを購入し且つ維持する十分な空間及びリソースを有する病院及び学術研究センタのような施設に概ね制限する。高磁場MRIシステムの高コスト及び実質的な空間要求は、MRIスキャナの限定的な利用可能性を招く。よって、MRIスキャンが有益であるが、上述の制約の故に並びに以下に更に詳述するように非現実的又は不可能である、臨床状況がしばしばある。
発明者は、ラミネート技法を利用して、その中に加工された1以上の磁性コンポーネント又はその部分を有するラミネートパネルを製造してよいことを理解した。そのようなラミネートパネルを、単独で、1以上の追加的なラミネートパネルとの組み合わせにおいて及び/又は他の磁性コンポーネントとの組み合わせにおいて用いて、磁気共鳴映像法(MRI)における使用のための(複数の)磁場をもたらすことを促進し得る。幾つかの実施態様は、低磁場MRIにおける使用に適したB磁場に寄与するように構成されるBコイルの少なくとも部分を形成するようパターン化された、少なくとも1つの導電層と、少なくとも1つの非導電層とを含む、少なくとも1つのラミネート層を含む、ラミネートパネルを含む。
幾つかの実施態様は、巻回される導体によって形成され且つ低磁場磁気共鳴映像法における使用に適したB磁場に寄与するように構成される、少なくとも1つのBコイルと、複数のラミネート層を含む、少なくとも1つのラミネートパネルであって、複数のラミネート層は、それらの上にパターン化された、少なくとも1つのBコイル若しくはその部分及び/又は少なくとも1つの勾配コイル若しくはその部分を有する、少なくとも1つのラミネートパネルとを含む、混成磁石を含む。
幾つかの実施態様は、低磁場磁気共鳴映像法(MRI)システムのラミネートパネルを製造する方法を含み、当該方法は、少なくとも1つの非導電層を提供すること、少なくとも1つの導電層を提供すること、少なくとも1つの非導電層及び少なくとも1つの導電層を取り付けて、少なくとも1つのラミネート層を形成すること、及び、少なくとも1つの導電層をパターン化して、低磁場MRIにおける使用に適したB磁場に寄与するように構成されるBコイルの少なくとも部分を形成することを含む。
幾つかの実施態様は、その上に形成された少なくとも1つの磁性コンポーネントを有する第1のラミネートパネルと、その上に形成された少なくとも1つの第2の磁性コンポーネントを有する第2のラミネートパネルと、少なくとも1つの第1の磁性コンポーネント及び少なくとも1つの第2の磁性コンポーネントを作動させる電力を供給するように構成される少なくとも1つの電源とを含み、少なくとも1つの第1の磁性コンポーネント及び少なくとも1つの第2の磁性コンポーネントは、作動させられるときに、低磁場磁気共鳴映像法(MRI)に適した少なくとも1つの磁場を生成する、低磁場MRIシステムを含む。
開示する技術の様々な特徴及び実施態様は、以下の図面を参照して記載される。図面は必ずしも原寸通り描写されていないことが理解されるべきである。
2平面磁石構成を用いる低磁場MRIシステムの概略図である。
幾つかの実施態様に従ったラミネートパネルを生産するための単層及び多層ラミネート技法の図式的な例示である。 幾つかの実施態様に従ったラミネートパネルを生産するための単層及び多層ラミネート技法の図式的な例示である。 幾つかの実施態様に従ったラミネートパネルを生産するための単層及び多層ラミネート技法の図式的な例示である。
ラミネート層の上にパターン化される導電性トレースのための材料として銅を用いるラミネート層の例示的な部分を例示している。
ラミネート層の上にパターン化される導電性トレースのための材料としてアルミニウムを用いるラミネート層の例示的な部分を例示している。
幾つかの実施態様に従った多層ラミネートパネルの層の上に形成される低磁場MRIシステムの例示的な磁性コンポーネントの分解図を示している。
幾つかの実施態様に従ったB磁石を統合するラミネートパネルの例示的な層を例示している。
幾つかの実施態様に従ったラミネートパネルのラミネート層の上に多数のコイルをパターン化する例示的な技法を例示している。 幾つかの実施態様に従ったラミネートパネルのラミネート層の上に多数のコイルをパターン化する例示的な技法を例示している。
幾つかの実施態様に従った多層ラミネートパネルの少なくとも1つのラミネート層の上に形成されるBコイルについての螺旋設計を示している。 幾つかの実施態様に従った多層ラミネートパネルの少なくとも1つのラミネート層の上に形成されるBコイルについての螺旋設計を示している。 幾つかの実施態様に従った多層ラミネートパネルの少なくとも1つのラミネート層の上に形成されるBコイルについての螺旋設計を示している。
幾つかの実施態様に従った多層ラミネートパネルの少なくとも1つの層の上に形成されるBコイルについての円形設計を示している。 幾つかの実施態様に従った多層ラミネートパネルの少なくとも1つの層の上に形成されるBコイルについての円形設計を示している。 幾つかの実施態様に従った多層ラミネートパネルの少なくとも1つの層の上に形成されるBコイルについての円形設計を示している。
幾つかの実施態様に従ったx勾配コイル、y勾配コイル、及びz勾配コイルのそれぞれについての例示的な構成を例示している。 幾つかの実施態様に従ったx勾配コイル、y勾配コイル、及びz勾配コイルのそれぞれについての例示的な構成を例示している。 幾つかの実施態様に従ったx勾配コイル、y勾配コイル、及びz勾配コイルのそれぞれについての例示的な構成を例示している。
幾つかの実施態様に従ったB0磁石及び勾配コイルを統合するラミネートパネルの例示的な層を例示している。
幾つかの実施態様に従った本明細書中で議論するラミネート技法を用いて加工されてよい例示的なシムコイルを例示している。 幾つかの実施態様に従った本明細書中で議論するラミネート技法を用いて加工されてよい例示的なシムコイルを例示している。
幾つかの実施態様に従った本明細書中に記載する技法を用いて形成されるラミネートパネルについてのソレノイドに基づくコイル構成を示している。
幾つかの実施態様に従った低磁場MRIシステムの例示的なコンポーネントのブロック図を示している。
幾つかの実施態様に従ったB磁石についての混成設計を例示している。 幾つかの実施態様に従ったB磁石についての混成設計を例示している。 幾つかの実施態様に従ったB磁石についての混成設計を例示している。 幾つかの実施態様に従ったB磁石についての混成設計を例示している。
幾つかの実施態様に従った本明細書中に記載する技法を用いて形成されるラミネートパネルについての例示的な構成を例示している。 幾つかの実施態様に従った本明細書中に記載する技法を用いて形成されるラミネートパネルについての例示的な構成を例示している。 幾つかの実施態様に従った本明細書中に記載する技法を用いて形成されるラミネートパネルについての例示的な構成を例示している。
幾つかの実施態様に従った低磁場MRIシステムのコンポーネントの図式的なブロック図である。
幾つかの実施態様に従った熱管理コンポーネントを例示している。
幾つかの実施態様に従ったRF信号チェーンのブロック図である。
幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの着座システム構成を例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの着座システム構成を例示している。
幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムのリクライニング構成を例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムのリクライニング構成を例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムのリクライニング構成を例示している。
幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。 幾つかの実施態様に従ったラミネートパネルを用いた低磁場MRIシステムの持ち運び可能な変換可能なシステムを例示している。
幾つかの実施態様に従った低磁場MRI磁性コンポーネントを組み込んだ例示的なヘルメットを例示している。 幾つかの実施態様に従った低磁場MRI磁性コンポーネントを組み込んだ例示的なヘルメットを例示している。 幾つかの実施態様に従った低磁場MRI磁性コンポーネントを組み込んだ例示的なヘルメットを例示している。
MRIスキャナ市場は、高磁場システムによって圧倒的に占められており、医療又は臨床MRI用途については専らそうである。上で議論したように、医療撮像における一般的なトレンドは、ますますより大きな磁場強度(field strengths)を備えるMRI撮像スキャナを生産することであり、臨床用MRIの圧倒的多数は、1.5T又は3Tで作動し、7T及び9Tのより高い磁場強度が研究環境において用いられる。本明細書中で用いるとき、「高磁場」(“high-field”)は、臨床環境において現在使用されているMRIシステム、より具体的には、1.5T又はそれより上の主磁場(即ち、B磁場(B0 field))で作動するMRIシステムを概ね指すが、0.5T〜1.5Tの間で作動する臨床システムも、概ね「高磁場」と考えられる。対照的に、「低磁場」(“low-field”)は、約0.2T以下のB磁場で作動するMRIシステムを概ね指す。
高磁場MRIシステムの魅力(appeal)は、低磁場システムと比較した解像度の改良及び/又はスキャン時間の削減を含み、臨床及び医療MRI用途のためのますます高い磁場強度の推進を動機付けている。しかしながら、上で議論したように、MRIシステムの磁場強度を増大させることは、ますますより高価で複雑なMRIスキャナを生み、よって、利用可能性を制限し、汎用の及び/又は一般的に利用可能な撮像解決策としてのそれらの使用を妨げる。上で議論したように、高コストの高磁場MRIに寄与する要因は、高価な超伝導ワイヤ及びワイヤを超伝導状態に維持するのに必要とされる低温冷却システムである。例えば、高磁場MRIシステムのためのB磁石は、それ自体が高価であるだけでなく、超伝導状態を維持するのに高価で複雑な低温機器も必要とする、超伝導ワイヤをしばしば利用する。
低磁場MRは、非撮像研究目的及び特定のコントラスト強化撮像用途のための限定的な脈絡において活用されているが、臨床的に有用な画像を生成するには適さないと従来的に考えられている。例えば、解像度、コントラスト、及び/又は画像取得時間は、非限定的に、組織区別、血流又は灌流撮像、拡散強調(DW)又は拡散テンソル(DT)撮像、機能MRI(fMRI)等のような、臨床目的に適すると一般的に考えられていない。
本発明は、病院又は研究施設での大型MRI据付けを超える様々な環境におけるMRI技術の広範囲の配置可能性を向上させ得る、改良された品質の、持ち運び可能な、及び/又は低コストの低磁場MRIシステムをもたらす技術を開発した。発明者の寄与の幾つかの特徴は、高磁場MRI及び低磁場MRIの両方のコスト及び複雑さに寄与している有意な要因が、撮像用途のために利用可能であるMR信号を生成するのに必要とされる磁性コンポーネントであるという発明者の認識に由来する。
手短に言えば、MRIは、原子の原子スピンをB磁場の方向において整列させるよう撮像されるべき物体(例えば、患者の全体又は部分)を同質の磁場B内に配置することを含む。高磁場MRIシステムのために、超伝導ワイヤのコイルから成る超伝導磁石が、高磁場MRIにおいて利用される磁場強度でBの同質性(homogeneity)を達成するために概ね必要とされる。超伝導磁石自体が高価であるのみならず、それらは動作中に低温冷却を概ね必要とし、高磁場スキャナのコスト及び複雑さを増大させる。B磁性コンポーネントに加えて、物体からのMR信号を空間的に符号化するために、勾配コイルが設けられ、磁場Bの磁場強度に関連する周波数で磁場Bを生成して、原子スピンに向きを変更させ且つ磁場Bとの原子スピンの再整列後に物体から放出されるMR信号を検出するために、送信及び受信コイルが設けられる。高磁場強度及び関連付けられる高周波数で、これらの磁性コンポーネントは、比較的複雑且つ高価でもある。
発明者は、低磁場MRIが高価な超伝導磁石及び/又は関連付けられる低温冷却システムを必要としないこと、並びに、磁場強度の減少がシステム内の他の磁性コンポーネントの複雑さ及び/又は費用の減少を促進することがあることを理解した。これを達成するために、幾つかの実施態様は、以下に更に詳細に議論するように、実質的に余り複雑でなく高価でない磁性コンポーネントを有する低磁場MRIシステムに向けられている。しかしながら、そのような磁性コンポーネントを生成すること及びそのように行うために従来的な技術を用いて低磁場MRIを行うのに適したシステムを製造することは、高磁場MRIよりも有意に余り複雑でなく高価でないが、複雑性及び費用を増大させる技術的な挑戦を依然として提示することがある。例えば、従来的な技術を用いてB磁石を構築することは、典型的には、所望の磁場で満足な同質性の磁場を生成し得るコイルを製造する精密な設計仕様に従ってフレームの周りに有意な量のハイグレード銅ワイヤを巻回することを必要とし、そのプロセスは、比較的時間がかかり、高価であり、製造偏差を受け易く、それは概して十分に増減(scale)しない。以下に更に議論するように、B磁場の整列(アライメント)及び他の磁性コンポーネントとの整列の問題が更に生じる。
発明者は、プリント回路基板を製造するときに利用されるものに幾つかの特徴において類似するラミネート技術を利用して、低磁場MRIスキャナの(1以上の)磁性コンポーネント(又は1以上の磁性コンポーネントの部分)を加工してよいことを認識した。幾つかの実施態様によれば、低磁場MRIにおける使用のための1以上の磁性コンポーネント(又はそれらの部分)は、1以上の磁性コンポーネント又はそれらの部分を形成するようにパターン化された1以上の非導電性層及び1以上の導電性層を含むラミネートパネルとして提供される。本明細書において、「ラミネート」(“laminate”)という用語は、典型的には、少なくとも1以上の非導電性層及び1以上の導電性層を含む、複数の重ねられた層を指す。独断の断りのない限り、「ラミネート」(“laminate”)という用語は、用いられる材料の種類にとって包括的であり、多数の層を互いに取り付けることを示すが、それらの層を製造するために用いられる如何なる特定の種類の材料又は材料の配置(構成)をも特定しない。「パネル」(“panel”)という用語は、多数のラミネート層のラミネートに由来する構造を概ね記述し、あらゆる形状又は大きさであってよく、任意の数の層を含み得る。
幾つかの実施態様によれば、1以上のBコイル、1以上の勾配コイル、1以上の送信/受信コイル、及び/又は1以上のシムコイル、或いはそれらの任意の所望の部分又は組み合わせが、単一のラミネートパネルの上に加工されてよく或いは多数のラミネートパネルの間に分散させられてよい。ラミネート技法を利用することは、低磁場MRI磁石を製造する、費用効率的な、調整可能な(scalable)、フレキシブルな、反復可能な、及び/又はカスタマイズ可能なアプローチを促進することがある。更に、発明者は、ラミネート技法を用いて達成可能な精度が、MRIシステムの磁石を製造する或いは生産する従来的な技法を用いることで可能でない、幾何学的構成(geometries)、形態(configurations)及び配置(arrangement)の、設計及び製造を可能にすることを理解した。
後続は、低磁場MRIを含む低磁場磁気共鳴用途のための方法及び装置に関する様々な着想及びそれらの実施態様の、より詳細な記述である。本明細書中に記載する様々な特徴は、数多くの方法のうちのいずれかにおいて実施されてよいことが理解されるべきである。具体的な実施の実施例は、本明細書中に例示的な目的だけのために提供される。加えて、実施態様中に記載される様々な特徴は、単独で或いはあらゆる組み合わせにおいて用いられてよく、本明細書中に明示的に記載される組み合わせに限定されない。
上で議論したように、発明者は、低磁場MRIシステムは、高磁場MRIシステムと関連付けられる問題のうちの1以上に対処する、低磁場MRIシステムを開発した。例えば、例示的な低磁場MRIシステムは、超伝導磁石を用いずに実施されてよく、結果的に、関連付けられる低温冷却システムを用いずに実施されてよく、それにより、結果として得られるMRIシステムのコスト、複雑さ、及び大きさを有意に減少させることがある。高磁場MRIに適した磁場強度及び磁場同質性を有するB磁場を生成するために、超伝導材料で形成されるソレノイドコイルが用いられ、生成されるB磁場は、ソレノイドの中心を通じる軸の方向にある。結果的に、患者を撮像することは、ソレノイドコイルの内側に患者を配置することを含む。ソレノイドコイルは、高い磁場強度で同質な磁場を生成するのに特に適しているが、この幾何学的構成は、機器の大きさを増大させるのみならず、患者が撮像されるべき円筒形ボア内に挿入されることも必要とする。よって、この幾何学的構成は、閉所恐怖症の患者に適さないことがあり、大きな患者を収容し得ないことがある。よって、高磁場MRIのために適したB磁石を生成するのに一般的に必要とされるソレノイドコイル幾何学的構成は、高磁場MRIが実際的且つ利用可能な汎用イメージャであるのを妨げる更なる制約を有する。
発明者は、低磁場MRIの特性が、高磁場MRIに適さない代替的なコイル幾何学的構成を用いて低磁場MRIに適したB磁場を生成するのを可能にすることを理解した。図1は、幾つかの実施態様に従った、低磁場MRI映像法に適したB磁場を生成するために利用されてよい2平面磁石幾何学的構成を含む低磁場MRIシステム100の部分を図式的に例示している。2平面電磁石は、2つの外側コイル110a及び110bと、2つの内側コイル112a及び112bとを含む。適切な電流がコイルに適用されると、矢印によって示される方向において磁場が生成されて、コイルの間に視野を有するB磁場を生成し、B磁場は、適切に設計され且つ構築されるとき、低磁場MRIに適することがある。
図1に例示される2平面幾何学的構成は、高磁場MRIのための十分な同質性のB磁場を得ることの困難性の故に、高磁場MRIに概して適さないことが理解されるべきである。図1に例示される2平面B磁石は、概ね開放型の幾何学的構成をもたらし、従来的な高磁場ソレノイドコイル幾何学的構成で撮像されるのを拒絶することがある恐怖症を患う患者でのその使用を促進する。更に、2平面設計は、その開放型の設計、幾つかの場合には、低磁場強度及び同質性で可能な概ねより大きい視野の結果、より大きな患者でのその使用も促進することがある。
しかしながら、図1に例示する2平面B磁石は、高磁場MRIのために可能であるものよりもずっと複雑でなく低コストのB磁石をもたらすのに対し、コイル110a,110b,112a,112bの生産は、典型的には、所与のセットのコイルのための特定の設計に従った多数の巻き(turn)をもたらすために、支持フレームの周りの銅ワイヤの反復的な巻回を概して含む、比較的時間がかかる繊細なプロセスである。低磁場MRIのための適切なB磁場をもたらすために、概ね高品質の導体(例えば、ハイグレードな絶縁を備える厚い銅ワイヤ)をしばしば用いて、所望のB磁場を生成するために必要とされる比較的大きな電流をサポートする。導体の各巻きを精密に且つ適切に整列させて巻回して所望の同質性を有するB磁場を生成することが配慮されなければならない。図1に示すように、2平面磁石における外側コイルの例示的な直径は220cmであってよく、巻きの典型的な数は50巻き以上のオーダであり、それにより、多数の巻きに亘って整列して精密に巻回されなければならない相当な量の導体材料(例えば、2平面磁石の各側について1キロメートルよりも長い概ねハイグレードのワイヤ)を必要とする。
加えて、ペア(例えば、コイル110a,110b及びコイル112a,112b)における各コイルは、コイルがひとたび通電された後に結果として得られるB磁場の同質性を劣化させるのを避けるために、そのペア内の対応するコイルと実質的に同一であるように製造されなければならない。その上、2平面磁石の各側にあるコイル(例えば、コイル110a,110b及びコイル112a,112b)も、結果として得られるB磁場の異質性を減少させるよう、注意深く位置付けられ且つ整列させられなければならない。従って、従来的な構築技術を用いて低磁場MRIのための十分に同質なBをもたらすために、そのようなコイルを製造し且つ据え付けることは、比較的費用がかかりがちであり、時間集約的でありがちであり、間違いが起こりがちである。
上で議論したように、発明者は、上述の従来的な製造技法の代わりに(又はそれとの組み合わせにおいて)ラミネート技法を利用して、低磁場MRIにおける使用のためのB磁場又はその部分を加工してよいことを認識した。具体的には、発明者は、B磁性コンポーネントの低磁場特性が、MRIのためのB磁場を生成するために以前は利用可能でなかった技法を用いて、B磁性コンポーネント又はその部分の加工を可能にすることを理解し且つ察知した。例えば、数ある理由の中でも、発明者は、低磁場MRIのより低い電力要求及び/又は熱出力の減少が、高磁場の脈絡において利用可能でなかったラミネート技法を用いて磁性コンポーネントの生産を可能にすることを理解した。
幾つかの実施態様によれば、ラミネートパネルは、低磁場MRIに適したB磁場を生成し得る或いは低磁場MRIに適したB磁場に寄与し得る1以上のBコイル又は1以上のBコイルの部分を形成するようにパターン化された少なくとも1つの導電性層を含む。本明細書中で用いられるとき、Bコイルは、B磁場をもたらす或いはB磁場に寄与するあらゆるコイルを指し、1以上の主Bコイル又はその部分、1以上のシムコイル又はその部分、或いは1以上の矯正コイル又はその部分等を含んでよい。
ラミネートパネル(laminate panel)は、図1に例示される2平面Bコイルのペアの1つの「側」(“side”)を形成する複数の同心状のコイルを含んでよい。第2のラミネートパネルが、2平面設計における視野の他の「側」のためのBコイルを含むよう同様に構成されてよい。このようにして、低磁場MRIのためのB磁場を生成するために用いられる磁性コンポーネントが、ラミネートパネル技法を用いて構築されてよい。
以下に更に詳細に議論するように、1以上のBコイル(又はその部分)を加工するためにラミネート技法を用いることは、低磁場MRIにおける使用のためのB磁場を製造することにおいて上で議論した欠点のうちの1以上に対処し得る。例えば、B磁場同質性は、それぞれのコイルのパラメータの比較的小さな変化に対して極めて敏感である。具体的には、様々なコイルのコイル巻線、位置、及び整列等の変動は、生成されるB磁場の磁場異質性を引き起こす。結果的に、概ね反復可能で低コストのプロセスにおいて低磁場MRIを行うのに適した磁場同質性を備えるB磁場を生成し得るB磁石を生成するのは困難なことがある。具体的には、そのようなB磁石を再現するのは困難なことがある。何故ならば、従来的な製造技法は、再現可能で確実な生産に役立たず、従って、十分に増減せず、数多くの成功裡のB磁石を時間効率的及び/又は費用効率的な方法において生産する能力を制限する。ラミネート技法は、従来的な技法を用いて実現可能であるものよりも、磁性コンポーネントをより一層精密に且つ正確に生産することができ、以下に更に詳細に議論するように、磁性コンポーネントを生産するための大いに調整可能な技法である。
図1は、例示の低磁場MRIの部分についての位相及び周波数符号化を促進するよう磁場を生成する、一対の平面的な勾配コイルセット120a,120bも図式的に例示している。上で議論したように、MRIシステムは、受信するMR信号の空間的な場所を周波数又は位相の関数として符号化するよう、勾配コイルを用いて既知の方法においてB磁場を系統的に変更することによって、受信するMR信号を符号化する。例えば、勾配コイルは、特定の方向に沿う空間的な場所の線形関数として周波数又は位相を変更するように構成されてよいが、非線形勾配コイルを用いることによって、より複雑な空間符号化プロファイルが提供されてもよい。例えば、第1の勾配コイルが、第1の(X)方向においてB磁場を選択的に変更して、その方向において周波数符号化を行うように構成されてよく、第2の勾配コイルが、第1の方向に対して実質的に直交する第2の(Y)方向においてB磁場を選択的に変更して、位相符号化を行うように構成されてよく、第3の勾配コイルが、第1及び第2の方向に対して実質的に直交する第3の(Z)方向においてB磁場を変更して、容量撮像用途のためのスライス選択を可能にするように構成されてよい。
勾配コイルは、特定のB磁性コンポーネント(例えば、図1に示されるような1以上のBコイル)と協働するように設計され、そして、満足に動作するように、典型的には、比較的精密な及びB磁性コンポーネントとの引き続きの整列を必要とするように設計される。発明者は、ラミネート技術を用いて1以上の勾配コイル(又はそれらの部分)を加工することは、低磁場MRIシステムの磁性コンポーネントを製造するより単純でより費用効率的なアプローチを促進することがあることを認識した。
幾つかの実施態様によれば、ラミネートパネルは、低磁場MRI装置内で作動させられるときに、検出されるMR信号の空間的な符号化をもたらすのに適した磁場を生成し得る或いはそのような磁場に寄与し得る、1以上の勾配コイルを形成するようにパターン化される少なくとも1つの導電層又は1以上の勾配コイルの部分を含む。例えば、ラミネートパネルは、1以上のX勾配コイル(又はそれらの部分)、1以上のY勾配コイル(又はそれらの部分)、及び/又は1以上のZ勾配コイル(又はそれらの部分)を形成するようにパターン化される、1以上の導電層を含んでよい。1以上の勾配コイル(又はそれらの部分)を形成するラミネートパネルは、対応するB磁性コンポーネントと別個であってよく、或いは同じラミネートパネルの1以上の層内に形成されてよい。後者に関して、1以上のコイルは、1以上のBコイル(又はそれらの部分)と共有される(しかしながら、電気的に絶縁される)導電層によって形成されてよく、或いは1以上のBコイル(又はそれらの部分)と別個の1以上の導電層内に形成されてよい。ラミネートパネル内の1以上のBコイル(又はそれらの部分)との1以上の勾配コイル(又はそれらの部分)の統合は、低磁場MRIのための磁性コンポーネントを設計し且つ製造するより単純でより柔軟なアプローチを促進し、それらの更なる特徴を以下に議論する。
上で議論したように、MRIシステムは、(無線周波数(RF)コイルと呼ばれる)送信及び受信コイルをそれぞれ用いて、発せられるMR信号を刺激し且つ検出する。送信/受信コイルの形態は、実施と共に異なり、送信及び受信のための単一のコイル、送信及び受信のための別個のコイル、送信及び/又は受信のための多数のコイル、或いは単一チャネル(single channel)又は平行MRI(parallel MRI)における使用システムを達成する任意の組み合わせを含んでよい。よって、RMIシステムの送信及び受信コンポーネントのための様々な形態を一般的に指すために、送信/受信磁石コンポーネントを、しばしば、Tx/Rx又はTx/Rxコイルと呼ぶ。
発明者は、ラミネート技法を用いて低磁場MRIシステムにおける1以上の送信/受信コイルを加工してもよいことを認識した。幾つかの実施態様によれば、ラミネートパネルは、受信するMR信号を空間的に符号化するためにB磁場及び/又は対応する勾配磁場を生成するように構成される磁性コンポーネントと共に作動させられるときに、B励起場を生成すること(送信)によって並びに/或いは発せられるMR信号を受信すること(受信)によってMR応答を刺激するように構成される、1以上の送信及び/又は受信コイル或いは1以上の送信及び/又は受信コイルの部分を形成するようにパターン化された少なくとも1つの導電性層を含む。そのようなラミネートパネルは、単一チャネル又は平行MRIをそれぞれ遂行するために単一の送信及び/又は受信コイル(又はそれらの部分)或いは多数の送信及び/又は受信コイル(又はそれらの部分)を含んでよく、以下に更に詳細に議論するように、別個のラミネートパネル内に形成されてよく或いは1以上のBコイル(又はその部分)及び/又は1以上の勾配コイル(又はそれらの部分)を含むラミネートパネル内に統合されてよい。
低磁場MRIシステムは、システムを支援して磁場を生成するよう配置される1以上のシムコイル(shim coils)のような追加的な磁性コンポーネントを更に含んで、例えば、B磁場の強度及び/又は同質性を増大させ、勾配コイルの作動によって創り出されるような有害な磁場効果(field effects)、撮像される物体の装荷効果(loading effects)を相殺し、或いは低磁場MRIシステムの磁気学をその他の方法で支援してよい。シムコイルを作動させてMRIシステムのB磁場に寄与する(例えば、磁場強度に寄与し且つ/或いは同質性を向上させる)とき、シムコイルはシステムのBコイルとして機能し、そのように理解されるべきである。幾つかの実施において、1以上のシムコイルは、以下に更に詳細に議論するように、他のBコイルと独立して作動させられてよい。
更に、低磁場MRIシステムは、環境内の並びに/或いはコンポーネント間の望まれない電磁放射線を抑制するよう配置される(複数の)遮蔽コンポーネントを更に含んでよい。発明者は、ラミネート技術を利用して、そのようなコンポーネントを別個の(複数の)ラミネートパネル内で形成することによって、或いは、そのようなコンポーネントを、以下に更に詳細に議論するように、低磁場MRIシステムの他の磁性コンポーネント(若しくはそれらの部分)のうちのいずれか1つ又は組み合わせを含むラミネートパネル内に統合することによって、そのようなコンポーネント、例えば、1以上のシムコイル(若しくはそれらの部分)及び/又は1以上の遮蔽コンポーネントを加工してよいことを認識した。
上で議論したように、低磁場MRIシステムの1以上の磁性コンポーネントを含む、パネル、プレート又は「ボード」を生産するためのラミネート技法は、原理的には、スケール(scale)、電力及び熱要件等において異なるが、プリント回路基板(PCB)及び特定の限定的なプリント電子機器を加工するために従来的に用いられる技法に似てよい。そのようなラミネート技法は、非導電層及び導電層の材料を形成すること並びに(例えば、材料を選択的に除去し且つ/或いは追加することによって)導電性及び非導電性の(複数の)層をパターン化して所望の導電パターン又は「回路」(“circuit”)を生成することを概ね含む。そのような技法は、例えば、PCBの表面に取り付けられる別個のコンポーネントの間の電気的な相互接続をもたらすよう、単層及び多層のPCBsを生産するために従来的に用いられ、限定的な程度まで特定の電子コンポーネントを生産するためにも用いられている。
上で議論したように、高磁場MRIシステムの高い磁場強度、有意な電力要求、複雑な低温冷却システム等の故に、ラミネート技法は、高磁場の脈絡において実行可能な解決策を提示せず、MRIのための磁性コンポーネントを生産することにおける使用について以前に想定されていなかった。しかしながら、発明者は、低磁場の脈絡において、ラミネート技法を用いて低磁場MRIシステムの1以上の磁性コンポーネントを加工してよいことを認識した。その実施例を以下に更に詳細に議論する。
上でも議論したように、従来的な技法(例えば、1以上の巻回コイル)を用いてB磁石を生産することは、時間のかかるプロセスであり得るし、製造偏差等の故に、整列誤差及び/又は異質性の影響を受けることがある。しかしながら、発明者は、磁性コンポーネントを生産するためのそのような従来的な技術が、本明細書中に記載するラミネート技法と共に有利に用いられてよいことを理解した。例えば、従来的な技法を用いて製造される1以上のBコイルは、ラミネート技法を用いて加工される1以上のBコイルで補完されてよい。「混成」磁石の幾つかの実施例を以下に更に詳細に議論する。
図2Aは、単一の非導電層210と、非導電層の上に形成される単一の導電層212とを含む、ラミネートパネル200を概略的に例示している。(ここでは基板とも呼ぶ)非導電層210は、任意の適切な材料から形成されてよい。例えば、適切なコア材料の任意の1つ又は組み合わせで基板210を形成してよく、複合材、接着剤、及び/又はラミネートを利用して、非導電層を形成し、ラミネートパネルを生産するのを促進してよく、FR4、セラミック、プラスチック、ガラス、ポリイミド、エポキシ、事前含浸複合繊維(プリプレグ)、92MLのような多機能エポキシラミネート、又は適切な特性を有する任意の他の(複数の)材料若しくはそれらの組み合わせを含むが、それらに限定されない。基板210は単層であってよく、或いは非導電性材料の多層で構成されてよく、それらの各層は、同じ又は異なる非導電性材料で作製されてよい。基板を層状化することは、異なる材料の有益な特性を利用する基板の構築を可能にすることがある。基板210は、所与の設計に適した長さ、幅、及び厚さを有する、任意の所望の寸法に構成されてよい。
同様に、導電層212は、任意の適切な導電性材料で形成されてよい。例えば、導電層212は、銅又は他の適切な導電性材料の薄い又は厚い膜、厚い又は極めて厚い導電層(例えば、「エキストリーム銅」(“extreme copper”))、導電性プレート、或いは任意の適切な技法又はプロセスによって(例えば、浸漬被覆、電気めっき、印刷、モールディング、ボンディング、真空含浸、押圧、乾式接着、又は任意の他の適切な(複数の)技法を介して)非導電性基板210の上にラミネートとして形成され得る任意の他の種類の導電層であってよい。幾つかの実施態様によれば、以下に更に詳細に議論するように、アルミニウムが導体として用いて、関連付けられるコスト及び重量の削減を活用してよい。
所望の「回路構成」(“circuitry”)をもたらすために、様々な減法(subtractive)、加法(additive)、及び/又は半加法(semi-additive)プロセスのうちの任意の1つ又は組み合わせを用いて、(複数の)導電層212をパターン化させて、低磁場MRI装置の1以上の磁性コンポーネントの所望の部分のための導電体を形成してよい。減法プロセスは、例えば、非限定的に、化学エッチング、写真凸版等を含む、様々なリソグラフィプロセスのいずれかを用いて、導電層から導電性材料(例えば、銅)を選択的に除去して、所望の導電性パターンを残して、所望の導電性回路又は回路の部分をもたらす。そのようなプロセスは、(しばしばマスクと呼ばれる)所望のパターンにおいてレジスト材料を提供し、導電層を対応するエッチング液に導いて、レジスト材料で処理されていない場所にある導電性材料を除去することによって、行われる。他の減法プロセスは、導電層の望ましくない部分を切削して、所望の導電性パターンを残すことを含む。本明細書中に記載する減法プロセス及び/又は任意の他の適切なプロセスを単独で或いは任意の組み合わせにおいて用いて、所望の導電性パターンを加工してよい。
加法プロセスは、基板の上に所望の導電性パターンを電気めっきすること又は導電性インクを用いてパターンを印刷すること(“printing”)を含んでよい。例えば、電気めっきは、所望のパターンにおいてマスキングされた感光膜を露出させることを含んでよい。次に、露出させられたパターンは、化学浴(chemical bath)に導入されて、パターンが金属イオン結合し得るのを可能にし、次に、導体で(例えば、銅で)めっきされてよく、導体は化学浴内で感光性を与えられた(sensitized)パターンと結合して、所望の導電性パターンを形成する。加法プロセスは、所望の導電性パターンを形成するために、減法技法よりも少ない導電性材料を必要とするという利点を有する。他のプロセスは、減法技法及び加法技法の両方を組み合わせて、所望の導電性パターンを形成する。
幾つかの実施態様によれば、ラミネート技法を用いて加工される1以上の磁性コンポーネントは、「ヘビー銅」(“heavy copper”)(例えば、5oz/ft〜19oz/ft)又は「エキストリーム銅」(“extreme copper”)(例えば、20oz/ft〜200oz/ft)としばしば呼ばれる、比較的大きな厚さで加工されるのを必要とすることがあるが、技法は導電性材料の選択に拘わらず当て嵌まる。ヘビー銅又はエキストリーム銅をパターン化する適切な技法の実施例は、塩化第二銅エッチング、塩化第二鉄エッチング、機械研削、プラズマエッチング、レーザエッチング、放電加工(EDM)、めっき等のいずれか1つ又は組み合わせを含むが、これらに限定されない。本明細書中に記載する任意の単一の技法又は技法の組み合わせが利用されてよく或いは非導電性基板の上に導電層をパターン化するのに適した及び/又はラミネートパネルを生産するのに適した任意の他の技法が用いられてよいことが理解されるべきである。何故ならば、ラミネートパネル内に低磁場MRIシステムの1以上の磁性コンポーネント(又はそれらの部分)を形成することの特徴は、それを行うための如何なる特定の技法又は技法の組み合わせにも限定されないからである。
図2Bは、複数の非導電層210と、非導電層の間に形成される複数の導電層212とを含む、ラミネートパネル205を概略的に例示している。導電層212の間の接続は、以下により詳細に記載するように、「ビア」(“vias”)と呼ばれる介在する非導電層内に導電性材料で充填された穴(例えば、めっきされた貫通穴)を形成することによって達成されてよい。2つの非導電性及び2つの導電層のみが図2Bに明示的に例示されているが、楕円によって示されるように、任意の数の非導電層及び導電層を用いて所望の設計に従ったラミネートを達成してよく、それらの幾つかの実施例を以下に更に詳細に記載する。
加えて、各非導電層について多数の導電層が設けられてよい、例えば、両側に積層された(laminated)導電層を有する非導電層が設けられてよいことが理解されるべきである。図2Cは、2つのラミネート層を互いに取り付けることによって形成される多層パネルを例示しており、各々のパネルは、非導電層210を有し、導電層がそれぞれの非導電層の両側に積層されている。多層ラミネートは、1以上の接着層214を用いて取り付けられてよい。(複数の)接着層214は、任意の適切な接着剤、又はプリプレグ、乾式接着剤、エポキシのような、材料の組み合わせであってよく、且つ/或いは、(例えば、熱及び/又は圧力を介して)アクティブ化させられるときに、多層ラミネートを互いに結合させる任意の他の層又は層の組み合わせであってよい。ラミネート技法のいずれか1つ又は組み合わせを用いる、導電性及び非導電性の層状化、接着剤等の任意の構成を用いて、所望のラミネートパネルを生産してよいことが理解されなければならない。
上で議論したように、ラミネートパネルの層は、ラミネートパネル内の適切な層を通じて形成されるビアの所望の配置を用いて電気的に接続されてよい。図3Aは、例示的なラミネート層の部分の断面図を例示しており、ラミネート層の上には、非導電性材料325上に銅導体250をパターン化することによって、導電性トレースが形成され、導電性トレースは層間のビアを用いて接続される。銅導体350は、任意の所望の幾何学的構成においてパターン化されてよく、そして、低磁場MRIシステムの1以上の磁性コンポーネント(又はその部分)及び/又は任意のサポート電子機器、制御電子機器等に対応する所望の回路構成を形成するように構成されてよい。異なる層の上の銅導体は、めっきされた貫通穴ビア355のようなビアを用いて、電気的に接続されてよい。めっきされた貫通穴は、ラミネートパネルの1以上の層を通じて穴を穿孔することによって、並びに、非導電性材料を通じる導電性経路を形成して異なる層の上の電気導体を接続する適切なめっき技法を用いることによって、形成されてよい。ビアはラミネートパネル全体を通じて形成されてよく、或いはラミネートパネルの層のサブセットを通じて形成されてよく、隣接する層又は多数の隣接する層を接続することを含むことが理解されるべきである。ラミネートパネルのラミネート層が、ラミネートパネルの異なる層を接続するよう配置される多数のビアを含んでよい。例えば、多数のコンポーネント又は多数のコンポーネントの部分を有する層を互いに電気的に絶縁させ、必要に応じて、他の層の上にパターン化される導体に独立的に接続してよい。ラミネートパネルの層の上にパターン化される導体は、任意の所望の方法において接続されてよく、1以上の層はビアを全く含まなくてよく、従って、ラミネートパネルの他の層から電気的に絶縁されたままである。
発明者は、銅がそれを電気導体にとっての魅力的な選択肢とする特性を有するが、アルミニウムを代替として或いは銅のような他の導体との組み合わせにおいて用いて、ラミネートパネルの層の上に1以上の磁性コンポーネント(又はその部分)をパターン化してもよいことを理解した。アルミニウムは、銅よりも重量が少なく、より安価であり、よって、幾つかの実施態様によれば、より軽量で減少させられたコストのラミネートパネルを加工する能力を促進する。図3Bは、アルミニウム導体370を用いて導電性パターンが形成されるラミネート層の部分の断面を例示している。アルミニウム導体370は、本明細書中に記載する同じラミネート技法を用いて形成されてよい。アルミニウムは、銅と比べてより低い導電性を有するので、アルミニウム導体370は、一般的に、同じ導電性を得るために銅導電体350よりもより大きい厚さで形成される必要がある(例えば、類似の性能を達成するために、50milの銅の代わりに、80milのアルミニウム層が必要とされることがある)。
図3Bは、圧入ピンを用いてラミネートパネルの層の間にビアを提供する他の方法を更に例示している。具体的には、アルミニウムピンビア377が、アルミニウムパネルの層の間に穿孔される穴を通じて挿入されてよい。ピンビアを用いて隣接する層又は多数の隣接する層を接続してよく、ラミネートパネル全体を通じてピンビアを設けることを含むことが理解されるべきである。同様に、ピンビアは、所与のラミネートパネルの様々な層の上にパターン化される導体を電気的に接続するために望まれる任意の数及び形態において用いられてよい。ピンビア377はアルミニウム導体の使用との関係において図3Bに示されているが、ピンビアは任意の適切な導体から利用されてよく且つ形成されてよいことが理解されるべきである。ラミネートパネルは、1以上のコンポーネント又はその部分が第1の導体(例えば、銅)を用いて形成され、1以上のコンポーネント又はその部分が第2の導体(例えば、アルミニウム)を用いて形成されるよう、導体の組み合わせを用いて加工されてよいことが更に理解されるべきである。その上、銅及びアルミニウムを図3A及び3Bに例示しているが、任意の適切な導体を用いて低磁場MRIシステムの所望の磁性コンポーネント及び/又は電気コンポーネントをパターン化してよい。何故ならば、本明細書中に記載される技法はいかなる特定の導体又は導体の組み合わせとの使用についても限定されないからである。
ラミネート技法は比較的精密且つ正確であり、特定のプロセスは、ミル又はミクロンレベルで或いはサブミクロンレベルでさえも、精密さ(precision)及び精度(accuracy)をもたらし得ることが理解されるべきである。よって、ラミネート技法を用いて1以上の磁性コンポーネント(又はその部分)を加工することは、従来的な技法を用いるときに含まれる、磁性コンポーネントを製造すること、整列させること、及び据え付けることにおける複雑さ及び困難の大部分を削減し或いは解消することがある。よって、減法、加法、及び/又は半加法アプローチの任意の適切な1つ又は組み合わせを用いるならば、(複数の)導電層212をパターン化させて、低磁場MRIシステムの1以上の磁性コンポーネント(例えば、B磁性コンポーネントの1以上のコイル又はその所望の部分、1以上の勾配コイル、1以上の送信/受信コイル、1以上のシムコイル、1以上の遮蔽層等)を形成して、より単純で、よりフレキシブルで、確実且つ調整可能な、MRIのための磁性コンポーネントの生産モードをもたらしてよく、その幾つかの具体的な実施例が図4に例示されている。以下に更に詳細に議論するように、多数の低磁場MRIコンポーネントを単一のパネルの上に集積させ或いは多数のパネルの間に分散させて、所望の形態に従ったコンポーネントの製造を促進させてよい。
図4は、幾つかの実施態様に従った、低磁場MRIシステムと共に用いるための例示的な多層ラミネートパネルの概略図を例示している。ラミネートパネル400は、ラミネート技法を介して加工されてよいコンポーネントの幾つかの実施例を例示するように描写されていることが理解されるべきである。しかしながら、ラミネートパネルは図4に例示するコンポーネントの全てを含む必要はなく、例示するコンポーネントのいずれか1以上は所望に省略されてよいことが理解されるべきである。即ち、ラミネートパネルは、図4に例示する例示的な層の任意の1つ又は組み合わせを含んで、ラミネートパネル内のコンポーネント(又はその部分)の任意の1つ又は組み合わせを形成してよい。加えて、ラミネートパネルは、図4に例示しない他の層(例えば、熱管理のための1以上の層、1以上のインターコネクト層、制御電子機器又は他の電子コンポーネントを有する1以上の層等)を含んでよい。
例示するコンポーネント(又は任意の所望のサブセット)は、1つの又は多数の層内に形成されてよく、別個のコンポーネントが、他のコンポーネントと共用される層の上に形成されてよく、或いは、他のコンポーネントから独立して別個の層の上に形成されてよい。多層パネル(並びに層及びその形態の殆ど無限の組み合わせ)の例示を単純化するために、図4に例示する磁性コンポーネントは、磁性コンポーネントの幾何学的構成又は磁性コンポーネントが加工される層の数に関する限定を伴わずに、概略的に示されている。よって、図4に例示し且つ本明細書中に記載する例示的な層は、少なくとも1つの非導電層と少なくとも1つの導電層とで構成される単一のラミネート層、又は各ラミネート層が1以上の非導電層及び1つ以上の導電層で構成される、多数のそのようなラミネート層のいずれかを提示するものとして理解されるべきである。従って、特段の断りのない限り、層は1以上のラミネート層を指す。
パネル400内で加工されてよい様々なコンポーネントを示す図4中の例示は、それぞれのコンポーネントを概ね提示するために用いられており、如何なる特定の幾何学的構成又は形態を描写することも意図していないことが更に理解されるべきである。図4に例示するコンポーネントは、任意の所望の幾何学的構成及び形態に従ってパターン化されてよい。何故ならば、1以上の磁性コンポーネントをラミネートパネル内に統合するために本明細書中に記載される技法は、如何なる特定の幾何学的構成、形態、又は配置との使用にも限定されないからである。利用されてよい適切な幾何学的構成の幾つかの実施例を非限定的に以下に更に詳細に議論する。
図示のように、例示的なラミネートパネル400は、複数のB層(410a,410b)を含み、複数のB層は、それらの上に形成される1以上のBコイルを有する。Bコイルは、適切な電流が(複数の)コイルに提供されるときに、低磁場MRIシステムのためのB磁場の少なくとも部分を生成するように構成される。幾つかの実施態様において、各B層は、導電層の上にパターン化された導電性トレースの1以上の巻きを含んで、所望のB磁場の部分を生成する。図示のように、層410aは、その上にコイル411aをパターン化させ、コイル411aは、任意の所望の幾何学的構成に従ってパターン化させられてよい。例えば、コイル411aは、概ね円形の幾何学的構成に従ってパターン化された、導電性トレースの1以上の巻きを有してよい。コイル411aは、(例えば、層の間を介して)層410bの上にパターン化されたコイル411bに電気的に接続されてよく、コイル411bも、任意の所望の幾何学的構成(例えば、導体の1以上の巻きを有する概ね円形のコイル)であってよい。
その上に形成されるBコイルを有する任意の適切な数の層が、層410a及び410b(例えば、1、10、20、50以上の層等)の間に介装され且つ電気的に接続されてよく、各層は、その上に形成される1以上のそれぞれのコイルを有し、それぞれのコイルは、適切な電流で通電させられるとき、低磁場MRIにおける使用のために構成されるB磁場の少なくとも部分をもたらすことが理解されるべきである。各層は、単一のコイル又は多数のコイルを有してよく、各コイルは、所望のコイル設計の磁気特性及び/又は電気特性を達成するよう、その上に形成される任意の数の巻きを有するようにパターン化されてよいことが理解されるべきである。
発明者は、MRIコンポーネントを設計し且つ製造するためにラミネート技法を用いることが、低磁場MRIシステムのためのBコイルを製造する従来的な技法を用いては現実的でない或いは可能でない任意の幾何学的構成及び形態を有するBコイルの加工を可能にし、実質的にあらゆる幾何学的構成、形態及び/又は配置のコイル設計を可能にすることを認識し且つ理解した。幾つかの実施態様によれば、その上に1以上のコイル又はその部分が形成される少なくとも幾つかのB層を、他の層と異なる幾何学的構成を用いてパターン化して、所望のB磁場を達成してよい。以下に更に詳細に議論するように、幾つかのB層は、異なる用途及び環境のためにB磁場を同調させるよう或いは所望の強度及び/又は同質性のB磁場を較正し又はその他の方法で達成するためにB磁場を調節するよう独立して制御され得る1以上のコイルをその上に形成してよい。
具体的なコイル幾何学的構成又はコイル幾何学的構成の組み合わせ及びラミネートパネル内のコイルの配置及び分布の選択は、少なくとも部分的に、低磁場MRI用途との使用のために生成されるべき所望のB磁場に依存することがある。加えて、同じ又は異なるBコイル設計を有する1以上のラミネート層は、多数の層の上の導電性トレースを接続する1以上のビアによって接続されてよい。幾つかの実施態様において、ビアの場所は、結果として得られるB磁場の同質性に対するそれらの影響を最小にするよう並びに/或いは通電されるコイルの1以上の電気特性を概ね最適化させるよう選択されてよい。低磁場MRIにおける使用のためのB磁場を少なくとも部分的に毛伊勢得するために用いられてよいBコイル設計の非限定的な実施例を以下に更に詳細に記載する。
ラミネート技法はそのような高い精度及び正確性で導電体をパターン化し得るので、B磁石(又はその任意の部分)が、所望の強度及び同質性のB磁場を達成する特定のB磁石のための設計仕様に従って高い忠実度(fidelity)で確実にラミネートパネル形態内に加工されることがある。加えて、ラミネートパネルの多数の層の上にB磁石(又はその部分)を形成する1以上のBコイルを分配する能力は、B磁石を生産する従来的な技法を用いては可能でない方法において所望のB磁場を生成するよう、B磁石のパラメータを最適化させることを可能にする。所望のB磁場をもたらすために、数多くの幾何学的構成、形態及び/又は配置の中から選択するよう(例えば、B磁場に寄与する各層の上の導電体の位置、幾何学的構成又は他の特性は、概ね最適化される)、シミュレーションが用いられてよい。次に、結果として得られる設計が、適切なラミネート技法を用いて精密に且つ正確に加工されてよい。
幾つかの実施態様によれば、減少された電力要求で所望のB磁場の生成を促進するために或いは磁性材料を用いないで必要に応じて同じ電力要求を用いてより高いB磁場を生成するために、1以上のラミネート層が磁性材料でパターン化された1以上の層のような(複数の)受動的な磁性コンポーネントを含んでよい。例えば、ラミネートパネル400は、所望のB磁場を達成するために1以上Bコイルによって生成される磁場に寄与する磁性コンポーネント416を形成するよう配置された鉄材料又は他の磁性材料でパターン化された1以上のラミネート層415を含んでよい。そのような磁性材料は磁場を生成する電源を必要とせずに磁場を生成し或いは調整する(tailor)ので、所望のB磁場が減少された電力要求でもたらされることがある。加えて、電力要求の対応する増大を伴わずにより高いB磁場をもたらすために磁性材料を用い得るので、磁性材料は、潜在的には0.2Tを超える(例えば、0.2T〜0.5Tの間の)より高いB磁場を有する低磁場MRIシステムの構築を促進することがある。
1以上の層415の上に形成される(複数の)磁性コンポーネント416は、所望の磁場強度及び/又は同質性のB磁場を生成する或いは調整するのを助ける比較的高い透磁率(μ)を有する材料のいずれか1つ又は組み合わせを含んでよい。(複数の)磁性コンポーネント416は、所望の磁場をもたらすよう、シートとして提供された或いはその他の方法で製造され且つ1以上のラミネート層内に組み込まれた、1以上のパターン化された層によって形成されてよい。上で議論したように、受動的な磁性コンポーネントの使用は、所与のB磁場をもたらすために必要とされる電力要求を減少させ得る。換言すると、所望のB0磁場の部分を受動的に(例えば、コンポーネントを作動させるのに電源を必要とせずに)生成し得るので、能動的な磁性コンポーネント(例えば、1以上の所望のBコイル)に対する負担を軽減し得る。結果的に、減少させられた電流で1以上のBコイルを作動させて、(複数の)磁性コンポーネント16との組み合わせにおいて、所望の磁場強度及び/又は同質性を有するB磁場をもたらし得る。能動的な磁性コンポーネントの電力供給を減少させることは、磁性コンポーネントを駆動させるパワーエレクトロニクスの費用及び複雑性を単純化し、ラミネートパネルの熱出力の対応する削減をもたらし、そして、所望の強度及び/又は同質性のB磁場を生成する際の能動的な磁性コンポーネントに対する制約をその他の方法で和らげることもある。
上で議論したように、ラミネートパネルは、低磁場MRIシステムにおいて作動させられるときに、検出されるMR信号の空間符号化を提供するのに適した磁場を生成し得る或いはそのような磁場に寄与し得る、1以上の勾配コイル又は1以上の勾配コイルの部分を形成するようにパターン化された、少なくとも1つの導電層を更に含んでよい。図4に例示する実施例において、ラミネートパネル400は、複数のラミネート層(420a,420b,420c)を含み、複数のラミネート層の上には、勾配コイル(421a,421b,421c)が形成されている。(複数の)層420aは、Z勾配コイル421aの全部又は部分を形成するようにパターン化された導電性トレースを含み、(複数の)層420bは、Y勾配コイル421bの全部又は部分を形成するようにパターン化された導電性トレースを含み、(複数の)層420cは、X勾配コイル421cの全部又は部分を形成するようにパターン化された導電性トレースを含む。上で議論したいように、図4中の勾配コイル421a,421b,421cの描写は、任意の数及び形態の層を用いて1以上の所望の勾配コイルを提供する任意の適切な幾何学的構成の勾配コイルを一般的に提示することが意図されている。
勾配コイルがラミネートパネル(例えば、ラミネートパネル400)内に少なくとも部分的に形成された1つの非限定的な実施例として、概ね円形の幾何学的構成を用いて、1以上の層内に少なくとも部分的に、Z勾配コイルが形成されてよく、(例えば、図1に概略的に例示する幾何学的構成に類似する)格子(グリッド)のようにパターン化された1以上の導電体を介してのように、概ね長方形の幾何学的構成を用いて、1以上の層内に少なくとも部分的に、X勾配コイル及びY勾配コイルが形成されてよい。勾配コイルのための導体は、低磁場MRIシステムの他の磁性コンポーネントを備える或いは備えない並びに他の磁性コンポーネントと層を共用する且つ/或いはラミネートパネルの別個の層の上にパターン化される統合された勾配コイルをもたらすために、所望に任意の組み合わせにおいて1つの又は多数の層に亘って分散させられてよい。
その上にBコイル及び勾配コイルの両方を備えるラミネートパネルの幾つかの実施態様において、ラミネートパネルの少なくとも1つの層は、低磁場撮像用途のための所望の磁場特性を提供するよう選択的に制御されてよい、Bコイル(又はその部分)及び勾配コイル(又はその部分)の両方を含んでよい。幾つかの実施態様では、ラミネートパネルの層の上の同じ導電性トレースの少なくとも部分が、コイルがどのように作動させられるかに依存して、Bコイルとして或いは勾配コイルとして機能してよい。幾つかの実施態様によれば、勾配コイルが多数の層に亘って分散させられてよく、幾つかの実施態様によれば、多数の勾配コイル(又はその部分)が単一の層内に形成されてよい(例えば、X、Y及び/又はZ勾配コイルのうちの1以上)。何故ならば、本明細書中に記載する技法は、ラミネートパネル又は多数のラミネートパネルの多数の層に亘って(複数の)磁性コンポーネントを分散させる如何なる特定の方法にも限定されないからである。ラミネート技法を用いて加工される1以上の勾配コイルが、(例えば、1以上の勾配コイルを共用される又は別個のラミネートパネル内に統合させることによって)ラミネート技法を用いて加工される1以上の他の磁性コンポーネントとの関係において利用されてよく、或いは低磁場MRIシステムの部分として従来的な技法を用いて加工される1以上の他の磁性コンポーネントとの関係において利用されてよいことが、理解されるべきである。
同様に上で議論したように、ラミネートパネルは、B励起場を生成することによってMR応答を刺激するように構成される(送信)並びに/或いはB磁場及び対応する勾配場を生成するように構成されるコイルと共に作動させられるときに発せられるMR信号を受信するように構成される(受信)、1以上の送信/受信コイル又は1以上の送信/受信コイルの部分を形成するようにパターン化された少なくとも1つの導電層を更に含んでよい。そのようなラミネートパネルは、単一チャネル又は平行MRIを遂行するために単一の送信コイル及び/又は受信コイル(若しくはそれらの部分)或いは多数の送信コイル及び/又は受信コイル(若しくはそれらの部分)を含んでよい。図4に例示する実施例において、ラミネートパネル400は、(複数の)層430を含み、複数の層の上には、送信/受信コイル431の全部又は部分が形成される。
任意の適切な幾何学的構成を用いて、送信/受信コイル又は送信/受信コイルのセットをパターン化させてよい。例えば、幾つかの実施態様では、螺旋形状の導体を1以上の層内にパターンさせて、1以上の送信/受信コイル(又はその部分)を形成してよい。幾つかの実施態様によれば、実質的に長方形の幾何学的構成を利用して、ラミネート技法を用いて1以上の送信コイル及び/又は受信コイルを加工してよい。送信及び受信のために異なるコイルを用いる幾つかの実施態様によれば、送信及び受信コイルは、異なるそれぞれの幾何学的構成を用いて1以上の層内に形成されてよい。幾つかの実施態様では、多数の層及び/又は多数のラミネートパネルを用いて、低磁場MRIシステムのための送信/受信コイル及び/又は送信/受信コイルのセットを集合的に形成してよい。ラミネート技法を用いて加工される1以上の送信/受信コイルは、(例えば、1以上の他の磁性コンポーネントを共用される又は別個のラミネートパネル内に統合することによって)ラミネート技法を用いて加工される1以上の他の磁性コンポーネントとの関係において利用されてよく、或いは低磁場MRIシステムの部分として従来的な技法を用いて加工される1以上の他の磁性コンポーネントとの関係において利用されてよいことが、理解されるべきである。
ラミネートパネルは、環境からの及び/又はMRIシステムのコンポーネントから生成される電磁エネルギがMRI磁気学によって生成される磁場を乱すのを防止するために且つ/或いは装置を電磁干渉からその他の方法で遮蔽するために配置される1以上の電磁遮蔽を形成するようにパターン化される、1以上の導電層を更に含んでよい。図4に例示する実施例において、ラミネートパネル400は、電磁遮蔽をもたらすために用いられる(複数の)層440を含む。単一の遮蔽層のみが示されているが、任意の適切な数の遮蔽層が任意の異なる数の場所で用いられてよく、1以上の遮蔽を形成するパターン化された(複数の)導電層が別個の層内に形成されてよく或いは他のコンポーネントがその上に形成される層の上に形成されてよい(例えば、他の磁性コンポーネント又は他の磁性コンポーネントの部分がその上に形成される1以上のラミネート層の未使用部分の上に電気的に隔離されてパターン化されてよい)ことが理解されるべきである。(複数の)遮蔽層440は、ラミネートパネル400の1以上の層内に導体メッシュをパターン化することによって形成されてよいが、遮蔽は、任意の所望の幾何学的構成を形成する任意の適切な導体パターンを用いて提供されてよく、その幾何学的構成は、それぞれの遮蔽がどこに提供されるか及び/又は特定の遮蔽を利用して抑制し或いは排除する電磁干渉の特性に基づき選択されてよいことが、理解されるべきである。
電磁遮蔽は、能動的な遮蔽又は受動的な遮蔽をもたらすように構成されてよく、実施態様は、この点において限定されない。幾つかの実施態様において、ラミネートパネルの多数の層の上に形成される遮蔽は、1以上のビアを用いて接続される。従って、低磁場MRIのための少なくとも幾つかの遮蔽は、1以上の磁性コンポーネントが、1以上の別個の層の上で加工される或いは他の磁性コンポーネント(又はその部分が)が形成される1以上の層で加工される、1以上のラミネートパネル内に統合させられてよい。電磁遮蔽は、磁場、電場、又は両方の、静的な又は動的な遮蔽を含んでよい。
所望の磁場の生成を促進するよう配置されるシムコイル(shim coils)が、ラミネートパネルの1以上の層の上にパターン化されてもよい。幾つかの実施態様によれば、ラミネートパネルは、(複数の)磁場を生成し或いは(複数の)磁場に寄与するように配置され且つ1以上のBコイルによって生成されるB磁場の同質性を改良するよう構成されて、所与の視野内のB磁場をその他の方法で改良し且つ/或いはB磁場に否定的な影響を与える他の磁場を相殺するよう、1以上のシムコイル又は1以上のシムコイルの部分を形成するようにパターン化された、少なくとも1つの導電層を含んでよい。図4に例示する実施例において、ラミネートパネル400は、(複数の)層450を含み、(複数の)層450の上には、1以上のシムコイル452(又はその部分)が形成される。少なくとも1つのBコイルと少なくとも1つのシムコイルとを備えるラミネートパネルを含む実施態様について、少なくとも1つのシムコイルは、少なくとも1つのBコイル(又はその部分)と共用される(しかしながら、少なくとも1つのBコイル(又はその部分)から電気的に隔離される)導電層によって形成されてよく、或いは少なくとも1つのBコイル(又はその部分)と別個の1以上の導電層内に形成されてよい。議論した他の磁性コンポーネントと同様に、ラミネート技法を用いて加工されるシムコイルは、ラミネート技法を用いて(例えば、共用される又は別個のラミネートパネル内にシムコイルを統合することによって)加工される他のコンポーネントと共に利用されてよく、或いは、低磁場MRIシステムの部分として従来的な技法を用いて製造される他のコンポーネントと共に利用されてよい。
上で議論したように、多数の低磁場MRIコンポーネント(又はそれらの部分)が、ラミネートパネルの単一の層(即ち、単一のラミネート層)の上に形成されてよい。即ち、多数の磁性コンポーネント又は多数の磁性コンポーネントの部分が、単一のラミネート層の同じ導電層の上にパターン化されてよい。例えば、単一のラミネート層の導電層は、(完全なB磁石を形成する或いは完全なB磁石に寄与する)1以上のBコイル及び1以上の勾配コイル又は1以上の勾配コイルの部分を形成するようにパターン化されてよい。
更なる実施例として、ラミネートパネルの単一のラミネート層が、勾配コイルの全部又は部分及び送信/受信コイルの全部又は部分を形成するようにパターン化されてよい。勾配コイル及び送信/受信コイル(又はそれらの部分)は、ラミネート層の上に形成される少なくとも幾つかの導電要素を共用してよく、或いは、勾配コイル及び送信/受信コイル(又はそれらの部分)は、同じラミネート層の上に(例えば、互いに電気的に隔離されて)別個に形成されてよい。他の実施例として、ラミネートパネルの単一のラミネート層が、1以上のBコイルの全部又は部分及び低磁場MRIシステムのためのB磁場の同質性を同調するために用いられる1以上のシムコイルの全部又は部分を形成するようにパターン化されてよい。(複数の)シムコイル及び(複数の)Bコイル(又はそれらの部分)は、ラミネート層の上に形成される少なくとも幾つかの導電要素を共用してよく、或いは、(複数の)シムコイル及びBコイル(又はそれらの部分)は、同じラミネート層の上に別個に(即ち、互いに電気的に隔離されて)形成されてよい。コンポーネント(又はそれらの部分の)あらゆる組み合わせは、特定の設計に従って所望に1以上の共用されるラミネート層内に同様に加工されてよいことが理解されるべきである。何故ならば、それらの特徴はこの点において限定されないからである。
発明者は、幾つかの実施態様に従ってラミネートパネルの上に形成される幾つかの導体が、多数の機能、典型的には、別個のMRIコンポーネントによって遂行される機能の特性を遂行するように構成されてよい。異なる機能を遂行するよう同じ導体を目的変更すること(repurposing)によって及び/又は多数のコンポーネント又は多数のコンポーネントの部分の間でラミネートパネルのラミネート層を共用することによって、ラミネートパネルを製造することに関連する寸法及び費用は削減されることがある。
図4に示すラミネートパネル400のラミネート層の順序は例示の目的のために提供されているに過ぎず、層の任意の適切な順序付け(ordering)が用いられてよいことが理解されるべきである。即ち、多数の磁性コンポーネント(又はそれらの部分)がラミネートパネル内に統合されるとき、ラミネート層のいずれかの順序付けを用いて、統合される磁性コンポーネントの所望の順序を達成してよい。幾つかの実施態様において、層及び層の上に形成されるコンポーネントの形態は、少なくとも部分的に、非限定的に、電力消費、勾配線形性、B磁場同質性、勾配強度、RF強度、熱的考察等を含む、1以上のシステム及び/又は撮像パラメータを最適化するための設計考察に基づき、選択されてよい。例えば、幾つかの実施態様において、1以上のBコイルの全部又は部分を含む1以上の層は、低磁場MRIシステムの電力消費を減少させるよう、ラミネートパネルの(複数の)最内側層として配置されてよい。幾つかの実施態様では、ラミネートパネルの1以上の外側層が、電磁遮蔽をもたらすようにパターン化されてよい。従って、ラミネートパネルの層のあらゆる順序付けが用いられてよい。何故ならば、本明細書中に記載する技法は、この点において如何なる特定の形態との使用にも限定されないからである。
上で議論したように、ラミネートパネル400は、ラミネート技法を用いて加工されてよい例示的なコンポーネントを例示するために、Bコイル、勾配コイル、送信/受信コイル、シムコイル、及び電磁遮蔽の全部又は部分を加工されて有するものとして示されているが、ラミネートパネルは、コンポーネントの任意の1つ又は組み合わせ或いはそれらの所望の部分を含んでよい。幾つかの実施例では、例示的なコンポーネントの少なくとも部分が、(例えば、それらのコンポーネントのために従来的な製造技法を用いることによって)(複数の)ラミネートパネルと別個に設けられる。例えば、幾つかの実施態様は、(複数の)ラミネートパネルを含み、ラミネートパネルは、その上に形成される1以上のBコイルを有し、低磁場MRIシステムの他のコンポーネントは、(複数の)ラミネートパネルと別個に設けられる。他の実施態様は、ラミネートパネルを含み、ラミネートパネルは、その上に形成される1以上の勾配コイルを有し、低磁場MRIシステムの他のコンポーネントは、ラミネートパネルと別個に設けられる。例えば、そのような実施態様において、低磁場MRIシステムのための主磁場Bは、(図1における2平面Bコイルアーキテクチャとの関係において記載したような)従来的な技法を用いて製造されてよく、送信/受信コイルは、撮像されるべき物体の周りに又は付近に配置されるヘルメットに基づく(helmet-based)及び/又は表面に置かれる(surface-based)コイルによって提供されてよい。他の実施態様において、ラミネートパネルは1以上のBコイル及び1以上の勾配コイル(又はそれらの部分)の両方をそれらの上に形成してよく、低磁場MRIシステムの他のコンポーネントは(複数の)ラミネートパネルと別個に生産される。
従って、本明細書中に記載する技法に従って製造されるラミネートパネルは、任意の適切な数の層を含んでよく、層の上には、低磁場MRIコンポーネント(又はそれらの部分)のいずれか1つ又は組み合わせが形成され、そのような(複数の)ラミネートパネルは、任意の数の他の(複数の)ラミネートパネル或いは他の技法を用いて生産される他のコンポーネントのいずれか1つ又は組み合わせとの関係において利用されてよい。何故ならば、それらの特徴はこの点において限定されないからである。幾つかの実施態様によれば、1以上の磁性コンポーネントがラミネート技法を用いて加工される部分及び従来的な技法を用いて生産される部分で実施される、混成アプローチが用いられてよい。
上で議論したように、磁性コンポーネントは、部分的に又は全体的に、任意の数の異なる形態においてラミネートパネルの複数の層の上に(複数の)磁性コンポーネントの部分を分配することによって加工されてよい。図5は、幾つかの実施態様に従った多層ラミネートパネル500を例示しており、多層ラミネートパネル500は、その中に加工されたBコイルを有する。図5は、通電されるときに、低磁場MRIを遂行するのに適したB磁場に寄与する磁場をもたらすよう、Bコイルの部分がラミネートパネルの多数の層に亘ってどのように分配されてよいかの幾つかの実施例を示している。例示的な層は、その中に加工されるBコイルの部分を図式的に例示しているが、以下に更に詳細に議論するように、各層は、他の磁性コンポーネント(例えば、1以上の勾配コイル、送信/受信コイル、シムコイル等)を含む、他のコンポーネントを含んでよい(しかしながら、含まなくてもよい)。
例示的なラミネートパネル500は、14個のラミネート層を含み、それらの上には、B磁石の部分が、それぞれの導電層を相応してパターン化することによって分配されている。図5において、例示的な層の上に提供される導電性パターンは、概ね円形のコイルによって例示されており、その幅は、それぞれのコイルを形成する巻きの数を代表的な方法において示している。コイルは、通電されるときに、実線で表されたコイルを通じる電流が破線で表されたコイルを通じる電流と反対方向に流れること(例えば、時計回り対反時計回り又はその逆)を示すよう、実線及び破線で表されている。例示的なラミネートパネル500は、その上に加工された並びにほんの一例として以下に記載する方法において分配された、コイル510A、510B、510C、510D、510E、510F、及び510Gを含む。
図5中の例示的な層1−14の各々は、複数の巻き、例えば、20巻きの導電性トレースをそれぞれ含むコイル510Aをそれらの上に加工している。即ち、描写する層内に示すように、24個の層の各々は、20巻きの導電性トレースを有するそれぞれの外側コイルを形成するようにパターン化されてよい。各コイル510Aは、層間の1以上のビア(例えば、めっきされた貫通穴、ピン、又は他の適切な導電性ビア)を用いて後続の層内のコイル510Aに接続されてよい。代替的に、外側コイル510Aの1以上は、他のコイル510Aから電気的に隔離されてよく、例えば、独立して通電されるように構成されてよい(例えば、コイル510Aの1以上は、シムコイルとして利用されてよい)。最初の6個の層(例えば、図5に例示する層1乃至6)の各々は、Bコイルに対する外側コイル510Aで構成されるが、(他の磁性コンポーネントを含む)他のコンポーネントが追加的にその上に加工されてよい。
層7乃至14の各々は、それぞれのコイル510Bをその上に加工してもよく、コイル510Bは、破線によって示すように、作動させられるときに、コイル510Aと反対方向に電流を伝えてよい。例示的なラミネートパネル500において、各コイル510Bは、それぞれの層の上に形成されるコイル510Aにおける巻きの数よりも少ない数の巻きを含む。コイル510Bを表すために用いられる減少する線幅によって示されるように、それぞれのコイルを形成する導電性トレースの巻きの数も、コイルがその上に分配される層に亘って減少してよい(或いはその他の方法で変化してよい)。例えば、層7及び8内のコイル510Bは、11個の巻きの導電性トレースをそれぞれ含んでよく、それぞれの層9乃至11内に加工されるコイル510Bは、10個の巻きで形成されてよく、層12内に加工されるコイル510Bは、9個の巻きで形成されてよく、そして、それぞれの層13及び14内に加工されるコイル510Bは、8個の巻きで形成されてよい。巻き形態は例示的であること並びに巻きの数及び巻きの数がどのように異なるか(或いは一定のままであるか)は如何なる点においても限定されないことが理解されるべきである。
層7乃至14の各々は、それぞれのコイル510Cをその上に加工してもよく、それぞれのコイル510Cを加工は、コイルを表す実線によって示されるように、作動させられるときに、コイル510Aと同じ方向に電流を伝えてよい。例示的なラミネートパネル500において、各コイル510Cは、それぞれの層内でコイル510Bを形成する巻きの数よりも少ない巻きの数を含み、その数はコイル510Cをその上にパターン化するラミネート層に亘って変化してよく或いは同じままでよい。例えば、それぞれの層7乃至10内に加工されるコイル510Cは、6個の巻きで形成されてよく、層11内に加工されるコイル510Cは、5個の巻きで形成されてよく、それぞれの層12乃至14内に加工されるコイル510Cは、4個の巻きで形成されてよい。しかしながら、この配置(構成)は例示的であるに過ぎず、巻きの数及び巻きがどのように変化するか(或いは一定のままか)は、この例示的な配置(構成)において限定されない。
層7乃至11の各々も、それぞれのコイル510D及びそれぞれのコイル510Eをその上に加工しており、層7乃至9の各々は、それぞれのコイル510Fをその上に加工しており、層7及び9の各々は、それぞれのコイル510G及びそれぞれのコイル510Hをその上に加工している。図5に例示する実施例において、連続的なコイルは、作動させられるときに、それらが電流を伝える方向を交番し(alternate)、各連続的なコイルは、先行するコイルよりも少ない導体の巻きの数を含む。しかしながら、この形態は例示的であるに過ぎず、電流が伝えられる方向、各コイルにおける巻きの数、及びラミネートパネルの各層の上のコイルの数は、低磁場MRIのためのB磁場を生成する或いは低磁場MRIのためのB磁場に寄与するよう所望に選択されてよい。
コイル510Aとの関係において議論したように、図5に例示する例示的なコイルを形成する導体は、(以下に更に詳細に議論するような)互いに接続される内層(intra-layer)及び/又は層間の導電性ビアを用いて接続される中簡層(inter-layer)であってよい。更に、図5に例示するコイルの1以上は、隔離してパターン化されてよく、独立して通電させられることができてよい。このようにして、そのようなコイルは、(例えば、低磁場MRIシステムの較正中に)所与の環境において又は所与の荷重条件の下で結果として得られるB磁場の同質性を改良するために必要に応じて作動させられ得るシムコイルとして用いられてよい。
上で議論したように、同じラミネート層内に設けられるコイルは、作動させられるときに、電流が異なるそれぞれのコイル内で異なる方向に流れるように構成されてよい。例えば、所与のラミネート層の上にパターン化される1以上のコイルは、同じラミネート層内にパターン化される1以上の他のコイルの反対方向に電流を伝えてよい。図6Aは、Bコイルをその上にパターン化するラミネートパネルの例示的な層605を例示している(例えば、層605は、図5に例示する層12と類似であってよい)。層605は、コイル610A,610B、及び610Cを含み、各コイルは、複数の巻き(例えば、それぞれ20個の巻き、10個の巻き、及び5個の巻き)の導電性トレースを有する。図6Bは、図6Aに示す領域645を拡大して例示して、層605の上にパターン化された導電性トレース又はトラックに関する更なる詳細を示している。
図6Bに例示するように、コイル610A,610B,610Cは、単一の導電性トレース615によって形成されており、導電性トレース615は、電流が導電性トレース615に提供されるときに、電流がコイル610A,610B,610Cに対して交番する反時計回り及び時計回り方向において伝えられるようにパターン化されている。具体的には、コイル610Aは、反時計回り方向に電流を伝え、コイル610Bは、時計回り方向に電流を伝え、コイル610Cは、反時計回り方向に電流を伝える。導電性トレース615は、電流が伝えられる方向に関して任意の所望の形態を実施するようにパターン化されてよいことが、理解されるべきである。例えば、多数のコイルがその上に加工される層は、電流が各コイルを通じて同じ方向に伝えられるようにパターン化されてよいが、各コイル又は電流伝導の方向は1以上の所望のコイルを通じて変更させられてよい。何故ならば、本明細書中に記載する技法は、如何なる特定の導体の形態又は電流の流れの方向との使用について限定されないからである。
図6A及び6Bは、例示的なビアも例示しており、それらのうちのビア675が図6Bに印されている。これらのビアは、(例えば、上述の図3A及び3Bに示す例示的なビアによって例示するように)1つのラミネート層の上にパターン化される導電性トレースを1以上の他のラミネート層の上にパターン化される導電性トレースと接続する。ビアは、隣接するラミネート層内の導電性トレースを接続するよう設けられてよく、且つ/或いは、任意の数の所望のラミネート層の上にパターン化される導電性トレースを接続するよう、多数の層を通じて設けられてよい。従って、ラミネートパネルの異なる層の上にパターン化される導電性トレースは、ラミネートパネル内に加工される磁性コンポーネント(又は他の電子コンポーネント)のための所望の回路構成をもたらすよう、任意の方法において接続されてよい。
図5及び図6に関連して上で例示した例示的なコイルは、実質的に円形であり、実質的に均一な同心状の巻きを有するが、他の幾何学的構成及び形態を利用し得る。何故ならば、本明細書中に記載する技法は、如何なる特定の幾何学的構成又は形態との使用に限定されないからである。例えば、図7及び図8は、本明細書中に記載するラミネート技法を用いて実現してよいBコイル設計の非限定的な実施例を図式的に例示している。剛性の支持構造の周りに正方形又は円形の導体を巻回することを典型的に含む従来的な生産技術を用いて低磁場MRIシステムのために実際的に実現され得るBコイルと異なり、ラミネートプロセスの柔軟性及び精度の故に他の設計が実現されることがある。例えば、ラミネート技法を用いて形成されるBコイルのための導電性トレースは、一般的に言えば、任意の所望の寸法に従って並びに任意の所望の幾何学的構成に従って、加工され且つパターン化されてよい。よって、従来的なワイヤ導体を用いては一般的に実現可能でない相対的な寸法を有する導電性経路が加工され得るし、従来的な製造技術を用いては可能であるとしても実際的でない幾何学的構成に従ってパターン化され得る。よって、ラミネート技法は、B磁石のためのみならず、他の磁性コンポーネント(例えば、勾配コイル、送信/受信コイル、シムコイル等)のためにも、より最適なコイル設計の製造を促進することがある。
その上、ラミネート技法は、コイルが多数の(そして、幾つかの設計においては、比較的数多くの)層の上に分配されるのを可能にするので、各々の所与の層内のコイルの部分の寸法、位置、幾何学的構成等は、結果として得られる磁場を概ね最適化するよう選択されることがある。例えば、発明者は、各層の上の導電性パターンの1以上のパラメータを変えて、導体寸法、位置、幾何学的構成、巻きの数、及び/又は結果として得られる磁場に影響を与える各層の上の導電性パターンの任意の他の(複数の)パラメータのうちのいずれか1つ又は組み合わせに関する概ね最適な解決策を決定する、シミュレーションを開発した。異なるMRI用途は、異なる最適な解決策を有することがあるので、ラミネート技法は、特定のMRI用途のために調整される低磁場MRIシステムを設計し且つ実施するために利用されてよい。
図7A乃至7Cは、例えば、ラミネートパネルの単一の層の上にパターン化されてよい或いは多数のラミネート層の上に分散させられ且つ適切に配置されるビアを用いて接続されてよい複数の巻きを含む螺旋形Bコイル設計を例示している。図7Aは、1以上のラミネート層の上にパターン化された導電性材料の比較的広い螺旋形トレースを例示している。図7Bは、導電性経路の幅が図7Bに例示する導電性経路よりも細いが、巻きの数はより大きい、螺旋形Bコイル設計を示している。図7Cは、非均一な密度の螺旋の巻きを有する(即ち、螺旋幾何学的構成が内向きに動くに従い螺旋幾何学的構成がより緊密になる)、螺旋形Bコイル設計を示している。1以上の可変の密度の螺旋形Bコイルを用いることは、所与の円形のコイル設計に比べて、所望の強度のB磁場を生産するのに必要とされる電力量を減少させることがある。そのような可変の螺旋形密度のBコイルの製造は、典型的には、従来的なワイヤ包装技術(wire-wrapping techniques)を用いては実用的でなく或いは実現可能でない。他の螺旋に基づくBコイル設計も可能であり、本明細書中に例示する幾何学的構成及び形態は、考え得るコイル設計の例であるに過ぎないことが理解されるべきである。
図8A乃至8Cは、ラミネートパネルの単一のラミネート層の上にパターン化されてよい或いは適切に配置されるビアを用いて多数のラミネート層の上に分散させられてよい複数の巻きを含む同心状のリングBコイル設計を例示している。図8Aは、1以上のラミネート層の上に形成され且つ導体の巻きに関して均一な密度を有する導体材料の複数の接続された円形のトレースを例示している。図8Bは、ラミネート層の上に形成されるBコイルの巻きの数及び密度の両方が、図8Aの設計と比べて増大させられているが、巻きの均一な密度を維持している、Bコイル設計を示している。図8Cは、同心状のコイルの非均一な密度の巻きを有するBコイル設計を示している。他の円形ベースのBコイル設計、例えば、図5、6及び10に関連して上述した例示的なBコイル形態も可能であり、実施態様はこの点において限定されないことが理解されるべきである。
図4に関連して議論したように、ラミネート技法を用いて、部分的に、全体的に、及び/又は単独で若しくは1以上の他の磁性コンポーネントとの組み合わせにおいて、ラミネートパネル内に統合される勾配コイルを生産してよい。勾配コイルは、特定の実施に適した任意の所望の幾何学的構成に従ってパターン化されてよい。図9A乃至9Cは、幾つかの実施態様に従った例示的なx勾配コイル、y勾配コイル、及びz勾配コイルを例示している。例えば、図9Aは、ラミネートパネルの単一のラミネート層の上にパターン化される或いは多数のラミネート層の上に分散させられるx勾配コイル920Aの実施例を例示している。x勾配コイル920Aは、例えば、周波数符号化を行うように構成されてよい。同様に、y勾配コイル920Bは、単一の又は多数のラミネート層の上にパターン化されてよく、例えば、位相符号化をもたらすように構成されてよく、z勾配コイル920Cは、単一の又は多数のラミネート層の上のパターン化されてよく、例えば、画像スライスの局所化(localization)をもたらすように構成されてよい。しかしながら、勾配コイルは、任意の適切な空間符号化を行うように構成されてよい。図9A乃至9Cに例示するパターンは例示的であるに過ぎず、あらゆる形態又は幾何学的構成を用いて低磁場MRIのための勾配コイルを実施してよいことが理解されるべきである。何故ならば、本明細書中に記載する技術は、勾配コイルを実施するための如何なる特定の設計又は形態にも限定されないからである。
図10は、勾配コイルが少なくとも部分的にBコイルを形成するコイルと同じ層の少なくとも一部の上に形成される、実施例を例示している。具体的には、図10は、ラミネートパネルの6個のラミネート層を例示しており、x勾配コイル1020A、y勾配コイル1020B、及びz勾配コイル1020Cは、B磁石の部分と同じ層(例えば、その上に1以上のBコイル又はその部分をパターン化させた層)内にパターン化されている。B磁石に関して、コイル1010Aは、図5に例示するコイル510Aと類似してよい。発明者は、そのようなBコイルの中心におけるラミネート層の領域が1以上の勾配コイル又はその部分をパターン化するために用いられてよいことを理解した。例えば、ラミネートパネルのそれぞれの層の上にパターン化されるBコイル1020Aと共に、x勾配コイル1020Aは、層1000A及び1000Bの上にパターン化されてよく、y勾配コイル1020Bは、層1000C及び1000Dの上にパターン化されてよく、z勾配コイル1020Cは、層1000E及び1000Fの上にパターン化されてよい。勾配コイルは、ラミネートパネルの少なくとも幾つかの別個のラミネート層の上に全体的に又は部分的に勾配コイルをパターン化することを含む他の方法において、低磁場MRIB磁石のためのBコイルと共に同じラミネートパネル内に統合されてよいことが、理解されるべきである。何故ならば、多数の磁性コンポーネントをラミネートパネル内に統合することは、そのようにすることの如何なる特定の方法にも限定されないからである。磁性コンポーネントの合いで層を共用することによって、層の数を削減することがあり、よって、ラミネートパネルを製造するコストを削減することがある。
図4と関連して上でも議論したように、1以上のシムコイルが、低磁場MRIシステムの1以上の他の磁性コンポーネントと共にラミネートパネル内に加工されてよい。図11A及び11Bは、所望の強度及び同質性のB磁場を提供することに寄与する或いはそのようなB磁場を提供することを助ける磁場をもたらすために、ラミネートパネルの1以上の層の上にパターン化されてよい、例示的なシムコイルを例示している。1つの非限定的な実施例として、シムコイル1150Aは、通電されるときに、対応する磁場をもたらすよう、1以上のラミネート層内にパターン化されてよい。コイル1150Aは、例えば、コイル1150Aが別個に給電され得るよう、コイル1150Aを同じラミネートパネル又は同じラミネート層内に提供される他の能動的なコンポーネントから電気的に隔離することによって、独立して通電されるように構成されてよい。図11Bに例示するコイル1150Bは、ラミネートパネル内に統合されるシムコイルを提供するための異なる例示的な幾何学的構成を示している。シムコイル1150Aと類似して、シムコイル1150Bは、独立して作動させられるように構成されてよい。
シムコイルは、所望の強度及び同質性のB磁場の生成を促進する磁場に寄与する、あらゆる方法及び形態によって提供されてよいことが理解されるべきである。例えば、コイル1150A及び/又は1150Bは、単一の層の上にパターン化され或いは多数の層に亘って分配されてよく、各コイルは、層のみの上にパターン化されてよく、或いは1以上の層を1以上の他のコンポーネント又はその部分と共用してよい。その上、任意の所望の幾何学的構成を有する任意の数のシムコイルがラミネートパネル内に加工されてよい。何故ならば、その特徴はこの点において限定されないからである。幾つかの実施態様によれば、1以上のシムコイルは、低磁場MRIシステムの他の磁性コンポーネントと別個にラミネートパネル内に加工される。幾つかの実施態様によれば、シムコイルは、異なる組み合わせのシムコイルがシステムを作動させる所与の環境に応答して選択的にアクティブ化されることがあるよう、異なる幾何学的構成及び/又は場所に設けられてよい。作動するシムコイルの組み合わせを動的に選択する能力は、輸送可能に又は運搬可能に配置され得る低磁場MRIシステムの生産を促進することがある。上で議論したように、(例えば、同質性を向上させるために)B磁場に寄与するシムコイルは、作動させられるとき、Bコイルである。何故ならば、それらは実際にはMRIシステムのB磁場に寄与するからである。
幾つかの実施態様によれば、所望の強度及び同質性のB磁場に寄与する磁場をもたらすために、1以上の受動的なシムコイルが利用されてよい。図3に関連して上で議論したように、そうするために電源を必要とせずに磁場を生成するために、磁性材料が利用されてよい。従って、磁性材料でパターン化される1以上の層は、所望のB磁場をもたらすのを助けるために受動的なシムとして提供されてよい。本明細書中に記載する他のコンポーネントと同様に、受動的なシムは、任意の数、配置及び幾何学的構成において提供されてよく、単独で又は1以上の他のコンポーネントと共用される層の上で、単一の又は多数の層の上にパターン化されてよい。何故ならば、受動的なシムを提供する特徴は、如何なる特定の形態、幾何学的構成又は配置にも限定されないからである。受動的なシムは、任意の所望の幾何学的構成の磁性材料で構成される別個のシム要素を用いて提供されてよい。そのようなシム要素は、所望の場所で(例えば、接着剤又は他の取付け手段によって)それらの要素をパネルに取り付けることによってラミネートパネル内に組み込まれてよく、且つ/或いはそのようなシム要素は、所望の場所でラミネートパネルと別個に配置されてよい。何故ならば、それらの特徴は、1以上の受動的なシムを低磁場MRIシステム内に組み込む如何なる特定の方法にも限定されないからである。
前述において議論したように、ラミネート技法を用いて、任意の数の異なる組み合わせ及び形態において(複数の)磁性コンポーネントを生産してよい。例えば、発明者は、ラミネートパネル技法を用いてソレノイドコイル設計に従った低磁場MRIシステムを実施してよく、生成されるB磁場は、高磁場MRIシステムを実施するために頻繁に用いられる設計である、ソレノイドコイルの中心を通じる軸に沿って方向付けられてよいことを更に認識し且つ理解した。具体的には、幾つかの実施態様によれば、1以上のソレノイドコイルが、撮像されるべき物体を位置付けてよい1以上のソレノイドに基づくコイルの中心を通じる視野を創るように配置される複数の接続されたラミネートパネルの上に形成されてよい。
図12は、幾つかの実施態様に従った、低磁場MRIにおける使用のためのソレノイドB磁石を含む、その上に加工された磁性コンポーネントを有する複数のラミネートパネルを含む、磁性装置1200を例示している。図示のように、磁石装置1200は、撮像されるべき物体をその中に配置してよい八角形チューブを形成する、8個の接続されたラミネートパネルを含む。ソレノイド磁石は、各々のラミネートパネルの上でパターン化される複数の導電性セグメントを接続することによって形成されるBコイル1210を含む。ラミネートパネルは、隣接するラミネートパネルの上に形成される導電性セグメントの間の安定的な接続を保証する任意の適切な方法(例えば、1以上の導電性接着剤、噛み合い得る或いはその他の方法で取り付けられ得る部分、又は隣接するラミネートパネルの間の適切な電気的又は機械的な接続を行うために用いられてよい任意の他の適切なコネクタ)において接続されてよい。接続されて適切な電流で通電されるとき、ラミネートパネルの上にパターン化される導電性セグメントは、磁性装置1200の長手(Z)方向においてB磁場を生成するソレノイドBコイル1210を形成する。Bコイル1210の巻線は、ソレノイドコイルが複数のラミネートパネルを介してどのように実施され得るかを例示するように図式的である。
図12における実施例において、磁性装置1200は、対向するラミネートパネルの上に形成される並びにx方向において勾配磁場を生成するように構成されるx勾配コイル1220a,1220b及び対向するラミネートパネルの上に形成される並びにy方向において勾配磁場を生成するように構成されるy勾配コイル1230a,1230bも含む。加えて、磁性装置1200は、Bコイル1210と類似するソレノイド幾何学的構成を有するが、磁性装置1200の両端に形成され且つ例えばz方向におけるスライス選択を可能にするように構成される、z勾配コイル1240a,1240bも含む。勾配コイルの幾何学的構成及び形態は例示的であり、勾配磁場は導体の他のパターンを用いて生成されてよい。何故ならば、それらの特徴は、この点において限定されないからである。
図12に例示するラミネートパネルは、任意の所望の数の層を有するラミネートパネルを提示していることが理解されるべきである。即ち、各ラミネートパネルは単一の層を含んでよく、或いは、各ラミネートパネルは多数の層を含んでよく、多数の層の各々は、1以上の低磁場MRIコンポーネントの全部又は部分を形成させてよい。何故ならば、所望の磁性コンポーネントは、任意の所望の形態に従って加工されてよいからである。例えば、Bコイル1210は、図12に示すように多数のラミネートパネルの上に導電性セグメントを接続することによって形成されてよいのみならず、各ラミネートパネルの多数のラミネート層内に形成される導電性セグメントを接続することによって形成されてもよいからである。
低磁場RMIシステムのコンポーネントを製造するために本明細書中に記載するラミネート技法は極めて設定変更可能であり、任意の所望の幾何学的構成及び/又は大きさの導電性セグメントを用いて所望の設計に従った磁性装置を提供してよく、図12に例示する形態及び配置は幾つかの実施態様に従った実施例を例示するために提供されているに過ぎない。例えば、ラミネートパネルを任意の大きさ及び形状に形成し且つ互いに接続して所望の幾何学的構成を創り出してよい。よって、体の所望の部分に適合する並びにそれらの上に磁性コンポーネント及び/又は電子コンポーネントの任意の1つ若しくは組み合わせをパターン化させたラミネートパネルシステムが生産されてよい。幾つかの実施態様によれば、図12に関連して記載する技法は、所望の解剖学的構造を撮像するためのラミネートに基づくシステムを構築するために用いられてよく、磁性コンポーネントの任意の所望の組み合わせが、周りに形成された幾何学的構成を有する並びに所望の解剖学的構造に適合するように構成される一連の接続されたラミネートパネルの上に加工されてよい。例えば、一連の接続されたラミネートパネルは、以下に記載する図22A乃至22Cに関連して更に詳細に議論するように、頭を撮像するように構築されてよい。
前述において議論したように、ラミネート技法は、低磁場MRIシステムの1以上の磁性コンポーネントを生産する数多くの方法において利用されてよい。本明細書中に記載するラミネート技法を用いて生産されるラミネートパネルを利用する例示的な低磁場MRIシステムが図13に例示されている。具体的には、図13は、ラミネートパネル1310a,1310bが利用される、低磁場MRIシステム1300のコンポーネントを図式的に例示しており、ラミネートパネル1310a,1310bは、それらの上に加工された例磁場MRIシステムの1以上の磁性コンポーネントを有する。図13に例示する磁性コンポーネントの2平面配置は、図1に示すものと類似するが、従来的な技法を用いて生産される磁性コンポーネントよりもむしろ、ラミネート技法を用いてラミネートパネル1310a,1310bを介して提供される、1以上の磁性コンポーネントを備える。例えば、図1中のBコイル110a,110b及び/又は勾配コイル120a,120bのような従来的な技法を用いて生産される1以上の磁性コンポーネントは、ラミネートパネル1310a,1310b内の統合された磁気学と置換されている。
図13に例示する例示的なシステムにおいて、ラミネートパネル1310aは、1以上のBコイル及び/又は1以上の勾配コイルを統合して、2平面コイル配置の1つの「側」を形成してよく、ラミネートパネル1310bは、同様に、1以上のBコイル及び/又は1以上の勾配コイルを統合して、2平面配置の他の「側」を形成してよい。よって、2平面B磁石は、作動させられるときに低磁場MRIを遂行するのに適したパネルの合いでB磁場を生成するラミネート技法を用いて生産されてよい。発せられるMR信号を空間的に符号化する勾配コイルも、ラミネート技法を用いてラミネートパネル1310a,1310b内に統合されてよい。非限定的に、1以上の送信/受信コイル、1以上のシムコイル、遮蔽、パワーエレクトロニクス、熱消散コンポーネント等を含む、他の磁性コンポーネント及び/又は電子コンポーネントが、ラミネートパネル1310a,1310b内に加工されてよいことが、前述のことから理解されるべきである。
上で議論したように、ラミネートパネル形態において統合される磁気学を提供することは、非限定的に、比較的困難で繊細なコイル巻回及び整列、磁性コンポーネントの生産後整列、可搬性、生産後形態及び較正に対する制約等を含む、従来的な製造技法の1以上の欠点を回避することがある。更に、ラミネートパネル形態において統合される1以上の磁性コンポーネントを提供することは、低磁場RMIシステムの設計、製造及び据付けを単純化することがあるという、フレキシビリティ、確実性及び/又は測定可能性(scalability)ももたらすことがある。ラミネート技法を用いる統合される磁気学は、非限定的に、幾何学的構成及び形態に関する設計のフレキシビリティ、特定の用途のために磁気学を調整する能力、コストの削減、可搬性の増大、及び/又は低磁場MRIシステムのコンパクトさを含む、更なる利益をもたらすことがある。
ラミネートパネル(例えば、ラミネートパネル1310a,1310b)は、Bコイル、勾配コイル、送信/受信コイル、シムコイル及び電磁遮蔽の任意の1つの又は組み合わせを統合してよく、磁性コンポーネント(又はそれらの部分)の如何なる特定の1つ又は組み合わせとの使用のためにも限定されないことが、前述のことから理解されるべきである。その中に統合されないあらゆる1以上の磁性コンポーネントは、任意の他の利用可能な技法を用いて提供されてよい(例えば、1以上の磁性コンポーネントは、それぞれの磁性コンポーネントを生産するための従来的な技法を用いて提供されてよい)。
幾つかの実施態様によれば、磁性コンポーネントは、混成技法を用いて生産されてよく、磁性コンポーネントの部分は、ラミネートパネル形態において生産されてよく、磁性コンポーネントの部分は、異なる技法を用いて製造される。例えば、図14aは、幾つかの実施態様に従った、Bコイルのための混成設計を例示している。混成設計は、コイル1405と、コイル1410A,1410B,1410Cをその中に有するラミネートパネル1410とを含む。コイル1405は、図1に関連して上で議論したような巻回コイルであってよく、或いは、通電されるときに低磁場MRIに適したB磁場に寄与する磁場をもたらす1以上の積み重ねられた金属プレートであってよい。巻回導体によって形成されるコイルは、電磁石を形成するためにワイヤのような導体を巻回することによって生産されるコイルを指し、コイルを形成するために代わりに導体をパターン化するラミネート技法を用いて生産されるコイルと対照的である。同様に、ラミネートパネル1410の層の上にパターン化されるコイル1410A,1410B,1410Cは、通電させられるときに低磁場MRIに適したB磁場に寄与する磁場を生成する。図14Aに例示する例示的な混成設計は、2平面設計の1つの側又は本明細書中に記載する幾何学的構成のいずれかにおける幾何学的構成若しくは切子面(facet)を表すことがある。よって、B磁石は、低磁場RMIを遂行するのに適した所望のB磁場をもたらすために、ラミネート技法及び非ラミネート技法を用いて構築されてよい。
ラミネートパネル1410は、任意の数のラミネート層の上に分配させられる任意の数のコイルを有する任意の所望のラミネートパネルの代表であるよう図式的に例示されていることが理解されるべきである。例えば、ラミネートパネル1410は、1以上のBコイル(例えば、B矯正又はシムコイル)、1以上の勾配コイル、及び/又は1以上のTx/Rxコイルを含んでよい。何故ならば、それらの特徴はこの点において限定されないからである。ラミネートパネル1410は、コイル1405に対して図14Aに示すような大きさとさせられる必要はなく、任意の大きさであってよく、コイル1405に対して任意の方法において位置付けられてよいことが更に理解されなければならない。何故ならば、図14Aに例示する混成設計は、所望のB磁場、所望の勾配磁場、及び/又は所望のRF磁場を生成するために、ラミネートパネルが非ラミネート技法を用いて形成される1以上のコイルと共にどのように用いられてよいかの一例に過ぎないからである。
図14Bは、幾つかの実施態様に従った混成磁石の部分を例示している。混成磁石1400’は、所望の磁場強度及び/又は同質性の磁場に寄与する磁場を生成するように構成されるコイル1405’を含む。コイル1405’は、特定の設計、及び/又は所望の磁場強度、インダクタンス、抵抗、電力要求等に適した回数の巻き(例えば、約10、50、100、150、200、250、500又はそれよりも多くの巻き)を用いて提供される導体(例えば、巻回銅導体、銅プレート等)によって形成される、コイルであってよい。コイル1405’は、任意の所望の大きさに構築されてよい。例えば、例示的なコイル1405’が、10〜50インチに及ぶ内径及び15〜80インチに及ぶ外径を有してよい。これらの範囲は例示のために過ぎず、コイル1405’は上で提供した例示的な範囲よりも大きく或いは小さく構築されてよいことが理解されるべきである。コイル1405’は、リボンワイヤ、円形ワイヤ、正方形ワイヤ、又は任意の他の適切な導体を用いて巻回されてよく、任意の適切なゲージ(gauge)を有してよい。導体は、銅、アルミニウム、又は任意の適切な材料であってよい。何故ならば、これらの特徴はこの点において限定されないからである。
混成磁石1400’は、1以上の磁性コンポーネントがその上にそれぞれパターン化された複数のラミネート層を有するラミネートパネル1410’も含む。例えば、幾つかの実施態様によれば、ラミネートパネル1410’は、各層が、所望の強度及び/又は同質性のB磁場を達成するために、幾つかの場合には、選択的にそれぞれの磁場に寄与するよう作動させられ得る、その上にパターン化されたBコイル(例えば、補完、矯正若しくはシムコイル)又はその部分を有する、複数の層を含む。追加的に又は代替的に、ラミネートパネル1410’は、各層が、x、y、及び/又はz方向において勾配磁場をもたらすよう、その上にパターン化された勾配コイル又はその部分を有する、複数の層を含んでよい。幾つかの実施態様によれば、ラミネートパネル1410’は、三次元において勾配磁場をもたらすよう、X勾配コイル、Y勾配コイル及びZ勾配コイルでそれぞれパターン化された、1以上の層を含む。ラミネートパネル1410’は、1以上の層の上にパターン化された他の磁性コンポーネント(例えば、1以上の無線周波数コイル)も含んでよい。何故ならば、これらの特徴はこの点において限定されないからである。
ラミネートパネル1410’は、本明細書中に記載する技法のいずれかを用いて或いは任意の適切な技法を用いてその上に加工される磁性コンポーネント及び/又は電子コンポーネントのいずれか1つ又は組み合わせを含んでよいことが理解されるべきである。例えば、ラミネートパネル1410’は、図4、5、9A乃至C、10及び図11A乃至Bに例示し且つ付随する記述中に記載する磁性コンポーネントの種類及び組み合わせのうちのいずれかを含んでよい。ラミネートパネル1410’は、電子コンポーネント、遮蔽、受動的な素子等のような、他のコンポーネントも含んでよい。
ラミネートパネル1410’は、任意の適切な幾何学的構成及び寸法であってよい。具体的には、例示的な正方形のラミネートパネルは、8”×8”〜50”×50”に及ぶ寸法を有してよい。例えば、例示的なラミネートパネルは、約16”×16”、22”×22”、又は所与の設計のための任意の他の寸法を有してよい。例示的な非正方形のパネルは、同様に寸法取られてよい。ラミネートパネル1410’は、所望の磁性コンポーネントをその上に全体的に又は部分的にパターン化してよい任意の数の層(例えば、約10、20、30、50、又はそれよりも多くの層)で加工されてよい。パターン化される層は、所望の動作特性の観点からその上に加工される(複数の)磁性コンポーネントに適した厚さを有する、銅、アルミニウム、又はその他の材料で形成されてよい。例えば、ヘビー銅(例えば、5オンス、6オンス、7オンス、8オンス、10オンス等)を用いて1以上の磁性コンポーネントをパターン化してよく、且つ/或いはエキストリーム銅(例えば、20オンス、25オンス、30オンス、50オンス等)を用いて1以上の磁性コンポーネントをパターン化してよい。しかしながら、他の厚さの導体材料を用いてよい。何故ならば、これらの特徴はこの点において限定されないからである。ラミネートパネル1410’の全厚は、少なくとも部分的に、例示的な厚さが0.1インチ〜数インチに及ぶ、利用される層の数に依存する。
混成磁石1400’は、片側磁石であってよく、或いは2平面磁石の一方の側であってよい。後者の場合、混成磁石の他方の側は、その上に加工された1以上の磁性コンポーネントを有するラミネートパネル1410’及び/又はコイル1405’を同様に含んでよい。幾つかの実施態様において、2平面磁石の他方の側は、ラミネートパネルを含まなくてよい。この点において、2平面磁石のそれぞれの側は構造において同一であってよく或いは異なってよい(例えば、同じ又は異なるコンポーネント又はコンポーネントの数を含んでよい)。よって、2平面コイルは、対称的又は非対称的であってよい。何故ならば、これらの特徴はこの点において限定されないからである。混成磁石は、任意の所望の磁場を生成するように設計されてよい。例えば、混成磁石は、約5mT、10mT、20mT、50mT、100mT、200mT又はそれよりも多くの磁場強度をもたらすように構成されてよい。
図14Cは、幾つかの実施態様に従った混成磁石を例示している。混成磁石1400”は、図14B中の混成磁石1400’に関連して記載したコイル1405’と類似又は同一であってよいコイル1405A’と、図14B中の混成磁石1400’との関係において記載したラミネートパネル1410’と類似又は同一であってよいラミネートパネル1410”とを含む。加えて、混成磁石1400”は、同様にコイル1405’と類似又は同一であってもよいコイル1405Bを含む。結果的に、混成磁石1400’は、所望の強度及び/又は同質性のB磁場を生成することを促進するよう磁場に寄与する2つのコイル1405A及び1405Bを含む。図14Cに例示するように、動作中にコイル及びラミネートパネル1410”から熱を除去するために、熱管理コンポーネント1430が、コイル1405Aとコイル1405Bとの間に設けられてもよい。熱管理コンポーネント1430の様々な詳細は、同時に出願した出願中に記載されている。
図14Dは、コンポーネントが互いに固定され、取り付けられ、或いはその他の方法で接続された後の、混成磁石1400”を例示している。図示のように、熱管理コンポーネント1430は、コイル1405A、コイル1405B、及びラミネートパネル1410”との間に挟装され、且つコイル1405A、コイル1405B、及びラミネートパネル1410”と熱接触して、動作中にこれらのコンポーネントから熱を除去する。例えば、冷却剤(例えば、冷却液又は冷却ガス)が入口1470A及び出口1470Bを介して熱コンポーネントを通じて循環させられて、磁性コンポーネントから熱を吸収し、磁性コンポーネントから離れる方向に熱を移す。上で議論したように、混成磁石1410”は、片側磁石であってよく、或いは2平面磁石の一方の側であってよい。2平面構成において混成磁石1400”を利用する幾つかの実施態様を以下に更に詳細に記載する。表1は、幾つかの実施態様に従った2平面磁石の例示的な構造を例示している。
Figure 0006955595
表1中に列挙する構造の詳細は、例示的であるに過ぎず、例示として提供されているに過ぎないことが理解されるべきである。混成磁石は、MRIシステムの所与の用途の設計制約を満足する数多くの他の方法において構築されてよい。コイル及び/又はラミネートパネルの配置及び幾何学的構成は、描写されているものに限定されないことが更に理解されるべきである。更に、従来的な製造技術を用いて実施される磁性コンポーネント及びラミネートパネル技法を用いて実施される磁性コンポーネントは、本明細書中で議論される組み合わせに限定されない。何故ならば、混成技法を用いてあらゆる組み合わせにおいて低磁場MRIシステムの磁性コンポーネントを生成してよいからである。
発明者は、任意の所望の配置又は組み合わせにおいて磁性コンポーネントをラミネートパネル内に組み込む能力は、特定のMRI用途のために調整された低磁場MRI装置を開発するのを促進するために(例えば、異なる形状及び/又は大きさの)数多くの異なる幾何学的構成が実現されるのを可能にすることを更に理解した。その上、発明は、ラミネートパネルを用いて磁気学を生成することは、比較的低コスト且つ/或いは運搬可能な又はその他の方法で持ち運び可能な低磁場MRIシステムの製造を促進することがあることを認識した。更に、パネル形態において磁石を生産することは、折畳み可能な及び/又は変形可能なMRI磁石コンポーネントの製造を可能にし、それは、以下に更に詳細に議論するように、持ち運び可能性/運搬性の両方並びに特定のMRI用途に特異なMRI磁気学を構築する能力及び体の特性の部分を撮像するのを促進する能力を促進する。よって、本明細書中に記載するようなラミネートパネルを用いてMRI磁気学(又はその部分)を生産することは、MRIが医療又は臨床環境においてどのように用いられ得るかを根本的に変える能力を有し、遠くまで及ぶ影響(impact)を伴ってMRI業界を大改革し、MRIを利用し得る環境及び状況を大いに拡張する。
ラミネートパネルを様々な幾何学的構成において生産し且つ配置して、所望の低磁場MRIシステムの構築を促進してよい。例えば、図13は、概ね2平面配置において配置されるラミネートパネルを例示している。幾つかの実施態様において、ラミネートパネルは、例えば、特定の種類の撮像のために構成される低磁場磁気学をもたらすよう且つ/或いは特定の関心の解剖学的構造を撮像するよう、異なる幾何学的構成において配置される。図15A乃至Cは、幾つかの実施態様に従った例示的な幾何学的構成を例示している。図15A乃至Cにおいて、ラミネートパネルは、図式的に例示されており、例示のラミネートパネルは、任意の所望の配置においてその上に形成される磁性コンポーネントの任意の所望の1つ又は組み合わせを備える任意の所望の数の層を有するラミネートパネルを概ね提示していることが理解されるべきである。図15Aは、頭の低磁場MRIを促進するように配置される4つの接続されたラミネートパネルを含む、例示的なラミネートパネル幾何学的構成1500Aを例示している。ラミネートパネルは、頭を収容するように概ね配置され且つ接続されるので、頭の所望の部分は、結果として得られるB磁場の視野内にある。ラミネートパネルは、接着剤によること、1以上のコネクタによること、1以上のヒンジによること、及び/又はそれらの任意の組み合わせ若しくは任意の他の適切な方法によることを含む、任意の適切な方法において、互いに接続され、取り付けられ、或いは固定されてよい。
幾何学的構成1500Aにおいて、例示するラミネートパネルの1以上は、本明細書中で議論する様々な組み合わせのうちのいずれかにおいて低磁場MRIシステムの磁性コンポーネントを統合する。例えば、1つの実施において、ラミネートパネル1510A及び1520Aの各々は、低磁場MRIシステムのためのB磁場を生成するために用いられるBコイルの全部又は部分をその上に形成させた少なくとも1つの層を含んでよい。そのような実施において、パネル1510A,1520Aのペアは、図13に関して前述した2平面幾何学的構成内に配置されてよく、頭を収容する使用をもたらすような大きさとされてよい。ラミネートパネル1530A及び1540Aは、低磁場MRIシステムの1以上の他のコンポーネント(例えば、1以上の勾配コイル、送信受信コイル、シムコイル等)を含んでよく、或いは、それら自体は、所望のB磁場の生成に寄与するようB磁場の全部又は部分を含んでよい。追加的なB磁場を追加することは、B磁場強度又は同質性を妥協せずに各Bコイルについての電力要求の緩和を可能にすることがある。代替的に、パネル1530A及び1540Aの一方又は両方は、如何なる低磁場MRI磁性コンポーネントを含まなくてよいが、パネル1530A及び1540Aの一方又は両方は、パワーエレクトロニクス又は制御エレクトロニクスのような支持エレクトロニクスを含むよう加工されてよく、熱管理コンポーネント、遮蔽(シールディング)を含んでよく、且つ/或いは構造的支持のために提供されてよい。
図15Aに例示する幾何学的構成は例示的であり、他の配置(構成)が可能であることが理解されるべきである。例えば、パネルは、走査される人が側方パネルの一方(例えば、パネル1510A又は1520A)に面するよう、頭を収容するような寸法とされてよい。代替的に、パネル1510A,1520A,1530Aの少なくとも1つに接続される更なるパネルが、撮像されるべき対象(例えば、患者の頭)を完全に又は部分的に取り囲むよう、含められてよい。そのような幾何学的構成は、パネル1540に正反対の追加的なラミネートパネルをもたらし、それはその上に1以上の低磁場MRIコンポーネントを形成するように用いられてよい。幾つかの実施態様において、ラミネートパネルの少なくとも1つは、撮像されるべき人が仮想の画像(例えば、ピクチャ又はビデオ)を見るのを可能にする仮想のディスプレイをその上に取り付けられて含んでよい或いは有してよい。非限定的に液晶ディスプレイを含む、あらゆる適切なディスプレイが、この目的のために用いられてよい。
図15Aに例示する一般的な形態も、送信/受信コイルを含むヘルメット、例えば、所望の取得順序に従ってB磁場をもたらすよう並びに応答して発せられるMR信号を検出するようヘルメット上に又は内に形成される概ね螺旋形状のコイルを有する様々な体にぴったり合うヘルメットのうちのいずれかと共に用いられ得る。低磁場MRIシステムの磁性コンポーネントを形成するラミネートパネル(例えば、B磁場、勾配コイル等)は、(複数の)ラミネートパネルが作動させられるときに、ヘルメットの装着者が生成されるB磁場の視野の内側に位置付けられ得るよう、ヘルメットを収容するように構築されてよい。代替的に、B磁場及び対応する勾配磁場を生成する磁性コンポーネントを有する(複数の)ラミネートパネルが、低磁場MRIのための単一の概ね統合されたヘッドスキャナの磁気学を形成するよう、送信/受信コイルを有するヘルメット(例えば、適切な送信/受信コイルで巻回されたヘルメット)と統合されてよい。
図15Bは、例えば、他の解剖学的構造を収容するような寸法とされるパネルの更なる例示的な配置(構成)を例示している。図示のように、ラミネートパネル1510B,1520B,1530B,1540Bは、開放端の長方形チューブを形成するように配置される。相対的な寸法は、人が四肢又は外肢(例えば、手、足、腕、脚等)の全部又は部分を生成される磁場の視野内に配置するのを可能にするように、選択されてよい。磁性コンポーネントは、本明細書中で議論する形態のいずれか1つ又は組み合わせを用いてラミネートパネル形態に加工されてよいことが理解されるべきである。更に、図15B中のラミネートパネルは、撮像される人の胴又は漸進を収容するようパネルの大きさ及び相対的な寸法を増大させることを含む、任意の所望の解剖学的構造(又は他の物体)を収容するような寸法とされてよい。以下に更に詳細に議論するように、所望の汎用の低磁場MRIシステム又は特定の物体若しくは解剖学的構造を撮像するために構成されるシステムをもたらすよう並びに/或いは特定の撮像用途を促進するよう、1以上の磁性コンポーネントを用いて加工されるラミネートパネルが他の形態及び幾何学的構成において配置されてよいことが更に理解されなければならない。
図15Cは、幾つかの実施態様に従った平面的な形態を例示している。具体的には、図15Cに例示する平面的な幾何学的構成1500Cは、ラミネートパネル1510Cに近接して配置される物体の低磁場撮像に適したB磁場を生成するためにその上に形成された1以上の磁性コンポーネントを有する単一のラミネートパネル1510Cによって実現されてよい。平面的な幾何学的構成1500cは、例えば、撮像される物体が多数のパネル内に又は間に便利に配置され得ない環境において及び/又は多数のパネル幾何学的構成がその他の理由により不便又は不要である或いは更に削減されたコスト解決策が望ましい場合に、低磁場MRIを遂行することを促進する。ラミネートパネル1510Cは、適宜、(例えば、低磁場MRIが望まれる解剖学的構造の特定の部分付近で)撮像される物体に近接して保持され得る概ね手持ち式のデバイスをもたらすような大きさにされてよい。代替的に、ラミネートパネル1510Cは、患者が低磁場MRIを遂行するようラミネートパネルの隣に立つ或いは座るような大きさにされてよい。ラミネートパネル1510Cは、(例えば、特定の解剖学的構造又は解剖学的構造の部分を撮像するよう調整された)特定の撮像用途のための平面的な幾何学的構成のデバイスをもたらすよう、任意の所望の大きさ及び/又は形状に生成されてよいことが理解されるべきである。何故ならば、これらの特徴はこの点において限定されないからである。
ほんめいしに記載する技法は、所要の磁場強度(例えば、約0.2T以下、約0.1T以下、約50mT以下、約20mT以下、約10mT以下等)の磁場強度)をもたらすよう用いられてよい。幾つかの実施態様(例えば、磁場強度を増大させるよう強磁性増強を含む実施態様)において、低磁場MRIシステムのB磁場は、潜在的に0.2Tを超え得る。
上で議論したように、発明者は、ラミネート技法を利用して低磁場MRIシステムのための磁気学をもたらしてよいことを認識した。追加的な特徴を記載するために、更なる詳細が例示的な低磁場MRIシステムとの関係において提供される。手短に言えば、戻って図13を参照すると、低磁場MRIシステム1300は、磁性装置と協働して低磁場MRIを促進する多数の他のコンポーネントを更に例示している。具体的には、例示的な低磁場MRIシステム1300は、コンソール1330も含み、コンソール1330は、低磁場MRIシステム1300を用いてデータを取得するために用いられるMRIパルスシーケンスを生成するようプログラムされる1以上のプロセッサを含んでよく、且つ/或いは、任意の他の適切な操作を遂行するように構成されてよい。幾つかの実施態様において、コンソール1330は、(以下に更に詳細に議論するように、ラミネートパネル1310a,1310b内に統合されてよい或いは使用者が装着するヘルメットを介してのような異なる方法において提供されてよい)1以上の受信コイルによって検出されるMRデータを受信して、(例えば、1以上のMRI画像を再構築するよう)データを処理するために受信したMRデータをワークステーション1360に提供するように、構成されてよい。低磁場MRIシステム1300は、電力管理システム1340も含み、電力管理システム1340は、MRIシステムの1以上のコンポーネントに動作電力を提供する電子機器を含む。例えば、以下に更に詳細に議論するように、電力管理システム1340は、システムのコンポーネントに通電してシステムのコンポーネントを作動させるよう動作電力をもたらすよう、1以上の電源、勾配電力増幅器、送信コイル増幅器、及び/又は任意の他の適切なパワーエレクトロニクス(例えば、ラミネート1310a,1310b内に統合される磁性コンポーネントに適切な電流を提供するのに必要とされる電源)を含んでよい。
追加的に、低磁場MRIシステム1300は、MRIシステムの1以上のコンポーネントによって生成される熱エネルギのそれらのコンポーネントからの除去を促進するように構成される熱管理システム1350も含んでよい。幾つかの実施態様において、熱管理システム1350は、ラミネートパネル1310a、1310bと統合されるコンポーネントを含んでよい。例えば、ラミネートパネル1310a,1310bは、例えば、様々なヒートシンク等のいずれかを用いて、熱を消散するように構成される、1以上のラミネート層を含んでよい。ラミネート層の加工において用いられる接着剤は、磁性コンポーネントによって生成される熱の管理を助けるよう熱吸収及び/又は消散特性を有するように選択されてよい。熱管理システム1350は、Bコイル、勾配コイル、及び/又は送信/受信コイルを非限定的に含む、熱を生成するMRIコンポーネントと統合される或いは近接近して配置されてよい、水ベースの又は空気ベースの冷却を行う熱管理コンポーネントを非限定的に含んでよい。熱管理システム1350のコンポーネントは、低磁場MRIシステムのコンポーネントから熱を除去するよう、空気及び水を非限定的に含む、任意の適切な熱移転媒体を含んでよい。
図16は、幾つかの実施態様に従った低磁場MRIシステム1300の例示的なコンポーネントのより詳細を提供することによって、図13に示すシステム図を更に詳述する図式的なブロック図を示している。システム1300は、電力管理システム1340に指令を送信し且つ電力管理システム1340から情報を受信する制御エレクトロニクスを有するMRコンソール1330を含む。MRコンソール1330は、コイルを所望のシーケンスにおいて作動させるよう電力管理システム1340に送信される指令を決定するために用いられる、1以上のパルスシーケンス1610を受信する或いは実施するようプログラムされるように構成される。MRコンソール1330は、受信するMRデータに基づきデータ取得及び/又は画像再構築を行うようプログラムされるワークステーション1360とも相互作用する。MRコンソール1330は、1以上のパルスシーケンス1610についての情報をワークステーション1360に提供して、データ取得及び/又は画像再構築プロセスを促進させてよい。使用者がユーザーインターフェース1612を介してMRコンソール1330と相互作用してよい。任意の適切なユーザーインターフェースが用いられてよく、実施態様はこの点において限定されない。
電力管理システム1340は、低磁場MRIシステム1300の磁性コンポーネント1310に動作電力を提供するエレクトロニクスと、磁性コンポーネント1310から受信するMR信号を増幅するエレクトロニクスとを含む。電力管理システム1340内のコンポーネントの陰影は、コンポーネントが概ねより低い電力要求(薄い陰影)を有するか或いは概ねより高い電力要求(濃い陰影)を有するか否かを表している。図示のように、電力管理システム1340は、1以上のRF受信コイル(例えば、RF Rx コイル1640)が検出するMR信号を増幅する無線周波数(RF)受信(Rx)事前増幅器を含む。電力管理システム1340は、1以上のRF送信コイル(例えば、RF Tx コイル1640)に電力増幅をもたらすように構成されるRF電力増幅器1622も含む。
図示のように、電力管理システム1340は、1以上の勾配コイル1642を駆動させるように構成される勾配電力増幅器1624も含む。上で議論したように、MRIシステムは、3つの実質的に直交する方向(X,Y,Z)においてMR勾配をもたらすように配置される勾配コイルの3つのセットをしばしば含む。従って、3つのセットの勾配コイル1642を用いる実施態様において、勾配電力増幅器1624は、各々が勾配コイルのセットのそれぞれ1つを駆動させる、3つの勾配電力増幅器を含んでよい。任意の適切な億倍電力増幅器1624が用いられてよい。幾つかの実施態様において、勾配電力増幅器1624は、単極のパルス化勾配増幅器であってよいが、任意の適切な勾配増幅器が用いられてよい。電力管理システム1340は、低磁場MRIシステムのための主磁場をもたらす1以上のBコイル(例えば、B磁石1650)を駆動させるように構成される磁石電源も含む。幾つかの実施態様において、磁石電源1626」は、単極の持続波(CR)電源であるが、任意の適切な電源が用いられてよい。電力管理システム1340は、シムコイル1644を独立して作動させるように配置されるシム増幅器1628も含んでよい。
低磁場MRIシステム1300は、任意の適切な設計及び/又は種類であってよい、送信/受信(Tx/Rx)スイッチ1630、フィードスルーフィルタ1632及び1634を含む、電力管理システム1340と磁気学1310との間に介装される、複数のインターフェースコンポーネントも含んでよい。あらゆる適切なコンポーネントがこれらのインターフェースコンポーネントのために用いられてよく、実施態様はこの点において限定されない。
図示のように、磁気学1310は、RF Tx/Rx コイル1640、勾配コイル1642、及びB磁石1650を含む。上で議論したように、これらの磁性コンポーネントの1以上は、本明細書中に記載するラミネート技法を用いてラミネートパネルの1以上の層の上に形成されてよい。図示していないが、磁気学1310は、電磁干渉がMRIシステムの動作に悪影響を与えるのを減少させるように構成される電磁遮蔽を組み込む。上述のようなラミネートパネルの1以上の遮蔽層を用いることを非限定的に含む、任意の適切な遮蔽が用いられてよい。
低磁場RMIシステム1300は、システムのコンポーネントのための冷却をもたらすように構成される熱管理システム1350も含んでよい。幾つかの実施態様では、熱管理システム1350の少なくとも部分が、上で議論したように、(複数の)ラミネートパネルの(複数の)層の上に形成される1以上の磁性コンポーネント1310を組み込んでよい。熱管理システム1350は、非限定的に、ガス冷却(例えば、空冷)システム、液体冷却(例えば、水冷)システム、1以上のファン、熱接着剤、又はシステム1300のラミネートパネル又は他のコンポーネントを製造するのに用いられる他の物質等を含む、任意の適切なコンポーネントを含んでよい。図示のように、熱管理システム1350は、勾配コイル1642、B磁石1650、勾配電力増幅器1624、及び磁石電源1626の熱冷却を管理するように構成される。幾つかの実施態様において、これらのコンポーネントの1以上は、コンポーネントと統合される熱管理システム1350の少なくとも部分を有してよい。加えて、熱管理システム1350は、図16に示す例示のコンポーネント以外のコンポーネントのために熱管理機能を提供するように構成されてよい。何故ならば、熱管理システム1350は、必要に応じて熱管理をもたらすように構成されてよいからである。
図17は、幾つかの実施態様に従った熱管理コンポーネントを例示している。熱管理コンポーネント1700は、例えば、例示的なラミネートパネル1310a,1310bによって生成される熱を消散することによって、低磁場MRIシステムのコンポーネントから外に離れる方向に熱を移転させるのに適することがある。熱管理コンポーネント1700は、螺旋形状に構成され且つ螺旋形状のアルミニウムコールドプレート1720に固定される、銅チューブ又はパイプ1710を含む。幾つかの実施態様によれば、熱管理コンポーネント1700は、動作中に(複数の)ラミネートパネルから離れる方向に熱を移転させるよう、1以上のラミネートパネルに熱的に連結するように位置付けられるように設計される。幾つかの実施態様によれば、銅チューブ1710は、一方の端1710A又は1710Bで水源に繋がり、他方を介して水を堆積させるように、構成される。銅チューブ1710を通じて流れる水(又は任意の他の流体)は、銅チューブ1以上のコンポーネントから熱を吸収し、銅チューブは、1以上のコンポーネントに熱的に連結され、他の場所で堆積されるよう、それを運び去る。
発明者は、螺旋形状の銅チューブ1710が、システムから熱を取り除く従来的な熱管理コンポーネントの能力をしばしば劣化させる渦電流を緩和し或いは排除することを理解した。その螺旋形状の故に、熱管理コンポーネント1700は、MRIシステムの磁性コンポーネント内に存在するような時間で変動する磁場を含むコンポーネントから熱を除去するのに特に適することがある。しかしながら、熱管理コンポーネント1700は、他の種類のコンポーネントとの関係において利用されてよい。何故ならば、螺旋形状の幾何学的構成は、如何なる特定のコンポーネントとの使用に限定されないからである。
熱管理コンポーネント1700は、水との使用についても限定されず、熱を吸収し且つ移転し得る液体状態又は気体状態の流体を含むあらゆる流体と共に用いられ得ることが理解されるべきである。しかしながら、水を利用する能力は、利用可能な水源に接続され得る並びに利用可能な水源を利用し得る熱管理コンポーネントを有する概ね持ち運び可能な又は「運搬可能な」低磁場MRIシステムの配置を促進することがある(例えば、医療施設を通じて利用可能であるのみならず、小さなクリニック、移動式施設、及びその他の場所でも利用可能である、数多くの冷水フックアップ)。それにも拘わらず、液体窒素、固体二酸化炭素のガス放出、冷凍され且つ圧縮された空気等のような、他の冷却流体が、熱管理コンポーネント1700によって利用されてもよい。何故ならば、これらの特徴はこの点において限定されないからである。
図18は、幾つかの実施態様に従って用いられてよい。MRコンソール1330、RF Rx低ノイズ増幅器(LNAs)1620、RF電力増幅器1622、Tx/Rxスイッチ1630、及びRF Tx/Rxコイル1640を含む、RF信号チェーンのより詳細なブロック図を示している。図18の最上部に示す第1の経路において、コンソールからの制御指令が、電力増幅器1622に送信される。幾つかの実施態様において、電力増幅器1622は、少なくとも2ワットの電力出力を有するように構成されてよい。電力増幅器1622の出力は、低域フィルタ1812に送信される。低域フィルタ1812は、所望のフィルタリング(濾過)を達成するよう、任意の所望のカットオフ周波数(例えば、3MHz)を有してよい。Tx/Rxスイッチが送信(Tx)位置に設定されるとき、フィルタリングされた電力出力がTxコイル1640に提供されて、RF励起がもたらされる。
受信動作中、Tx/Rxスイッチ1630は、受信(Rx)位置に切り替わり、Rxコイル1640によって検出されるRF信号が低ノイズ増幅器(LNA)1820に提供され、低ノイズ増幅器は、帯域フィルタ1822によってフィルタリングされる前に、信号を増幅させる。帯域フィルタ1822によるフィルタリングに続き、フィルタリングされたRF信号は、ドライバ1826によって更に増幅され、フィルタ1826による追加的な帯域フィルタリングが続く。帯域フィルタ1826の出力は、増幅され且つフィルタリングされたRF信号をデータ処理及び画像再構築のためにワークステーション1360に送信することを非限定的に含む更なる処理のために、コンソールに提供される。幾つかの場合、フィルタ1822及び1826は、低域フィルタ、高域フィルタであってよく、或いは低域フィルタ、高域フィルタ及びノッチフィルタのような一連のフィルタ、又はそれらの任意の組み合わせを含んでよい。図18に例示し且つ上で議論したRF信号チェーンは、実施態様と共に用いられてよいRF信号チェーンの1つの実施に過ぎず、本明細書中に記載される技法は如何なる特定のRF信号チェーン又はこの特徴における如何なる特定の実施との使用に限定されないことが理解されなければならない。
上で議論したように、発明者は、低磁場MRIの特性が、実質的にあらゆる施設において配置され得る実質的により小さな据付けの実施を促進し、持ち運び可能な又は運搬可能な低磁場MRIシステムの開発を更に可能にすることを認識し、その幾つかの実施態様を以下に更に詳細に議論する。そのようなシステムは、異なる時に異なる環境において作動していることがあるので、MRIシステムが作動している環境内の特定の撮像用途のために1以上の磁場を調節し或いは最適化させるよう、MRIシステムの1以上のコンポーネントの「磁場内」(“in-field”)及び/又は動的な較正(キャリブレーション)をもたらすのが有利なことがある。
少なくとも部分的に、主磁場コイルによって生成されるB磁場の同質性に影響を与えるよう調節し得るシムコイルを用いることによって、MRIシステムのB磁場の較正を達成し得る。シムコイルを含む幾つかの実施態様において、B磁場の較正は、シムコイルを選択的にアクティブ化してBコイルの同質性を向上させることによって類似の方法において行われてよい。幾つかの実施態様によれば、1以上のセンサを用いてシステム特性(例えば、磁場の同質性、システムの安定性)及び/又は環境ノイズの特性を決定してよく、センサからの情報をコンソールに提供してよく、次に、コンソールは磁気学の動作パラメータを調節することによって磁場を同調させ得る。
発明者は、動的な較正の特徴が本明細書中に記載するラミネート技法に従って製造される磁性コンポーネントの使用によって促進されることを認識し且つ理解した。幾つかの実施態様において、1以上の磁性コンポーネントの全部又は一部は、MRIシステムの作動前又は作動中の磁場の同調を可能にするよう、個別に制御可能であってよい。例えば、ラミネートパネルの1以上の層は、その上に、個別に独立して制御し得る複数のシムコイルをパターン化してよい。複数のシムコイルは、複数のシムコイルを選択的に作動させて、B磁場に寄与して、MRIシステムが作動している特定の環境及び荷重条件についての所望の磁場強度及び同質性を達成し得る。例えば、所与の環境において、B磁石の作動に起因するB磁場は評価されてよく、複数のシムコイルは所与の環境において適切なB磁場をもたらすような方法において寄与するように選択的に作動させられてよい。幾つかの実施態様によれば、B磁場の測定及び後続の適切なシムコイルの選択は、所与の環境において及び/又は所与の荷重条件の下で所望の強度及び同質性のB磁場をもたらすようシムコイルの概ね最適な組み合わせを特定するようにプログラムされた自動プロセスによって行われる。
低磁場MRIシステムの他の特徴は、特定の環境の特性に対処するよう同調されてもよい。例えば、低磁場MRIにおいて、AM周波数放送帯(例えば、約1000kHzの帯域)は、送信/受信コイルについての干渉源をもたらすことがある。このノイズ源に対処するために、関心の特定の周波数帯が、検出される干渉が可能な限り回避されるように作動するように同調されるシステムの磁性コンポーネント及び活動のために評価されてよい。例えば、B磁場の磁場強度は、送信/受信コイルが満足のいくように干渉のない周波数内で作動するよう、適切に増減させられてよい。即ち、システムは、ノイズを検出して、環境ノイズの影響を減少させる所望の磁場をもたらすようMRIシステムの1以上の磁性コンポーネントを同調させ或いは構成する(configure)よう、構成されて(configured)よい。例えば、システムは、最小の量の電磁ノイズ又は干渉を有するスペクトルの部分を探し出し且つスペクトルのこの部分内の周波数で作動するようシステムを同調させるよう、システム作動に適した関心の帯域内の電磁スペクトルを通じて掃引するように構成されてよい。
幾つかの実施態様によれば、周囲無線周波数障害(RFI)を検出するよう補助受信チャネルを提供することによってノイズキャンセリングが行われてよい。例えば、1以上の受信コイルは、RFIをサンプリングするが、撮像される物体によって放射されるMR信号を検出しないよう、B磁場の視野に近接して、B磁場の外側に位置付けられてよい。そのような配置は、低磁場MRIシステムが作動させられる環境に依存して異なる及び/又は可変のレベルのRFIに晒される可能性が高い概ね持ち運び可能な及び/又は運搬可能な低磁場MRIシステムの提供を促進するよう、RFIを動的に取り扱い且つ抑制する能力を有する。
幾つかの実施態様は、コンソールがMRIシーケンスを用いて所望の品質及び解像度の画像を生成する方法を調節するのを可能にすることによってMRIシステムの動的な構成をもたらすように構成されてよい。従来的なMRIコンソールは、典型的には、使用者に事前プログラムされたMRIパルスシーケンスを選択させることによって作動し、次に、事前プログラムされたMRIパルスシーケンスを用いて、1以上の画像を再構築するよう処理されるMRデータを取得する。次に、医師は結果として得られる1以上の画像を解釈してよい。発明者は、事前プログラムされたMRIパルスシーケンスを用いてMRIシステムを作動させることが所望の品質の画像を生成するのに効果的でないことがあることを認識し且つ理解した。従って、幾つかの実施態様において、使用者は、取得する画像の種類を定めてよく、コンソールは、初期的な撮像パラメータを決定するタスクを課されてよく、任意的に、走査が進行するに応じてパラメータを更新して、受信するMRデータを解析することに基づき所望の種類の画像をもたらしてよい。コンピュータによるフィードバックに基づき撮像パラメータを動的に調節することは、「押しボタン」(“push-button”)MRIシステムの開発を促進し、その場合、使用者は、所望の画像又はアプリケーションを選択することができ、MRIシステムは、所望の画像を取得するために用いられる撮像パラメータのセット決定することができ、所望の画像は、取得中に得られるMRデータに基づき動的に最適化されることがある。
幾つかの実施態様によれば、低磁場MRIシステムは、低磁場MRIシステムによって生成される磁場及び/又は環境中の磁場に関連する局所的な磁場測定値を得るように配置される磁場センサを含んでよい。これらの磁場測定値を用いて、低磁場MRIシステムの様々な特性、特徴、及び/又はパラメータを動的に調節して、システムの性能を向上させてよい。例えば、空間的に分布される磁場センサのネットワークを空間内の既知の場所に配置して、低磁場MRIシステムによって生成される磁場の実時間特徴付けを可能にしてよい。センサのネットワークは、低磁場MRIシステムの局所的な磁場を測定して、システムに対する任意の数の調節又は変更を促進する情報をもたらすことができ、その幾つかの実施例を以下に更に記載する。関心の磁場を測定し得る任意の種類のセンサが利用されてよい。そのようなセンサを1以上のラミネートパネル内に統合し得るし、或いは別個に提供されてよい。何故ならば、磁場測定を用いることに関する着想は、センサを提供する種類、数又は方法に限定されないからである。
幾つかの実施態様によれば、センサのネットワークによってもたらされる測定値は、所望の強度及び同質性のB磁場をもたらす適切なシム化(シミング)(shimming)の構築を促進する情報をもたらす。上で議論したように、異なる組み合わせのシムコイルが選択的に作動させられ且つ/或いは所望の電力レベルで作動させられるよう、任意の幾何学的構成及び配置の任意の所望の数のシムコイルを、単独で或いは他の磁性コンポーネントとの組み合わせにおいて、ラミネートパネル内に統合し得る。よって、低磁場MRIが特定の環境において作動させられるときには、磁場センサのネットワークからの測定値を用いて、例えばB磁石及び/又は勾配コイルによって生成される磁場を特徴付けて、低磁場MRIシステムが所望の強度及び同質性でB磁場を生成するよう磁場に影響を与えるために、どの組み合わせのシムコイルが選択されるべきか並びに/或いは選択されるシムコイルをどの電力レベルで作動させるべきかを決定してよい。この能力は、概ね持ち運び可能な、輸送可能な及び/又は運搬可能なシステムの配置を促進する。何故ならば、システムが利用される所与の場所のためにB磁場を較正し得るからである。
幾つかの実施態様によれば、磁場センサのネットワークからの測定値を利用して、システムの動作中に動的なシム化を行ってよい。例えば、センサのネットワークは、動作中に低磁場MRIシステムによって生成される磁場を測定して、1以上のシムコイルを動的に(例えば、実時間で、ほぼ実時間で、又はシステムを作動させることに連動して他の方法で)調節するために用い得る情報を提供してよく、且つ/或いは(例えば、1以上の追加的なシムコイルを作動させることによって或いは1以上のシムコイルの作動を終了させることによって)異なる組み合わせのシムコイルを作動させてよいので、低磁場MRIシステムによって生成される磁場は、所望の又は期待される特徴を有する或いは有することにより近い(例えば、結果として得られるB磁場は、所望の磁場強度及び同質性で又はそれらのより近くで生成される)。磁場センサのネットワークからの測定値を利用して磁場品質(例えば、B磁場、勾配磁場等)が所望の基準又は計量(metric)を満足しないことを操作者に通知してよい。例えば、生成されるB磁場が磁場強度及び/又は同質性に関する所定の要件を満足しないならば、操作者は警告されてよい。
幾つかの実施態様によれば、センサのネットワークからの測定値を用いて、低磁場MRIスキャナを作動させることから得られるMRデータの再構築及び/又は処理を誘導し且つ/或いは矯正してよい。具体的には、センサネットワークによって得られる実際の空間−時間磁場パターンは、取得したMRデータからの画像を再構築するときの知識として用いられてよい。結果的に、さもなければデータを取得し且つ/或いは画像を生成する要求を満たさない磁場非同質性の存在においてさえも、適切な画像が再構築されることがある。従って、画像再構築を助けるために磁場センサデータを用いる技法は、幾つかの状況において改良された画像を得ることを促進し、磁場強度及び/又は同質性が劣化させられる環境及び/又は状況において低磁場MRIの性能を有効にすることを促進する。
幾つかの実施態様では、磁場センサのネットワークを用いて、システム性能(例えば、渦電流、システム遅延、タイミング等)を測定し且つ定量化してよく、且つ/或いは、測定される局所的な磁場等に基づき勾配波形設計を容易化してよい。磁場センサのネットワークから得られる測定値は、低磁場MRIを実行するのを促進する任意の他の方法において利用されてよいことが理解されるべきである。何故ならば、それらの特徴はこの点において限定されないからである。概ね持ち運び可能な、輸送可能な又は運搬可能なシステムにおいて、MRIシステムが配置される環境は、概して知られておらず、遮蔽されておらず、概して制御されていないことがある。よって、低磁場MRIシステムによって生成される磁場を特徴付ける能力は、(磁性又はその他の)特定の環境を考えると、そのようなシステムを広範な環境及び状況内に配置する能力を促進し、システムが所与の環境のために最適化されることを可能にする。
上で議論したように、低磁場MRIは、高磁場MRIの脈絡において概して実現可能でないMRIシステム、例えば、比較的低コストの、減少されたフットプリントの、及び/又は概ね持ち運び可能若しくは運搬可能なMRIシステムの設計及び開発を促進する。図19乃至22は、幾つかの実施態様に従った低磁場MRIのシステム構成の非限定的な実施例を例示している。図19Aは、着座させられる患者が患者の体の関連する部分がB磁石の視野内に配置されるように位置付けられるように構成されるシステム1900を例示している。低磁場MRIシステム1900は、一対のラミネートパネル1910A及び1910Bが、ラミネートパネルを所定の場所に保持するように構成される支持構造1950A及び1950Bを介して、概ねU形状のフレーム1940に取り付けられる、開放型の2平面構成を提示している。
U形状フレーム1940は、異なる姿勢の患者をラミネートパネルの視野内に正しく位置付けることを促進し且つ/或いは患者の体の所望の部分の撮像のために患者を位置付けるよう調節可能なシート1935も含む。追加的に又は代替的に、ラミネートパネルは、ラミネートパネルに対する患者の正しい位置決めを促進するよう調節可能であってよい。例えば、支持構造1950A及び1950Bは、U形状フレーム1940のアームの内に及び外に上昇させられ且つ下降させられてよい。幾つかの実施態様において、ラミネートパネルは、パネルがよりコンパクトな位置に固定されるのを可能にしてシステムの可搬性を向上させる関節作動及び/又は蝶番付けアームに接続されてよい。例えば、ラミネートパネルをその上に取り付けるアームは、輸送中に折られてよく、MRIシステムの動作中に(図示のように)上方に伸ばされてよい。更に、フレーム1940のベースは、構造が1つの場所から他の場所に運ばれるのを可能にするホイール又は取り外し可能なキャスタ(図示せず)を含んでよい。
ラミネートパネル1910A及び1910Bの上に形成される磁性コンポーネントは、1以上のケーブルを介してパワーエレクトロニクス1920に接続されてよい。図示のように、パワーエレクトロニクス1920は、低磁場MRIシステムの可搬性を促進するよう、カート又は他の輸送可能な構造の上に設けられてよい。パワーエレクトロニクスをシステムの磁性コンポーネントから分離することは、患者を撮像するために用いられる磁場に対するパワーエレクトロニクスによって生成されるノイズの効果を減少させることがある。パワーエレクトロニクスのための接続(及びコンソール、ワークステーション、ディスプレイ等のためのような任意の他の所要の接続)が、フレーム1940のベースに設けられてよく、適切なセットの接続が、ラミネートパネル1910A及び1910B内に統合される磁性コンポーネントを作動させるために、フレーム1940のアームを通じて支持構造1950A及び1950Bに配線接続される。図19Bは、図19Aに例示するラミネートパネルと外側覆い又はハウジングとを含む2平面磁石1915A及び1915Bの視野内に着座させられた患者1985を示すシステム1900を例示しており、2平面磁石は、内部遮蔽、電気接続、パワーエレクトロニクス及び制御エレクトロニクス等のような、他のコンポーネントを更に含んでよく、ラミネートパネルについての環境保護の測定値を概して提供してよい。
図20Aは、ラミネートパネル2010A及び2010B上に形成される磁性コンポーネントは、リクライニング位置においてラミネートパネルの間に位置する患者に順応する角度に調節可能に方向付けられた座席部分2035を含むフレーム内に配置される、リクライニング構成を有するシステム2000を示している。システムのリクライニング部分は、患者の所望の部分が磁石の視野内に配置されるよう、ラミネートパネルの間の患者の所望の位置決めを促進するよう調節可能であってよい。追加的に又は代替的に、ラミネートパネルは、患者に対する磁気学の位置決めにおける追加的な柔軟性をもたらすために、囲壁2015内で調節可能であってよい。ラミネートパネル2010A及び2010B上に形成される磁性コンポーネントは、1以上の適切なケーブルを介してパワーエレクトロニクス2020に接続されてよく、パワーエレクトロニクス2020は、棚の上に取り付けられて或いは他の適切な輸送可能な構造と共に収容されて、MRIシステムの可搬性を促進してよい。図20B及び20Cは、MRIシステム2000を異なる視野並びに患者のための異なるリクライニング位置から例示している。
図21A及び21Bは、幾つかの実施態様に従った持ち運び可能な又は運搬可能な低磁場MRIシステム2100を例示している。システム2100は、単一の概ね輸送可能且つ変換可能な構造の上に一緒に配置される、磁性コンポーネント及び電力コンポーネントを含んでよく、潜在的に、他のコンポーネント(例えば、熱管理、コンソール等)を含んでよい。システム2100は、少なくとも2つの構成、即ち、輸送及び格納のために適合された構成と、作動のために適合された構成とを有するように設計されてよい。図21Aは、輸送及び/又は格納のために固定されたときのシステム2100を示しており、図21Bは、作動のために変換されたときのシステム2100を示している。システム2100は、システムをその輸送構成からその作動構成に変換させるときに、図21Bに示す矢印によって示すように、部分2190B内に滑り込ませ得る並びに部分2190Bから引き出し得る部分2190Aを含む。部分2190Aは、パワーエレクトロニクス2140、(図21A及び21Bに例示するタッチパネルのようなインターフェースデバイスを含んでよい)コンソール2130、及び熱管理2150を収容してよい。部分2190Aは、必要に応じてシステム2100を作動させるために用いられる他のコンポーネントも含んでよい。
部分2190Bは、ラミネートパネル2110A及び2110Bを含む低磁場MRIシステム2100の磁性コンポーネントを含み、ラミネートパネルの上には、磁性コンポーネントが、本明細書中で議論した組み合わせのいずれかにおいて統合される。(図21Bに示すような)MRIを実行するようシステムを作動させるために適合される構成に変換されるとき、部分2190A及び2190Bの支持表面は、患者が横たわり得る表面をもたらす。スライド可能な表面2165は、撮像されるべき患者の部分が対応する低磁場MRI磁石を提供するラミネートパネルの視野内にあるよう、患者を所定の位置に滑動させるのを促進するよう設けられてよい。システム2100は、(例えば、救急処置室内で)従来的には利用可能でない状況においてMRI撮像へのアクセスを促進する低磁場MRIシステムの持ち運び可能なコンパクトな構成をもたらす。
図21Cは、幾つかの実施態様に従った2平面混成磁石を利用する変換可能な低磁場MRIシステム2280の実施例を例示している。図21Cにおいて変換可能なシステムは、システムを輸送する或いはシステムが使用されていないときにシステムを格納するのに便利な折畳み構成(collapsed configuration)にある。変換可能なシステム2280は、人間の患者を支持し且つ患者が矢印2281の方向においてハウジング2286A及び2286Bの間で撮像領域内にスライド式に出入りするのを可能にするように構成される、スライド可能なベッド2284を含む。ハウジング2286A及び2286Bは、変換可能なシステム2280の幾つかの図面に関連して以下に更に詳細に議論するように、変換可能なシステム2280のための磁性コンポーネントを収容する。幾つかの実施態様によれば、磁性コンポーネントは、ラミネート技法を専ら用いて、従来的な技法を専ら用いて、或いは両方の組み合わせを用いて(例えば、本明細書中に記載する混成技法を用いて)生産され、製造され、且つ配置されてよい。
図21Dは、撮像されるようハウジング2286A及び2286Bの間に挿入される前のスライド可能なベッド2284の上に位置付けられた状態で延出された変換可能なシステム2280を例示している。図21Eは、ハウジング2286A及び2286Bの分解図を例示している。幾つかの実施態様によれば、ハウジング2286A及び2286Bの各々は、磁性コンポーネントから熱を引き抜くために熱管理コンポーネントに連結された混成磁石を収容する。具体的には、撮像領域の両側にあるハウジング2286A及び2286Bの各々は、その中に、Bコイル2205a及び2205b、ラミネートパネル2210(そのうちの2210bが表面を上向きにした構成においてハウジング2286B内に見える)、及びBコイルの間に設けられる熱管理コンポーネント2230を含む。2286A及び2286B内に収容される磁性コンポーネントは、対称的な2平面混成磁石を形成するよう実質的に同一であってよく、或いは、2286A及び2286B内に収容される磁性コンポーネントは、非対称的な2平面混成磁石を形成するよう異なってよい。何故ならば、これらの特徴は混成磁石の如何なる特定の設計又は構造との使用にも限定されないからである。
図21Fは、変換可能な低磁場MRIシステムの部分の拡大図、より具体的には、幾つかの実施態様に従った低磁場MRIシステムのための2平面磁石を収容し且つ固定する磁石アセンブリ2250を示す図を例示している。磁石アセンブリ2250は、2平面混成磁石を形成する上方磁石及び下方磁石を位置付け且つ整列させる上方ハウジング2286A及び下方ハウジング2286Bを含む。ハウジング2286A及び2286Bは、被験者を挿入してよい撮像領域をもたらすよう、上方ハウジング及び下方ハウジング内に収容される磁性コンポーネントの間の分離をもたらす、複数の柱又はポスト2290を用いて接続されている。上方ハウジング2286A内に収容される上方磁石2200aは、一対のBコイルと1以上の勾配コイル及び/又は1以上のB矯正コイルのような多数の磁性コンポーネントを含むラミネートパネルとを含む(上方Bコイル2205aのみが見える)。熱管理コンポーネント2230が、磁性コンポーネントと熱接触して設けられる。熱管理コンポーネント2230は、熱管理コンポーネントが連結される磁性コンポーネントから熱を引き抜くように構成される冷却部分、及び、磁性コンポーネントから外向きに延びて、ボルト又は任意の他の適切な種類の締結具を用いて磁石を上方ハウジング2286Aに固定するのを可能にする、取付け部分2232の両方を含む。
図21Gは、図21Fに示す磁石アセンブリ2250の分解図を例示している。図21Gには、上方磁石2200a及び下方磁石2200bの両方が例示されており、矢印は磁石がそれらのそれぞれのハウジング2286A及び2286B内に取り付けられる方向を示している。上方磁石2200a及び下方磁石2200bは、本明細書中に記載する技法のいずれかを用いて又は他の適切な技法を用いて構築されてよく、対称的な又は非対称的な2平面磁石を形成する。図21Gに例示する実施態様において、各磁石は、その上にパターン化された、一対の巻回Bコイル2205a及び2205bと、少なくとも1つの勾配コイル及び少なくとも1つのBコイル(例えば、矯正又はシムコイル)とを含む。磁石2200a及び2200bの上に示す取付け部分2232は、磁性アセンブリが組み立てられるときに、それぞれのハウジングの取付け部分2233(取付け部分2233が見えるハウジング2286Aを参照)にボルト2202で固定されるように配置され且つ構成される。ラミネートに基づく技術及び/又は混成技術を用いて任意の種類のシステムのための磁性コンポーネントを提供してよいので、図21A乃至21Gに例示する低磁場MRIシステムは本明細書中に記載する技術が利用されてよいシステムの例に過ぎないことが理解されるべきである。何故ならば、これらの特徴はこの点において限定されないからである。
図22A乃至22Cは、脳走査を行うように構成された低磁場MRIのためのヘルメットを例示している。ヘルメットは、頭を通じる軸方向に(即ち、頭の頂から底に又はその逆に)B磁場をもたらすよう、ヘルメットの表面の周りのソレノイド幾何学的構成中にB磁石を含んでよい。ヘルメットは、その中に統合されて、励起及び検出からのRx/Txコイルアレイと1以上の勾配コイルとを有する勾配システムを更に有してよい。図22Aに例示する実施態様において、ヘルメット2500は、患者の顔の概ね完全な隙間のために配置される磁性コンポーネントを有し、従って、3つの構成のうちで最も開放的である。図22Bに例示する実施態様において、ヘルメット2500’は、顔の部分的な遮蔽をもたらすように配置される1以上の磁性コンポーネントを含む(例えば、多チャネル又は単チャネルRFコイル要素及び/又はB巻線が、特定の設計要求を満足するよう、この領域内に設けられる必要がある)。図22Cに例示する実施態様において、ヘルメット2500”は、閉所恐怖症効果を最小にするよう患者の眼の周りに開口が残るが、1以上の磁性コンポーネントが患者の口領域を覆う正面部分においてヘルメット2500”内に収容されるよう配置される、磁性コンポーネントを含む。
幾つかの実施態様によれば、図22A乃至22Cに例示するヘルメットの磁性コンポーネントは、ラミネート技法を用いて加工される。例えば、MRIを行うために必要とされる磁性コンポーネント(例えば、Bコイル、勾配コイル、Tx/Rxコイル等)は、ヘルメット内で頭の周りの幾何学的構成において互いに接続され且つ配置される一連のラミネートパネルを介して設けられてよい。幾つかの実施態様によれば、ヘルメットは、頭の回りに三次元幾何学的構成を形成するよう、(図12に関して記載したような)複数のラミネートパネルに亘って磁性コンポーネントを設ける技術を少なくとも部分的に用いて構築される。複数のラミネートパネルは、頭撮像のための統合MRIヘルメットを形成するよう、その上にパターン化された、Bコイル、勾配コイル及びTx/Rxコイルを有してよい。複数の接続されたラミネートパネルの上に磁性コンポーネントを加工する技法を用いて他の幾何学的構成を形成して、解剖学的構造の他の部分を撮像する統合MRIシステムをもたらしてよいことが、理解されるべきである。何故ならば、本明細書中に記載する技法はこの点において限定されないからである。
本開示中に示した技術の幾つかの特徴及び実施態様をこのように記載したが、様々な変更、修正、及び改良が、当業者の心に直ちに思い浮かぶことが理解されよう。そのような変更、修正、改良は、本明細書中に記載される技術の精神及び範囲内にあることが意図される。例えば、当業者は、機能を遂行し且つ/或いは本明細書中に記載する利点のうちの1以上及び/又は結果を得る様々な他の手段及び/又は構造を直ちに想定し、そのような変更及び/又は修正の各々は、本明細書中に記載される実施態様の範囲内にあるものと見做される。当業者は、日常的な実験の域を出ないものを用いて、本明細書中に記載される特定の実施態様の多くの均等物を認識し或いは確認し得る。従って、前述の実施態様はほんの一例として提示されていること、並びに、付属の請求項及びその均等物の範囲内で、発明的な実施態様は特別に記載された方法以外の方法において実施されてよいことが理解されるべきである。加えて、本明細書中に記載される2以上の構成(features)、システム、物品、材料、キット及び/又は方法のあらゆる組み合わせは、そのような構成、システム、物品、材料、キット及び/又は方法が互いに矛盾しないならば、本開示の範囲内に含められる。
上述の実施態様を数多くの方法のうちのいずれかにおいて実施し得る。プロセス又は方法の実施を含む本開示の1以上の特徴及び実施態様は、デバイス(例えば、コンピュータ、プロセッサ、又は他のデバイス)によって実行可能なプログラム指令を利用して、プロセス又は方法を遂行し、或いはプロセス又は方法の遂行を制御してよい。この点に関して、様々な発明的な着想が、1以上のコンピュータ又はプロセッサ上で実行されるときに、上述の様々な実施態様のうちの1以上を実施する、1以上のプログラムで符号化された、コンピュータ可読記憶媒体(又は多数のコンピュータ可読記憶媒体)(例えば、コンピュータメモリ、1以上のフロッピーディスク、コンパクトディスク、光ディスク、磁気テープ、フラッシュメモリ、フィールド・プログラマブル・ゲート・アレイ若しくは他の半導体デバイスの回路構成、又は他の有形のコンピュータ記憶媒体)として具現されてよい。コンピュータ可読媒体又は複数のコンピュータ可読媒体は、その上に格納されるプログラム又は複数のプログラムを1以上の異なるコンピュータ又は他のプロセッサにロードして上述の特徴のうちの様々なものを実施し得るよう、可搬式であり得る。幾つかの実施態様において、コンピュータ可読媒体は、持続性媒体であってよい。
「プログラム」又は「ソフトウェア」という用語は、上述のような様々な特徴を実施するようコンピュータ又は他のプロセッサをプログラムするために利用し得る、任意の種類のコンピュータコード又はコンピュータ実行可能な指令のセットを指すよう、一般的な意味において本明細書中で用いられている。加えて、1つの特徴によれば、実行されるときに本開示の方法を遂行する1以上のコンピュータプログラムは、単一のコンピュータ又はプロセッサの上に存しなくてよく、多数の異なるコンピュータ又はプロセッサの中にモジュール式に分散させられて、本開示の様々な特徴を実施してよい。
コンピュータ実行可能な指令は、1以上のコンピュータ又は他のデバイスによって実行されるプログラムモジュールのような、多くの形態にあり得る。一般的に、プログラムモジュールは、特定のタスクを遂行し或いは特定の抽象データタイプを実施する、ルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含む。典型的には、プログラムモジュールの機能性は、様々な実施態様において所望に組み合わせられ或いは分散させられてよい。
その上、データ構造は、任意の適切な形態においてコンピュータ可読媒体内に格納されてよい。例示の単純性のために、データ構造は、データ構造内のロケーションを通じて関係づけられるフィールドを有するように示されてよい。そのような関係は、フィールドのための記憶装置にフィールド間の関係を伝えるコンピュータ可読媒体内のロケーションを与えることによって同様に達成されてよい。しかしながら、ポインタ、タグ、又はデータ要素間の関係を構築する他の機構を含む、任意の適切な機構を用いて、データ構造のフィールド内の情報間の関係を構築してよい。
ソフトウェアにおいて実施されるときには、単一のコンピュータ内に設けられようが多数のコンピュータの中に分散させられようが、任意の適切なプロセッサ又はプロセッサの集合の上でソフトウェアコードを実行し得る。
更に、コンピュータは、非限定的な実施例としての、ラックマウント式コンピュータ、デスクトップコンピュータ、ラップトップコンピュータ、又はタブレットコンピュータのような、数多くの形態のうちのいずれかにおいて具現されてよいことが理解されなければならない。加えて、コンピュータは、携帯情報端末(PDA)、スマートホン、又は任意の他の適切な携帯型若しくは固定的な電子デバイスを含む、一般的にはコンピュータと見做されないが適切な処理能力を備える、デバイスにおいて具現されてよい。
その上、コンピュータは、1以上の入力及び出力デバイスを有してよい。これらのデバイスを用いて、とりわけ、ユーザーインターフェースを提示し得る。ユーザーインターフェースを提供するために用い得る出力デバイスの実施例は、出力の視覚的表現のためのプリンタ又はディスプレイスクリーンと、出力の音声表現のためのスピーカ又は他の音響生成デバイスとを含む。ユーザーインターフェースのために用い得る入力デバイスの実施例は、キーボード、マウス、タッチパッドのようなポインティングデバイス、及び離散化タブレット(digitizing tablet)を含む。他の実施例として、コンピュータは、音声認識を通じて或いは他の可聴形態において入力情報を受け取ってよい。
そのようなコンピュータは、企業ネットワーク、インテリジェントネットワーク(IN)又はインターネットのような、ローカルエリアネットワーク又は広域ネットワークを含む、任意の適切な形態にける、1以上のネットワークによって相互接続されてよい。そのようなネットワークは、任意の適切な技術に基づいてよく、任意の適切なプロトコルに従って作動してよく、無線ネットワーク、有線ネットワーク、又は光ファイバネットワークを含んでよい。
その上、既述のように、幾つかの特徴は、1以上の方法として具現されてよい。方法の部分として行われる行為は、任意の適切な方法において順序付けられてよい。従って、行為が例示される順序と異なる順序において行われる、実施態様が構成されてよく、それらは、例示的な実施態様において順次的な行為として示されているとしても、幾つかの行為を同時に行うことを含んでよい。
その上、既述のように、幾つかの特徴は、1以上の方法として具現されてよい。方法の部分として行われる行為は、任意の適切な方法において順序付けられてよい。従って、行為が例示される順序と異なる順序において行われる、実施態様が構成されてよく、それらは、例示的な実施態様において順次的な行為として示されているとしても、幾つかの行為を同時に行うことを含んでよい。
本明細書において並びに請求項において用いられるとき、不定冠詞は、文脈が明らかに逆のことを示さない限り、「少なくとも1つ」を意味するものと理解されるべきである。
本明細書及び請求項において用いられるとき、「及び/又は」という成句は、そのように結合される要素の「一方又は両方」、即ち、幾つかの場合には結合的に存在するが、他の場合には非結合的に存在する、要素を意味するものと理解されるべきである。「及び/又は」で列挙される多数の要素は、同じ仕方で、即ち、そのように結合される要素の「1以上(1つ又はそれよりも多く)」と解釈されるべきである。「及び/又は」節によって具体的に特定される要素以外の他の要素が、それらの具体的に特定される要素に関係していようが関係していまいが、任意的に存在してよい。よって、非限定的な実施例として、「含む」のようなオープンエンド言語と共に用いられるとき、「A及び/又はB」への言及は、1つの実施態様において、(B以外の要素を任意的に含む)Aのみを指し、他の実施態様において、(A以外の要素を任意的に含む)Bのみを指し、更に他の実施態様において、(他の要素を任意的に含む)A及びB等を指し得る。
本明細書及び請求項において用いられるとき、1以上の要素のリストに関連する「少なくとも1つ」という成句は、要素のリスト中の要素のうちのいずれか1以上から選択される少なくとも1つの要素を意味するが、要素のリスト中に具体的に列挙されるありとあらゆる要素のうちの少なくとも1つを必ずしも含まず、要素のリスト中の要素の任意の組み合わせを排除しないことが理解されるべきである。この定義は、「少なくとも1つ」が言及する要素のリスト中に具体的に特定される要素以外の要素が、それらの具体的に特定される要素に関係していようが関係していまいが、任意的に存在してよいことも可能にする。よって、非限定的な実施例として、「A及びBのうちの少なくとも1つ」(或いは、均等的に「A又はBのうちの少なくとも1つ」或いは均等的に「A及び/又はBのうちの少なくとも1つ」は、1つの実施態様において、Bが存在しない(B以外の要素を任意的に含む)、1以上を任意的に含む少なくとも1つのAを指し、他の実施態様において、Aが存在しない(A以外の要素を任意的に含む)、1以上を任意的に含む少なくとも1つのBを指し、更に他の実施態様において、(他の要素を任意的に含む)1以上を任意的に含む少なくとも1つのA及び1以上を任意的に含む1以上のB等を指し得る。
その上、本明細書において用いられる言葉遣い及び述語は、記述の目的のためであり、限定するものと考えられてならない。本明細書における「含む」(“including”)、「含む」(“comprising”)、又は「有する」(“having”)、「含む」(“containing”)、「含む」(“involving”)、及びそれらの変形は、然る後に列挙される品目及びそれらの均等物並びに追加的な品目を包含することを意図する。
請求項において並びに上記明細書において、全ての「含む」(“including”)、「含む」(“comprising”)、「持つ」(“carrying”)、「有する」(“having”)、「含む」(“containing”)、「含む」(“involving”)、「保持する」(“holding”)、「〜で構成される」(“comprised of”)、及び同等表現のような移行句は、オープンエンドである、即ち、非限定的に含むことを意味する「〜成る」(“consisting of”)及び「本質的に〜成る」(“consisting essentially of”)という移行句のみが、閉塞的又は半閉塞的な移行句である。

Claims (14)

  1. 低磁場磁気共鳴映像法(MRI)システムであって、
    当該低磁場MRIシステムのためのB 磁場に寄与する磁場を生成するように構成されるB 磁石と、
    複数のラミネート層を含む少なくとも1つのラミネートパネルであって前記複数のラミネート層の各々は、低磁場磁気共鳴映像法(MRI)における使用のための磁性コンポーネント少なくとも一部分を形成するようにパターン化された、少なくとも1つの導電層と、少なくとも1つの非導電層とを含み、前記複数のラミネート層は、
    少なくとも1つの第1のラミネート層であって、その上にパターン化されたx勾配コイルを有し、該x勾配コイルは、作動させられるときに、磁場を生成して或いは磁場に寄与して、x方向において放射される磁気共鳴(MR)信号の空間符号化をもたらすように構成される、少なくとも1つの第1のラミネート層と、
    少なくとも1つの第2のラミネート層であって、その上にパターン化されたy勾配コイルを有し、該y勾配コイルは、作動させられるときに、磁場を生成して或いは磁場に寄与して、y方向において放射される磁気共鳴(MR)信号の空間符号化をもたらすように構成される、少なくとも1つの第2のラミネート層と、
    少なくとも1つの第3のラミネート層であって、その上にパターン化されたz勾配コイルを有し、該z勾配コイルは、作動させられるときに、磁場を生成して或いは磁場に寄与して、z方向において放射される磁気共鳴(MR)信号の空間符号化をもたらすように構成される、少なくとも1つの第3のラミネート層と、を含む、
    ラミネートパネルと、
    前記ラミネートパネルの前記複数のラミネート層を通じて設けられる貫通穴ビアで構成される前記複数のラミネート層の間の複数の電気接続部と、を含む
    低磁場MRIシステム。
  2. 前記少なくとも1つのラミネートパネルは、第1のラミネートパネルと、第2のラミネートパネルとを含み前記第1のラミネートパネル及び前記第2のラミネートパネルは、2平面構成において配置される、請求項1に記載の低磁場MRIシステム。
  3. 前記少なくとも1つのラミネートパネルは、少なくとも1つの第4のラミネート層であって、その上にパターン化された、低磁場MRIにおける使用に適したB磁場を生成するように構成されるB コイルの少なくとも一部分を有する、少なくとも1つの第4のラミネート層を含む、請求項1に記載の低磁場MRIシステム。
  4. 前記少なくとも1つのラミネートパネルは、少なくとも1つの第4のラミネート層であって、前記B磁場の同質性に影響を与えるよう当該低磁場MRIシステムの前記B磁場を生成するように或いはそのような磁場に寄与するように構成されるムコイルの少なくとも一部分を有する、少なくとも1つの第4のラミネート層を含む、請求項に記載の低磁場MRIシステム。
  5. 前記少なくとも1つの電源を収容するように構成され且つ前記第1のラミネートパネル及び前記第2のラミネートパネルを支持するように構成される、可搬型のハウジングを更に含み、該ハウジングは、所望の場所に移動させられ得る、請求項に記載の低磁場MRIシステム。
  6. 前記ハウジングが前記所望の場所に押されるのを可能にするよう、前記ハウジングに連結されるホイールを更に含む、請求項に記載の低磁場MRIシステム。
  7. 少なくとも1つの変換可能なコンポーネントを更に含む、請求項に記載の低磁場MRIシステム。
  8. 前記変換可能な部分は、少なくとも1つの滑動コンポーネントを含む、請求項に記載の低磁場MRIシステム。
  9. 前記変換可能な部分は、少なくとも1つの関節作動するアームコンポーネントを含む、請求項に記載の低磁場MRIシステム。
  10. 前記第1のラミネートパネル及び前記第2のラミネートパネルを支持するフレームと、
    患者を前記第1のラミネートパネルと前記第2のラミネートパネルとの間に位置付ける調節可能なシートとを更に含む、
    請求項に記載の低磁場MRIシステム。
  11. 前記第1のラミネートパネルと前記第2のラミネートパネルは、特定の解剖学的構造の低磁場MRIを促進するような互いに対する大きさに製造され且つ配置される、請求項に記載の低磁場MRIシステム。
  12. 前記第1のラミネートパネルと前記第2のラミネートパネルは、頭の低磁場MRIを促進するような互いに対する大きさに製造され且つ配置される、請求項11に記載の低磁場MRIシステム。
  13. 前記複数のラミネート層は、頂ラミネート層と、底ラミネート層と、複数の介在ラミネート層とを含み、前記複数の電気接続部は、前記頂ラミネート層、前記底ラミネート層、及び前記複数の介在ラミネート層の各々を通じて設けられる、貫通穴ビアからなる、請求項1に記載の低磁場MRIシステム。
  14. 前記貫通穴ビアの少なくとも1つは、メッキされた貫通穴ビア又はピンビアである、請求項1に記載の低磁場MRIシステム。
JP2020025749A 2014-09-05 2020-02-19 低磁場磁気共鳴撮像方法及び装置 Active JP6955595B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021162485A JP2022000241A (ja) 2014-09-05 2021-10-01 低磁場磁気共鳴撮像方法及び装置

Applications Claiming Priority (9)

Application Number Priority Date Filing Date Title
US201462046814P 2014-09-05 2014-09-05
US62/046,814 2014-09-05
US201562110049P 2015-01-30 2015-01-30
US62/110,049 2015-01-30
US201562111320P 2015-02-03 2015-02-03
US62/111,320 2015-02-03
US201562174666P 2015-06-12 2015-06-12
US62/174,666 2015-06-12
JP2017531980A JP6674645B2 (ja) 2014-09-05 2015-09-04 低磁場磁気共鳴撮像方法及び装置

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017531980A Division JP6674645B2 (ja) 2014-09-05 2015-09-04 低磁場磁気共鳴撮像方法及び装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021162485A Division JP2022000241A (ja) 2014-09-05 2021-10-01 低磁場磁気共鳴撮像方法及び装置

Publications (2)

Publication Number Publication Date
JP2020078579A JP2020078579A (ja) 2020-05-28
JP6955595B2 true JP6955595B2 (ja) 2021-10-27

Family

ID=55437316

Family Applications (9)

Application Number Title Priority Date Filing Date
JP2017531981A Active JP6684804B2 (ja) 2014-09-05 2015-09-04 ノイズ抑制方法及び装置
JP2017531982A Active JP6761416B2 (ja) 2014-09-05 2015-09-04 低磁場磁気共鳴イメージングシステムの自動構成
JP2017531985A Active JP6832852B2 (ja) 2014-09-05 2015-09-04 磁気共鳴映像法のための強磁性増強
JP2017531980A Active JP6674645B2 (ja) 2014-09-05 2015-09-04 低磁場磁気共鳴撮像方法及び装置
JP2020025749A Active JP6955595B2 (ja) 2014-09-05 2020-02-19 低磁場磁気共鳴撮像方法及び装置
JP2020059620A Active JP6882569B2 (ja) 2014-09-05 2020-03-30 ノイズ抑制方法及び装置
JP2020076553A Pending JP2020127750A (ja) 2014-09-05 2020-04-23 磁気共鳴映像法のための強磁性増強
JP2021078699A Pending JP2021120001A (ja) 2014-09-05 2021-05-06 ノイズ抑制方法及び装置
JP2021162485A Pending JP2022000241A (ja) 2014-09-05 2021-10-01 低磁場磁気共鳴撮像方法及び装置

Family Applications Before (4)

Application Number Title Priority Date Filing Date
JP2017531981A Active JP6684804B2 (ja) 2014-09-05 2015-09-04 ノイズ抑制方法及び装置
JP2017531982A Active JP6761416B2 (ja) 2014-09-05 2015-09-04 低磁場磁気共鳴イメージングシステムの自動構成
JP2017531985A Active JP6832852B2 (ja) 2014-09-05 2015-09-04 磁気共鳴映像法のための強磁性増強
JP2017531980A Active JP6674645B2 (ja) 2014-09-05 2015-09-04 低磁場磁気共鳴撮像方法及び装置

Family Applications After (4)

Application Number Title Priority Date Filing Date
JP2020059620A Active JP6882569B2 (ja) 2014-09-05 2020-03-30 ノイズ抑制方法及び装置
JP2020076553A Pending JP2020127750A (ja) 2014-09-05 2020-04-23 磁気共鳴映像法のための強磁性増強
JP2021078699A Pending JP2021120001A (ja) 2014-09-05 2021-05-06 ノイズ抑制方法及び装置
JP2021162485A Pending JP2022000241A (ja) 2014-09-05 2021-10-01 低磁場磁気共鳴撮像方法及び装置

Country Status (12)

Country Link
US (27) US9817093B2 (ja)
EP (5) EP3189341A4 (ja)
JP (9) JP6684804B2 (ja)
KR (4) KR20170048577A (ja)
CN (8) CN111896903A (ja)
AU (7) AU2015311825B2 (ja)
BR (4) BR112017004353A2 (ja)
CA (8) CA2960194C (ja)
IL (5) IL250939B (ja)
MX (4) MX366786B (ja)
TW (1) TWI627428B (ja)
WO (5) WO2016037030A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000241A (ja) * 2014-09-05 2022-01-04 ハイパーファイン,インコーポレイテッド 低磁場磁気共鳴撮像方法及び装置

Families Citing this family (104)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101518751B1 (ko) * 2013-11-21 2015-05-11 연세대학교 산학협력단 다중 대조도 자기공명영상에서 잡음 제거 방법 및 장치
EP3217872A4 (en) 2014-11-11 2018-07-18 Hyperfine Research, Inc. Pulse sequences for low field magnetic resonance
US10813564B2 (en) 2014-11-11 2020-10-27 Hyperfine Research, Inc. Low field magnetic resonance methods and apparatus
AU2016250077B2 (en) 2015-04-13 2021-04-15 Hyperfine Operations, Inc. Magnetic coil power methods and apparatus
US10288711B1 (en) * 2015-04-30 2019-05-14 Life Services, LLC Device and method for simultaneous TX/RX in strongly coupled MRI coil loops
JP6784697B2 (ja) 2015-05-12 2020-11-11 ハイパーファイン リサーチ,インコーポレイテッド 高周波コイルの方法および装置
US10901055B2 (en) * 2015-05-15 2021-01-26 Eidgenossische Technische Hochschule (Eth) Active noise suppression for magnetic resonance based magnetic field probes
US11119171B2 (en) * 2015-07-16 2021-09-14 Synaptive Medical Inc. Systems and methods for adaptive multi-resolution magnetic resonance imaging
CN106483483B (zh) * 2015-08-27 2019-09-06 通用电气公司 梯度线圈及其制造方法
CN109073681B (zh) * 2016-03-22 2020-10-23 海珀菲纳研究股份有限公司 用于磁场匀场的方法和设备
CN115407252A (zh) 2016-06-22 2022-11-29 优瑞技术公司 低场强磁共振成像
EP3236375A3 (de) * 2016-08-24 2018-01-24 Siemens Healthcare GmbH Verfahren und system zum ausgeben einer medizinischen information
US10650621B1 (en) 2016-09-13 2020-05-12 Iocurrents, Inc. Interfacing with a vehicular controller area network
TWI667487B (zh) 2016-09-29 2019-08-01 美商超精細研究股份有限公司 射頻線圈調諧方法及裝置
US10539637B2 (en) 2016-11-22 2020-01-21 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US10627464B2 (en) 2016-11-22 2020-04-21 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
WO2018098141A1 (en) 2016-11-22 2018-05-31 Hyperfine Research, Inc. Systems and methods for automated detection in magnetic resonance images
US10585153B2 (en) 2016-11-22 2020-03-10 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
DE102017200446A1 (de) * 2017-01-12 2018-07-12 Siemens Healthcare Gmbh Korrektur eines MR-Sendesignals
EP3535594B1 (de) * 2017-01-13 2023-03-29 Siemens Healthcare GmbH Magnetresonanztomograph und lokalspulenmatrix zum betrieb bei niedrigen magnetfeldstärken
WO2018190676A1 (ko) 2017-04-14 2018-10-18 국립암센터 말산-아스파르트산 왕복수송 억제제 및 항암제를 유효성분으로 함유하는 암 예방 및 치료용 약학적 조성물
EP3401695A1 (en) 2017-05-08 2018-11-14 Koninklijke Philips N.V. Cooling a gradient coil of a magnetic resonance imaging system
US10732248B2 (en) 2017-05-22 2020-08-04 Synaptive Medical (Barbados) Inc. System and method to reduce eddy current artifacts in magnetic resonance imaging
US20190041481A1 (en) * 2017-08-04 2019-02-07 Muralidhara Subbarao Massively parallel magnetic resonance imaging wherein numerous off-surface coils are used to acquire partially under-sampled magnetic resonance signal data
EP3467531A1 (de) * 2017-10-05 2019-04-10 Siemens Healthcare GmbH Magnetresonanztomograph mit aktiver störunterdrückung und verfahren zur störunterdrückung in einem magnetresonanztomographen
JP6867926B2 (ja) * 2017-10-12 2021-05-12 株式会社日立製作所 ノイズ発生源探索装置及びノイズ発生源探索方法
CN109717869B (zh) * 2017-10-31 2024-05-14 通用电气公司 磁共振成像过程中的运动监测方法、计算机程序、存储设备
US10489943B2 (en) * 2018-02-28 2019-11-26 General Electric Company System and method for sparse image reconstruction
US20210050092A1 (en) * 2018-03-14 2021-02-18 Koninklijke Philips N.V. Intelligent scheduler for centralized control of imaging examinations
CN108627789B (zh) * 2018-03-28 2020-07-28 重庆大学 空心线圈传感器的τ曲线标定方法
EP3553547A1 (en) * 2018-04-12 2019-10-16 Koninklijke Philips N.V. Shim irons for a magnetic resonance apparatus
FR3080509B1 (fr) * 2018-04-19 2021-05-14 Zodiac Data Systems Dispositif d'acquisition de donnees pour l'instrumentation d'une structure
CA3096397A1 (en) 2018-04-20 2019-10-24 Hyperfine Research, Inc. Deployable guard for portable magnetic resonance imaging devices
ES2730123A1 (es) * 2018-05-07 2019-11-08 Tesoro Imaging S L Bobina magnetica con configuracion geometrica incompleta
US11209509B2 (en) * 2018-05-16 2021-12-28 Viewray Technologies, Inc. Resistive electromagnet systems and methods
BR112020021872A2 (pt) 2018-05-21 2021-01-26 Hyperfine Research, Inc. métodos e aparelhos de magneto b0 para um sistema de ressonância magnética
AU2019272580A1 (en) 2018-05-21 2020-11-12 Hyperfine Operations, Inc. Radio-frequency coil signal chain for a low-field MRI system
CN108828484B (zh) * 2018-05-25 2024-08-09 中国计量科学研究院 一种磁共振成像仪的质控模体
CN108983134B (zh) * 2018-05-31 2020-07-03 上海东软医疗科技有限公司 信号接收通道校准方法和磁共振校准系统
EP3581953A1 (en) 2018-06-11 2019-12-18 Koninklijke Philips N.V. A method for configuring a rf transmit assembly
TW202015621A (zh) 2018-07-19 2020-05-01 美商超精細研究股份有限公司 在磁共振成像中患者定位之方法及設備
JP2021532875A (ja) 2018-07-30 2021-12-02 ハイパーファイン,インコーポレイテッド 磁気共鳴画像再構成のための深層学習技術
TW202012951A (zh) 2018-07-31 2020-04-01 美商超精細研究股份有限公司 低場漫射加權成像
JP2021534852A (ja) * 2018-08-15 2021-12-16 ハイパーファイン,インコーポレイテッド 磁気共鳴画像においてアーティファクトを抑制するためのディープラーニング技術
CA3168499A1 (en) 2018-09-14 2020-03-19 10250929 Canada Inc. Method and system for in-vivo, and non-invasive measurement of metabolite levels
US10761162B2 (en) * 2018-09-18 2020-09-01 General Electric Company Gradient coil cooling systems
EP3633400B1 (de) * 2018-10-02 2022-09-21 Siemens Healthcare GmbH Magnetresonanztomograph sowie system und verfahren zum verhindern von übersprech-störungen
DE102018128254A1 (de) * 2018-11-12 2020-05-14 Endress+Hauser SE+Co. KG Verfahren zur Verbesserung derMessperformance eines zu konfigurierenden Feldgeräts der Automatisierungstechnik
EP3657193B1 (en) * 2018-11-20 2021-02-17 Bruker Switzerland AG Method for magnetizing a superconductor bulk magnet, with generating an auxiliary magnetic field in the superconductor bore
DE102018221695A1 (de) * 2018-12-13 2020-06-18 Siemens Healthcare Gmbh Verfahren zur quantitativen Magnetresonanzbildgebung, Magnetresonanzeinrichtung, Computerprogramm und elektronisch lesbarer Datenträger
CA3122087A1 (en) 2018-12-19 2020-06-25 Hyperfine Research, Inc. System and methods for grounding patients during magnetic resonance imaging
WO2020139476A2 (en) 2018-12-28 2020-07-02 Hyperfine Research, Inc. Correcting for hysteresis in magnetic resonance imaging
EP3928108A4 (en) * 2019-02-22 2023-03-15 Promaxo, Inc. SYSTEMS AND METHODS FOR PERFORMING MAGNETIC RESONANCE IMAGING
EP3937774A1 (en) 2019-03-12 2022-01-19 Hyperfine, Inc. Systems and methods for magnetic resonance imaging of infants
JP2022526718A (ja) 2019-03-14 2022-05-26 ハイパーファイン,インコーポレイテッド 空間周波数データから磁気共鳴画像を生成するための深層学習技術
CN109946631B (zh) * 2019-03-27 2021-06-25 中国计量大学 最小化最大温度值的盘式梯度线圈
CN109946630B (zh) * 2019-03-27 2021-05-28 中国计量大学 最小化最大温度值的盘式梯度线圈设计方法
KR20220005492A (ko) 2019-04-26 2022-01-13 하이퍼파인, 인크. 자기 공명 영상 시스템의 동적 제어를 위한 기술
KR20220007876A (ko) * 2019-05-07 2022-01-19 하이퍼파인, 인크. 유아의 자기 공명 이미징을 위한 시스템, 디바이스 및 방법
US11698430B2 (en) 2019-08-15 2023-07-11 Hyperfine Operations, Inc. Eddy current mitigation systems and methods
WO2021071938A2 (en) 2019-10-08 2021-04-15 Hyperfine Research, Inc. System and methods for detecting electromagnetic interference in patients during magnetic resonance imaging
EP3808265B1 (en) * 2019-10-16 2024-02-28 Esaote S.p.A. Patient support device, such as a patient bed, table or chair, for use with magnetic resonance imaging apparatuses
EP4049052A2 (en) 2019-10-25 2022-08-31 Hyperfine Operations, Inc. Artefact reduction in magnetic resonance imaging
US12013453B2 (en) 2019-10-25 2024-06-18 Hyperfine Operations, Inc. Systems and methods for detecting patient motion during magnetic resonance imaging
DE102019216755A1 (de) * 2019-10-30 2021-05-06 Robert Bosch Gmbh Verfahren zum Betrieb eines NMR-Spektrometers sowie NMR-Spektrometer
DE102019216761A1 (de) * 2019-10-30 2021-05-06 Robert Bosch Gmbh Verfahren zum Betrieb eines NMR-Spektrometers sowie NMR-Spektrometer
DE102019216759A1 (de) * 2019-10-30 2021-05-06 Robert Bosch Gmbh Verfahren zum Betrieb eines NMR-Spektrometers sowie NMR-Spektrometer
US11510588B2 (en) 2019-11-27 2022-11-29 Hyperfine Operations, Inc. Techniques for noise suppression in an environment of a magnetic resonance imaging system
US11415651B2 (en) 2019-12-10 2022-08-16 Hyperfine Operations, Inc. Low noise gradient amplification components for MR systems
US11422213B2 (en) 2019-12-10 2022-08-23 Hyperfine Operations, Inc. Ferromagnetic frame for magnetic resonance imaging
USD932014S1 (en) 2019-12-10 2021-09-28 Hyperfine, Inc. Frame for magnets in magnetic resonance imaging
USD912822S1 (en) 2019-12-10 2021-03-09 Hyperfine Research, Inc. Frame for magnets in magnetic resonance imaging
CN115552269A (zh) 2019-12-10 2022-12-30 海珀菲纳运营有限公司 用于磁共振成像的具有非铁磁框架的永磁体装配件
CN113050010B (zh) * 2019-12-26 2023-03-21 上海联影医疗科技股份有限公司 噪音分析的系统、方法
DE102020200013A1 (de) * 2020-01-03 2021-07-08 Siemens Healthcare Gmbh Magnetresonanzeinrichtung und Verfahren zum Betrieb einer Magnetresonanzeinrichtung, Computerprogramm und elektronisch lesbarer Datenträger
WO2021144876A1 (ja) * 2020-01-15 2021-07-22 朝日インテック株式会社 測定装置、検出装置、および測定方法
CN110873855B (zh) * 2020-01-20 2020-04-21 华中科技大学 一种基于磁通压缩的脉冲磁体装置及高通量测量方法
US20210302518A1 (en) 2020-03-24 2021-09-30 Hyperfine Research, Inc. Gradient waveform design for low-field magnetic resonance imaging systems
US11754650B2 (en) * 2020-04-10 2023-09-12 Howmedica Osteonics Corp. MRI shield
US20230132819A1 (en) * 2020-04-24 2023-05-04 The General Hospital Corporation System and method for electromagnetic interference mitigation for portable mri systems
US20230136830A1 (en) * 2020-04-24 2023-05-04 The General Hospital Corporation Point-of-care magnetic resonance imaging system for lumbar puncture guidance
WO2022026644A1 (en) * 2020-07-31 2022-02-03 Synex Medical Inc. Weak signal detection system and method
US20220133240A1 (en) * 2020-10-30 2022-05-05 Chengdu Yijian Medical Technology Co., Ltd System and method for reducting or eliminating artifacts in magnectic resonance imaging
CN112698256B (zh) * 2020-12-07 2023-08-29 深圳航天科技创新研究院 降低磁共振成像设备电磁噪声的主动降噪系统的降噪方法
DE102020215738B4 (de) * 2020-12-11 2024-08-22 Siemens Healthineers Ag Verfahren zum Betreiben eines Magnetresonanztomographie-systems mit iterativer Störungsreduktion mittels wenigstens einer Hilfsempfangsantenne und einer Hauptempfangsantenne
EP4264304A1 (en) 2020-12-15 2023-10-25 Hyperfine Operations, Inc. Opto-isolator circuitry for magnetic resonance imaging applications
DE102020133923B4 (de) * 2020-12-17 2023-03-23 Isovolta Gatex GmbH Verfahren zum lagefixierten Verbinden eines schlauchförmigen Elementes auf einer Trägerplatte
CN118112474A (zh) 2021-02-02 2024-05-31 海珀菲纳运营有限公司 Mri系统、使用mri系统对被检体进行成像的方法及存储介质
DE102021104344A1 (de) * 2021-02-24 2022-08-25 Otto-Von-Guericke-Universität Magdeburg MR-Bildgebung mit Reduktion von Zipper-Artefakten
CN113176528A (zh) * 2021-04-29 2021-07-27 杭州微影医疗科技有限公司 干扰消除方法、介质及设备
KR20220152457A (ko) 2021-05-07 2022-11-16 삼성전자주식회사 이미지 센서 및 그 동작 방법
JP2023002228A (ja) * 2021-06-22 2023-01-10 昭和電工株式会社 情報処理装置および磁気センサシステム
FR3130391B1 (fr) * 2021-12-10 2023-11-03 Multiwave Imaging Dispositif d’imagerie par résonnance magnétique pourvu d’un assemblage magnétique
WO2023194228A1 (en) * 2022-04-04 2023-10-12 Renaissance Fusion Modular mri machine
EP4257999A1 (en) * 2022-04-04 2023-10-11 Renaissance Fusion Modular mri machine
EP4270038A1 (de) * 2022-04-27 2023-11-01 Siemens Healthcare GmbH Magnetanordnung für eine magnetresonanzvorrichtung
FR3135787B1 (fr) 2022-05-17 2024-07-19 Multiwave Imaging Procédé de formation d’une image d’un corps au moyen d’un dispositif irm
WO2024025828A1 (en) * 2022-07-25 2024-02-01 Promaxo, Inc. Low-field mri texture analysis
EP4312043A1 (de) * 2022-07-25 2024-01-31 Siemens Healthcare GmbH Magnetresonanztomograph und verfahren für einen energiesparenden betrieb des magnetresonanztomographen
EP4328611A1 (de) * 2022-08-25 2024-02-28 Siemens Healthineers AG Vorrichtung und verfahren zur störunterdrückung bei einem magnetresonanztomographen
US20240094322A1 (en) * 2022-09-19 2024-03-21 Synaptive Medical Inc. System and methods for monitoring medical equipment by using cloud-based telemetry
CN115778395A (zh) * 2022-11-08 2023-03-14 成都原力辰教育科技有限公司 一种心脏磁场测量系统、方法、电子设备及存储介质
US20240168105A1 (en) * 2022-11-19 2024-05-23 Neuro42 Inc. System and method for removing electromagnetic interference from low-field magnetic resonance images
EP4390430A1 (en) * 2022-12-21 2024-06-26 Koninklijke Philips N.V. Method and system for determining a position of a portable mri system

Family Cites Families (365)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1397244A (en) * 1920-08-07 1921-11-15 Saco Lowell Shops Angular driving mechanism
US3622869A (en) 1967-06-28 1971-11-23 Marcel J E Golay Homogenizing coils for nmr apparatus
US3735306A (en) 1970-10-22 1973-05-22 Varian Associates Magnetic field shim coil structure utilizing laminated printed circuit sheets
US4621299A (en) 1982-11-05 1986-11-04 General Kinetics Inc. High energy degausser
JPS6063972A (ja) 1983-09-17 1985-04-12 Sumitomo Electric Ind Ltd クライオスタツト
US4595899A (en) 1984-07-06 1986-06-17 The Board Of Trustees Of The Leland Stanford Junior University Magnetic structure for NMR applications and the like
JPS6197806A (ja) * 1984-10-18 1986-05-16 Yokogawa Medical Syst Ltd Nmr画像装置に用いられるマグネツト部の冷却装置
US4638252A (en) * 1984-12-21 1987-01-20 General Electric Company Circuit for detecting RF coil assembly position in an MR scanner
US4680545A (en) * 1985-01-04 1987-07-14 General Electric Company Method for reduction of acoustical noise generated by magnetic field gradient pulses
US4668915A (en) 1985-03-15 1987-05-26 Honda Giken Kogyo Kabushiki Kaisha Non-uniform field magnetic resonance dual patient imaging system
JPH0636789B2 (ja) * 1985-07-29 1994-05-18 株式会社島津製作所 Mri装置
US5038785A (en) * 1985-08-09 1991-08-13 Picker International, Inc. Cardiac and respiratory monitor with magnetic gradient noise elimination
US4675609A (en) 1985-09-18 1987-06-23 Fonar Corporation Nuclear magnetic resonance apparatus including permanent magnet configuration
JP2588700B2 (ja) * 1986-09-05 1997-03-05 株式会社 日立メディコ 核磁気共鳴イメ−ジング装置
US4770182A (en) * 1986-11-26 1988-09-13 Fonar Corporation NMR screening method
FR2609206B1 (fr) 1986-12-30 1992-02-14 Thomson Cgr Dispositif correcteur par elements magnetiques d'inhomogeneites du champ magnetique dans un aimant
JPS63266804A (ja) * 1987-04-24 1988-11-02 Hitachi Metals Ltd 磁界発生装置
JPS63311945A (ja) 1987-06-12 1988-12-20 Matsushita Electric Ind Co Ltd 核磁気共鳴断層像撮像装置
US5203332A (en) 1987-06-23 1993-04-20 Nycomed Imaging As Magnetic resonance imaging
ES2026257T3 (es) * 1987-06-23 1992-04-16 Hafslund Nycomed Innovation Ab Mejoras introducidas en la presentacion de imagenes por resonancia magnetica nuclear.
JPH084044B2 (ja) 1987-09-04 1996-01-17 株式会社フジクラ 超電導シートコイル
JPS6464637A (en) * 1987-09-07 1989-03-10 Hitachi Medical Corp Nuclear magnetic resonance imaging apparatus
EP0307516A1 (en) 1987-09-18 1989-03-22 Koninklijke Philips Electronics N.V. Magnetic resonance imaging apparatus with eddy-current disturbances correction system
JPH0164637U (ja) 1987-10-19 1989-04-25
JPH01242057A (ja) 1988-03-23 1989-09-27 Toshiba Corp 磁気共鳴イメージング装置
JPH0271727A (ja) * 1988-09-06 1990-03-12 Hitachi Medical Corp 核磁気共鳴イメージング装置
US4893082A (en) * 1989-02-13 1990-01-09 Letcher Iii John H Noise suppression in magnetic resonance imaging
US5134374A (en) 1989-06-01 1992-07-28 Applied Superconetics Magnetic field control apparatus
JPH03188831A (ja) 1989-12-20 1991-08-16 Hitachi Medical Corp 磁気共鳴イメージング装置
US5252924A (en) * 1991-11-18 1993-10-12 Sumitomo Special Metals Co., Ltd. Magnetic field generating apparatus for MRI
FI86506C (fi) * 1990-05-29 1992-09-10 Instrumentarium Oy Avbildningsfoerfarande.
JP2808198B2 (ja) * 1990-07-02 1998-10-08 住友特殊金属株式会社 Mri用磁界発生装置とその製法
DE69129687T2 (de) * 1990-09-29 1999-03-11 Sumitomo Special Metals Co., Ltd., Osaka Vorrichtung zur Erzeugung eines Magnetfeldes für die Bildgebung mittels magnetischer Resonanz
JPH04337614A (ja) * 1991-05-15 1992-11-25 Toshiba Corp 傾斜磁場コイルの製造方法
US5153546A (en) 1991-06-03 1992-10-06 General Electric Company Open MRI magnet
JP2561591B2 (ja) 1991-12-27 1996-12-11 住友特殊金属株式会社 Mri用磁界発生装置
US5382904A (en) 1992-04-15 1995-01-17 Houston Advanced Research Center Structured coil electromagnets for magnetic resonance imaging and method for fabricating the same
JPH05344960A (ja) 1992-06-15 1993-12-27 Hitachi Ltd 磁気共鳴検査装置
US6023165A (en) 1992-09-28 2000-02-08 Fonar Corporation Nuclear magnetic resonance apparatus and methods of use and facilities for incorporating the same
US5291137A (en) * 1992-11-02 1994-03-01 Schlumberger Technology Corporation Processing method and apparatus for processing spin echo in-phase and quadrature amplitudes from a pulsed nuclear magnetism tool and producing new output data to be recorded on an output record
EP0597528B1 (en) * 1992-11-10 1998-02-04 Koninklijke Philips Electronics N.V. Magnetic resonance apparatus with noise cancellation
US5490509A (en) 1993-03-18 1996-02-13 The Regents Of The University Of California Method and apparatus for MRI using selectively shaped image volume of homogeneous NMR polarizing field
US5483158A (en) 1993-10-21 1996-01-09 The Regents Of The University Of California Method and apparatus for tuning MRI RF coils
US5423315A (en) 1993-11-22 1995-06-13 Picker International, Inc. Magnetic resonance imaging system with thin cylindrical uniform field volume and moving subjects
US5390673A (en) 1994-01-14 1995-02-21 Cordata, Incorporated Magnetic resonance imaging system
DE4422781C1 (de) * 1994-06-29 1996-02-01 Siemens Ag Aktiv geschirmte planare Gradientenspule für Polplattenmagnete
JPH0831635A (ja) * 1994-07-08 1996-02-02 Sumitomo Special Metals Co Ltd Mri用磁界発生装置
JPH10510135A (ja) 1994-11-28 1998-09-29 アナロジック コーポレーション 医療用画像作成システムのためのups
JPH0927416A (ja) * 1995-07-12 1997-01-28 Toshiba Corp 超電導コイルおよびその製造方法
JP3705861B2 (ja) * 1996-03-21 2005-10-12 株式会社日立メディコ 超電導磁石装置及びその着磁調整方法
US5864236A (en) * 1996-07-05 1999-01-26 Toshiba America Mri, Inc. Open configuration MRI magnetic flux path
US6150911A (en) * 1996-07-24 2000-11-21 Odin Technologies Ltd. Yoked permanent magnet assemblies for use in medical applications
US5900793A (en) * 1997-07-23 1999-05-04 Odin Technologies Ltd Permanent magnet assemblies for use in medical applications
DE19721985C2 (de) * 1997-05-26 1999-11-04 Siemens Ag Gradientenspulenbaugruppe und Herstellungsverfahren
US6157278A (en) * 1997-07-23 2000-12-05 Odin Technologies Ltd. Hybrid magnetic apparatus for use in medical applications
US6411187B1 (en) * 1997-07-23 2002-06-25 Odin Medical Technologies, Ltd. Adjustable hybrid magnetic apparatus
WO1999015914A1 (en) 1997-09-25 1999-04-01 Odin Technologies Ltd. Magnetic apparatus for mri
US6144204A (en) * 1997-11-28 2000-11-07 Picker Nordstar Oy Gradient coils for magnetic resonance meeting
US5936502A (en) * 1997-12-05 1999-08-10 Picker Nordstar Inc. Magnet coils for MRI
US5877665A (en) 1997-12-17 1999-03-02 General Electric Company Thermally passive magnet mounting system for an MRI signa profile magnet in mobile trailer van
US6235409B1 (en) 1997-12-17 2001-05-22 Alcoa Inc. Aluminum laminate
US6011396A (en) 1998-01-02 2000-01-04 General Electric Company Adjustable interventional magnetic resonance imaging magnet
EP1058933A4 (en) 1998-02-09 2006-03-01 Odin Medical Technologies Ltd CONSTRUCTION PROCEDURE OF OPEN MAGNETS AND OPEN MAGNETIC DEVICE FOR MRI / MRI SENSORS
US6029081A (en) * 1998-03-19 2000-02-22 Picker International, Inc. Movable magnets for magnetic resonance surgery
RU98106937A (ru) * 1998-04-14 2000-02-10 Пикер Нордстар ОЮ (FI) Устройство для формирования изображения с помощью магнитного резонанса
JP4689040B2 (ja) * 1998-05-04 2011-05-25 クラッド・メタルズ・エルエルシー 五層複合材金属調理容器の製造方法
US6131690A (en) 1998-05-29 2000-10-17 Galando; John Motorized support for imaging means
JP3034841B2 (ja) * 1998-06-05 2000-04-17 ジーイー横河メディカルシステム株式会社 Mri用コイル、クレードル及びmri装置
US6311389B1 (en) * 1998-07-01 2001-11-06 Kabushiki Kaisha Toshiba Gradient magnetic coil apparatus and method of manufacturing the same
US6417797B1 (en) * 1998-07-14 2002-07-09 Cirrus Logic, Inc. System for A multi-purpose portable imaging device and methods for using same
IT1305971B1 (it) * 1998-08-31 2001-05-21 Esaote Spa Macchina per il rilevamento di immagini in risonanza magneticanucleare del tipo dedicato al rilevamento d'immagini di limitate
JP2000139874A (ja) * 1998-09-02 2000-05-23 Sumitomo Special Metals Co Ltd Mri用磁界発生装置
US6102497A (en) * 1998-11-03 2000-08-15 Sherwood Services Ag Universal cart
US6259252B1 (en) * 1998-11-24 2001-07-10 General Electric Company Laminate tile pole piece for an MRI, a method manufacturing the pole piece and a mold bonding pole piece tiles
US6396266B1 (en) * 1998-11-25 2002-05-28 General Electric Company MR imaging system with interactive MR geometry prescription control
US6166544A (en) 1998-11-25 2000-12-26 General Electric Company MR imaging system with interactive image contrast control
AU1582400A (en) * 1998-12-08 2000-06-26 Odin Medical Technologies Ltd A device and a system for moving and positioning an open magnetic resonance imaging probe
JP3817383B2 (ja) 1999-02-24 2006-09-06 株式会社日立製作所 Mri装置
JP2000287950A (ja) 1999-04-07 2000-10-17 Ge Yokogawa Medical Systems Ltd 磁場安定化方法、磁場発生装置および磁気共鳴撮像装置
US6317618B1 (en) 1999-06-02 2001-11-13 Odin Technologies Ltd. Transportable intraoperative magnetic resonance imaging apparatus
US7019610B2 (en) 2002-01-23 2006-03-28 Stereotaxis, Inc. Magnetic navigation system
US7313429B2 (en) 2002-01-23 2007-12-25 Stereotaxis, Inc. Rotating and pivoting magnet for magnetic navigation
JP2001137212A (ja) * 1999-11-11 2001-05-22 Hitachi Medical Corp 静磁場発生装置及びそれを用いた磁気共鳴イメージング装置
DE60026426T2 (de) 1999-11-16 2006-11-16 Neomax Co., Ltd. Polstückeinheit für einen Magnet der bildgebenden magnetischen Resonanz
US6262576B1 (en) 1999-11-16 2001-07-17 Picker International, Inc. Phased array planar gradient coil set for MRI systems
WO2001053847A1 (en) 2000-01-19 2001-07-26 Millennium Technology Inc. C-shaped magnetic resonance imaging system
US6845262B2 (en) 2000-03-29 2005-01-18 The Brigham And Women's Hospital, Inc. Low-field MRI
US6998841B1 (en) * 2000-03-31 2006-02-14 Virtualscopics, Llc Method and system which forms an isotropic, high-resolution, three-dimensional diagnostic image of a subject from two-dimensional image data scans
JP4317646B2 (ja) * 2000-06-26 2009-08-19 独立行政法人理化学研究所 核磁気共鳴装置
WO2002002010A1 (fr) * 2000-07-05 2002-01-10 Hitachi Medical Corporation Dispositif d'imagerie par resonance magnetique et bobine de champ magnetique a gradient utilisee dans un tel dispositif
DE10032836C1 (de) * 2000-07-06 2002-01-17 Siemens Ag Magnetresonanzgerät mit einem Gradientenspulensystem
US6294972B1 (en) * 2000-08-03 2001-09-25 The Mcw Research Foundation, Inc. Method for shimming a static magnetic field in a local MRI coil
AU2001283371A1 (en) 2000-08-15 2002-02-25 The Regents Of The University Of California Method and apparatus for reducing contamination of an electrical signal
JP3728199B2 (ja) * 2000-11-14 2005-12-21 株式会社日立メディコ 磁気共鳴イメージング装置
JP2002159463A (ja) * 2000-11-15 2002-06-04 Ge Medical Systems Global Technology Co Llc Mri装置の磁界変動測定方法、磁界変動補償方法およびmri装置
US6677752B1 (en) 2000-11-20 2004-01-13 Stereotaxis, Inc. Close-in shielding system for magnetic medical treatment instruments
US6454293B1 (en) * 2000-12-01 2002-09-24 Greg H. Anderson Transport cart for medical-related supplies
US6529000B2 (en) * 2000-12-29 2003-03-04 Ge Medical Systems Global Technology Company, Llc Method and system for processing magnetic resonance signals to remove transient spike noise
US20020084782A1 (en) * 2001-01-04 2002-07-04 Warren Guthrie Noise detector and suppressor for magnetic resonance imaging equipment
US6662434B2 (en) 2001-04-03 2003-12-16 General Electric Company Method and apparatus for magnetizing a permanent magnet
US6518867B2 (en) 2001-04-03 2003-02-11 General Electric Company Permanent magnet assembly and method of making thereof
US6611702B2 (en) 2001-05-21 2003-08-26 General Electric Company Apparatus for use in neonatal magnetic resonance imaging
ITSV20010020A1 (it) 2001-06-08 2002-12-08 Esaote Spa Macchina per l'acquisizione di immagini della zona interna di un corpo in particolare per l'acquisizione di immagini diagnostiche
ITSV20010017A1 (it) * 2001-05-28 2002-11-28 Esaote Spa Dispositivo per il rilevamento d'immagini in risonanza magnetica nucleare
US6725893B1 (en) * 2001-06-07 2004-04-27 Tomiko Erickson Cover assembly for a crash cart
JP2003024296A (ja) 2001-07-04 2003-01-28 Ge Medical Systems Global Technology Co Llc 静磁界調整方法およびmri装置
JP2005507278A (ja) * 2001-10-29 2005-03-17 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 医療検査装置とフレーム及び患者テーブルの結合体との組立体、並びにこのような結合体
AP2004003127A0 (en) 2002-02-06 2004-09-30 Univ California Squid detected NMR and MR1 at ultralow fields
ITSV20020014A1 (it) 2002-04-09 2003-10-09 Esaote Spa Metodo e dispositivo per la compensazione di campi magnetici di disturbo in volumi di spazio e macchina per il rilevamento di immagini in ri
WO2003093853A1 (de) * 2002-05-02 2003-11-13 Siemens Aktiengesellschaft Gradientenspulensystem für ein magnet-resonanz-tomographiegerät mit effektiverer kühlung
US7130675B2 (en) 2002-06-28 2006-10-31 Tristan Technologies, Inc. High-resolution magnetoencephalography system and method
JP2004065398A (ja) 2002-08-02 2004-03-04 Hitachi Medical Corp 永久磁石と電磁石から成るハイブリット型磁石を有する磁気共鳴イメージング装置
US7215231B1 (en) 2002-08-16 2007-05-08 Fonar Corporation MRI system
JP2004081264A (ja) 2002-08-23 2004-03-18 Hitachi Medical Corp 遠隔医療システム及び制御モダリティーの遠隔操作装置
FI113615B (fi) 2002-10-17 2004-05-31 Nexstim Oy Kallonmuodon ja sisällön kolmiulotteinen mallinnusmenetelmä
ITSV20020057A1 (it) 2002-11-28 2004-05-29 Esaote Spa Combinazione di macchina per rilevamento di immagini in risonanza nucleare e lettino porta paziente
JP2004187945A (ja) 2002-12-11 2004-07-08 Ge Medical Systems Global Technology Co Llc 医用イメージング装置及び医用イメージングシステム
JP4419954B2 (ja) 2003-02-10 2010-02-24 日立金属株式会社 磁界発生装置
US6788063B1 (en) * 2003-02-26 2004-09-07 Ge Medical Systems Technology Company, Llc Method and system for improving transient noise detection
US6819108B2 (en) 2003-03-21 2004-11-16 General Electric Company Method of magnetic field controlled shimming
US7239143B2 (en) 2003-05-20 2007-07-03 Koninklijke Philips Electronics N.V. Digital magnetic resonance gradient pre-emphasis
CN100473336C (zh) 2003-07-24 2009-04-01 沙丘医疗设备有限公司 用于检查特别是组织的物质以表征其类型的方法和设备
US20050035764A1 (en) 2003-08-14 2005-02-17 Anthony Mantone Method and apparatus for directly cooling hollow conductor wound transverse gradient coil boards
US20050154291A1 (en) * 2003-09-19 2005-07-14 Lei Zhao Method of using a small MRI scanner
US8203341B2 (en) * 2003-09-19 2012-06-19 Xbo Medical Systems Co., Ltd. Cylindrical bi-planar gradient coil for MRI
JP2005118098A (ja) 2003-10-14 2005-05-12 Hitachi Medical Corp 磁気共鳴イメージング装置
US6809619B1 (en) * 2003-10-16 2004-10-26 G.E. Medical Systems Global Technology Co., Llc System and method for adjusting magnetic center field for permanent MRI magnetic field generator
CN1875288A (zh) * 2003-10-29 2006-12-06 皇家飞利浦电子股份有限公司 用于磁共振成像的可变视野梯度线圈系统
US6937018B2 (en) * 2003-10-31 2005-08-30 General Electric Company Systems and methods for fabricating pole pieces for magnetic resonance imaging systems
US7140420B2 (en) * 2003-11-05 2006-11-28 General Electric Company Thermal management apparatus and uses thereof
JP4724668B2 (ja) 2003-11-26 2011-07-13 アシスト メディカル システムズ,インク. 医療手順の一部として媒体を投与するための装置、方法、およびコンピュータプログラムプロダクト
US6956375B2 (en) * 2004-01-09 2005-10-18 General Electric Company Magnetic resonance imaging magnetic field generator
US20050179512A1 (en) * 2004-02-12 2005-08-18 Ge Medical Systems Global Technology Company, Llc Mri system with liquid cooled rf space
JP2005237501A (ja) 2004-02-25 2005-09-08 Shin Etsu Chem Co Ltd 磁気回路および磁気回路磁界調整方法
CN1669525A (zh) 2004-03-19 2005-09-21 西门子公司 带有一定位单元的磁共振设备
US7126333B2 (en) * 2004-04-19 2006-10-24 Baker Hughes Incorporated Method and apparatus for correcting ringing in NMR signals
ITSV20040020A1 (it) 2004-05-07 2004-08-07 Esaote Spa Struttura magnetica per macchine mri e macchina mri
WO2005116676A1 (en) 2004-05-25 2005-12-08 Hvidovre Hospital Encoding and transmission of signals as rf signals for detection using an mr apparatus
ITSV20040032A1 (it) 2004-08-05 2004-11-05 Esaote Spa Metodo e sonda per la compensazione di campi magnetici di disturbo in volumi di spazio in particolare nelle macchine per il rilevamento di immagini in risonanza magnetica nucleare
JP4279747B2 (ja) * 2004-08-11 2009-06-17 株式会社日立製作所 核磁気共鳴装置
US6906517B1 (en) * 2004-09-28 2005-06-14 General Electric Company Method and apparatus for maintaining thermal stability of permanent magnets in MRI systems
US7135863B2 (en) * 2004-09-30 2006-11-14 General Electric Company Thermal management system and method for MRI gradient coil
GB2419417B (en) 2004-10-20 2007-05-16 Gen Electric Gradient bore cooling and RF shield
GB2419416A (en) * 2004-10-20 2006-04-26 Gen Electric Method of manufacturing gradient coil for MRI device
US8626342B2 (en) 2004-10-27 2014-01-07 Acist Medical Systems, Inc. Data collection device, system, method, and computer program product for collecting data related to the dispensing of contrast media
EP1839065A2 (en) * 2004-11-23 2007-10-03 M2M Imaging Corp. Apparatus for cooling an rf coil on a magnetic resonance imaging system
US8129991B2 (en) * 2004-11-24 2012-03-06 Fonar Corporation Anatomical fixture for magnetic resonance position imaging
US8014867B2 (en) * 2004-12-17 2011-09-06 Cardiac Pacemakers, Inc. MRI operation modes for implantable medical devices
WO2006067746A2 (en) * 2004-12-22 2006-06-29 Koninklijke Philips Electronics, N.V. Radio frequency coil with transmission line end-rings
GB0503622D0 (en) * 2005-02-22 2005-03-30 Siemens Magnet Technology Ltd Shielding for mobile MRI systems
US20090033327A1 (en) * 2005-04-18 2009-02-05 Koninklijke Philips Electronics N. V. Magnetic Resonance Imaging of a Continuously Moving Object
DE602006011749D1 (de) 2005-04-21 2010-03-04 Ksm Inc Elektromagnetische behandlungsvorrichtung
US7307423B2 (en) 2005-05-05 2007-12-11 Wisconsin A.Umni Research Foundation Magnetic resonance elastography using multiple drivers
US8614575B2 (en) 2005-06-17 2013-12-24 The Regents Of The University Of California NMR, MRI, and spectroscopic MRI in inhomogeneous fields
US8514043B2 (en) 2005-09-14 2013-08-20 General Electric Company Systems and methods for passively shielding a magnetic field
US20070063801A1 (en) * 2005-09-16 2007-03-22 Laskaris Evangelos T System and method for magnetic resonance imaging
US7835785B2 (en) 2005-10-04 2010-11-16 Ascension Technology Corporation DC magnetic-based position and orientation monitoring system for tracking medical instruments
EP1943536A1 (en) 2005-10-27 2008-07-16 Koninklijke Philips Electronics N.V. Active decoupling of transmitters in mri
GB2435327B (en) * 2005-11-01 2008-01-09 Siemens Magnet Technology Ltd Transportable magnetic resonance imaging (MRI) system
AU2006331312A1 (en) 2005-11-17 2007-07-05 Brain Research Institute Pty Ltd Apparatus and method for detection and monitoring of electrical activity and motion in the presence of a magnetic field
JP5283839B2 (ja) * 2005-11-25 2013-09-04 東芝メディカルシステムズ株式会社 医用画像診断システム
US7659719B2 (en) 2005-11-25 2010-02-09 Mr Instruments, Inc. Cavity resonator for magnetic resonance systems
CN100411585C (zh) * 2005-11-30 2008-08-20 西门子(中国)有限公司 磁共振成像系统的大视野成像装置
JP4665751B2 (ja) * 2005-12-22 2011-04-06 株式会社日立製作所 高抵抗磁石を用いたmri装置
US7573268B2 (en) 2006-02-22 2009-08-11 Los Alamos National Security, Llc Direct imaging of neural currents using ultra-low field magnetic resonance techniques
EP1991888A4 (en) 2006-03-09 2010-01-20 Insight Neuroimaging Systems L MICROSTRUCTURE COIL FOR MRI DEVICES
WO2007106765A2 (en) 2006-03-11 2007-09-20 Xigo Nanotools Llc Compact and portable low-field pulsed nmr dispersion analyzer
US7271591B1 (en) 2006-03-15 2007-09-18 General Electric Company Methods and apparatus for MRI shims
US8120358B2 (en) 2006-04-13 2012-02-21 The Regents Of The University Of California Magnetic resonance imaging with high spatial and temporal resolution
CN1831552B (zh) * 2006-04-20 2010-05-12 华东师范大学 基于usb总线的一体化核磁共振谱仪控制台
CN101427150B (zh) 2006-04-24 2012-09-05 皇家飞利浦电子股份有限公司 多元件rf线圈的去耦系统以及方法
US7592807B2 (en) * 2006-04-25 2009-09-22 The Board Of Trustees Of The Leland Stanford Junior University Maximum likelihood estimator in the presence of non-identically distributed noise for decomposition of chemical species in MRI
US7821402B2 (en) 2006-05-05 2010-10-26 Quality Electrodynamics IC tags/RFID tags for magnetic resonance imaging applications
JP4969148B2 (ja) * 2006-05-17 2012-07-04 株式会社日立メディコ シムコイルの製造方法および磁気共鳴イメージング装置
US8626266B1 (en) * 2006-06-01 2014-01-07 Perinatronics Medical Systems, Inc. ECG triggered heart and arterial magnetic resonance imaging
US20070285197A1 (en) 2006-06-08 2007-12-13 General Electric Company Method for disassembling a magnetic field generator
JP4847236B2 (ja) * 2006-07-07 2011-12-28 株式会社日立メディコ 磁気共鳴イメージング装置
WO2008008447A2 (en) 2006-07-12 2008-01-17 The Regents Of The University Of California Portable device for ultra-low field magnetic resonance imaging (ulf-mri)
US7253627B1 (en) * 2006-07-19 2007-08-07 Univ King Fahd Pet & Minerals Method for removing noise from nuclear magnetic resonance signals and images
US20080027306A1 (en) 2006-07-31 2008-01-31 General Electric Company System and method for initiating a diagnostic imaging scan
US20080048658A1 (en) * 2006-08-24 2008-02-28 Stephen Gerard Hushek Automatic noise cancellation for unshielded mr systems
US7436180B2 (en) 2006-10-04 2008-10-14 General Electric Company Gradient coil apparatus and method of fabricating a gradient coil to reduce artifacts in MRI images
US8850338B2 (en) 2006-10-13 2014-09-30 Siemens Medical Solutions Usa, Inc. System and method for selection of anatomical images for display using a touch-screen display
US20080139896A1 (en) 2006-10-13 2008-06-12 Siemens Medical Solutions Usa, Inc. System and Method for Graphical Annotation of Anatomical Images Using a Touch Screen Display
WO2008057578A1 (en) 2006-11-08 2008-05-15 T2 Biosystems, Inc. Nmr systems for in vivo detection of analytes
GB2445759A (en) * 2006-11-28 2008-07-23 Inst Of Food Res Magnetic resonance imaging scanner
US7511502B2 (en) * 2007-01-05 2009-03-31 Kabushiki Kaisha Toshiba Magnetic resonance imaging apparatus
US7759938B2 (en) 2007-02-05 2010-07-20 Morpho Detection, Inc. Apparatus and method for varying magnetic field strength in magnetic resonance measurements
JP5222735B2 (ja) * 2007-02-06 2013-06-26 株式会社日立メディコ 磁気共鳴イメージング装置および傾斜磁場コイル
EP1962100A1 (en) * 2007-02-20 2008-08-27 Esaote S.p.A. Magnetic structure for MRI machines and MRI machine particularly for orthopedic or rheumatologic applications
DE102007009203B4 (de) 2007-02-26 2012-03-22 Siemens Ag Verfahren zur Bestimmung oder Anpassung eines Shims zur Homogenisierung eines Magnetfeldes einer Magnetresonanzeinrichtung und zugehörige Magnetresonanzeinrichtung
US7414401B1 (en) 2007-03-26 2008-08-19 General Electric Company System and method for shielded dynamic shimming in an MRI scanner
US7489131B2 (en) * 2007-04-23 2009-02-10 General Electric Co. System and apparatus for direct cooling of gradient coils
WO2008137485A2 (en) 2007-05-04 2008-11-13 California Institute Of Technology Low field squid mri devices, components and methods
US8175677B2 (en) 2007-06-07 2012-05-08 MRI Interventions, Inc. MRI-guided medical interventional systems and methods
WO2008153036A1 (ja) * 2007-06-14 2008-12-18 Hitachi Medical Corporation オープン型磁気共鳴イメージング装置
US20080315879A1 (en) * 2007-06-19 2008-12-25 General Electric Company System and apparatus for electromagnetic noise detection in an mr imaging scanner environment
US20120003160A1 (en) 2007-06-29 2012-01-05 Amag Pharmaceuticals, Inc. Macrophage-Enhanced MRI (MEMRI) in a Single Imaging Session
CN104316953B (zh) * 2007-07-02 2018-05-15 皇家飞利浦电子股份有限公司 用于混合pet-mr系统的热稳定的pet探测器
US8335359B2 (en) 2007-07-20 2012-12-18 General Electric Company Systems, apparatus and processes for automated medical image segmentation
US20100219833A1 (en) 2007-07-26 2010-09-02 Emscan Limited Magnet assembly
US8466681B2 (en) * 2007-08-30 2013-06-18 Hitachi Medical Corporation Open-type MRI apparatus, and open-type superconducting MRI apparatus
WO2009029896A1 (en) 2007-08-31 2009-03-05 The Regents Of The University Of California Adjustable permanent magnet assembly for nmr and mri
CN101388271A (zh) * 2007-09-14 2009-03-18 Ge医疗系统环球技术有限公司 磁体系统和mri设备
CN101162637B (zh) * 2007-09-17 2011-05-11 山西省平遥县新星磁材有限公司 超高场强磁选机用永磁体装置
US8169221B2 (en) * 2007-10-31 2012-05-01 Griswold Mark A Multi-frequency excitation coils for MRI
AU2008325088A1 (en) 2007-11-06 2009-05-14 T2 Biosystems, Inc. Small magnet and RF coil for magnetic resonance relaxometry
EP2229097A4 (en) 2007-11-09 2011-01-26 Vista Clara Inc MULTILAYER NUCLEAR CORE MAGNETIC RESONANCE DETECTION AND IMAGING APPARATUS AND METHOD
US7812604B2 (en) 2007-11-14 2010-10-12 General Electric Company Thermal management system for cooling a heat generating component of a magnetic resonance imaging apparatus
ITTO20070840A1 (it) 2007-11-23 2009-05-24 Paramed Medical Systems S R L Sistema di posizionamento per un'apparecchiatura medicale, ed apparecchiatura di imaging a risonanza magnetica comprendente un tale sistema
US8232799B2 (en) * 2007-11-27 2012-07-31 Arjae Spectral Enterprises Noise reduction apparatus, systems, and methods
US8570035B2 (en) 2007-12-14 2013-10-29 The Regents Of The University Of California Magnetic resonance imaging of living systems by remote detection
US7753165B2 (en) * 2007-12-21 2010-07-13 Robert Bosch Gmbh Device and method for active noise cancellation in exhaust gas channel of a combustion engine
JP2009240767A (ja) 2008-03-10 2009-10-22 Toshiba Corp 磁気共鳴イメージング装置
EP2262570A1 (en) 2008-03-12 2010-12-22 Navotek Medical Ltd. Combination mri and radiotherapy systems and methods of use
JP5170540B2 (ja) 2008-04-24 2013-03-27 株式会社日立メディコ 磁気共鳴イメージング装置
WO2009137354A1 (en) 2008-05-05 2009-11-12 Mayo Foundation For Medical Education And Research Method for assessing the probability of disease development in tissue
US7834270B2 (en) 2008-07-07 2010-11-16 Imris Inc. Floating segmented shield cable assembly
US7936170B2 (en) * 2008-08-08 2011-05-03 General Electric Co. RF coil and apparatus to reduce acoustic noise in an MRI system
US8255038B2 (en) 2008-08-28 2012-08-28 Siemens Medical Solutions Usa, Inc. System and method for non-uniform image scanning and acquisition
JP5567305B2 (ja) * 2008-09-10 2014-08-06 株式会社竹中工務店 磁気シールドシステム及び磁気シールド方法
US8692412B2 (en) 2008-09-27 2014-04-08 Witricity Corporation Temperature compensation in a wireless transfer system
AR073770A1 (es) * 2008-10-20 2010-12-01 Imclone Llc Anticuerpo aislado que se enlaza especificamente con, e induce la degradacion del receptor-3 del factor de crecimiento del fibroblasto humano (fgfr-3), fragmento de enlace fgfr-3 humano del mismo, composicion farmaceutica y producto que lo comprenden
EP2184615A1 (en) 2008-11-05 2010-05-12 Koninklijke Philips Electronics N.V. A magnetic resonance imaging system comprising a power supply unit adapted for providing direct current electrical power
US7902826B2 (en) * 2008-12-12 2011-03-08 General Electric Company Transverse gradient coil for MRI systems and method for manufacturing the same
US9222998B2 (en) 2008-12-18 2015-12-29 Grum Teklemariam Compact inhomogeneous permanent magnetic field generator for magnetic resonance imaging
US8328732B2 (en) 2008-12-18 2012-12-11 Devicor Medical Products, Inc. Control module interface for MRI biopsy device
JP4852091B2 (ja) * 2008-12-22 2012-01-11 株式会社日立メディコ 傾斜磁場コイル装置、核磁気共鳴撮像装置、および、コイルパターンの設計方法
JP4982881B2 (ja) * 2008-12-26 2012-07-25 国立大学法人 熊本大学 位相差強調画像化法(PhaseDifferenceEnhancedImaging;PADRE)、機能画像作成法、位相差強調画像化プログラム、位相差強調画像化装置、機能画像作成装置および磁気共鳴画像化(MagneticResonanceImaging;MRI)装置
CN101788655A (zh) 2009-01-24 2010-07-28 Ge医疗系统环球技术有限公司 磁共振成像系统以及使该系统中主磁体的温度稳定的方法
US8253416B2 (en) * 2009-03-10 2012-08-28 Time Medical Holdings Company Limited Superconductor magnetic resonance imaging system and method (super-MRI)
EP2230530A1 (en) * 2009-03-20 2010-09-22 Koninklijke Philips Electronics N.V. A tesseral shim coil for a magnetic resonance system
DE212010000045U1 (de) * 2009-04-21 2012-01-23 Aspect Magnet Technologies Ltd. Permanentmagnetenanordnung mit fest gegenüberliegender Platte
US20100292564A1 (en) * 2009-05-18 2010-11-18 Cantillon Murphy Padraig J System and Method For Magnetic-Nanoparticle, Hyperthermia Cancer Therapy
US8064183B2 (en) * 2009-06-01 2011-11-22 Olliges William E Capacitor based bi-directional degaussing device with chamber
WO2010144419A2 (en) 2009-06-08 2010-12-16 Surgivision, Inc. Mri-guided interventional systems that can track and generate dynamic visualizations of flexible intrabody devices in near real time
US8198891B2 (en) * 2009-06-15 2012-06-12 General Electric Company System, method, and apparatus for magnetic resonance RF-field measurement
DE102009027119B4 (de) * 2009-06-23 2013-01-17 Sirona Dental Systems Gmbh Magnetfeldeinheit eines MRT-Systems zur bildgebenden Erfassung eines Kopfbereichs
GB2471705B (en) 2009-07-09 2011-07-27 Siemens Magnet Technology Ltd Methods and apparatus for storage of energy removed from superconducting magnets
ITGE20090059A1 (it) 2009-07-28 2011-01-29 Esaote Spa Macchina per il rilevamento di immagini mri
JP5570910B2 (ja) * 2009-09-28 2014-08-13 株式会社東芝 磁気共鳴イメージング装置
WO2011047376A2 (en) 2009-10-16 2011-04-21 Emprimus, Inc. Modular electromagnetically shielded enclosure
US20110142316A1 (en) 2009-10-29 2011-06-16 Ge Wang Tomography-Based and MRI-Based Imaging Systems
US10162026B2 (en) 2009-11-09 2018-12-25 Vista Clara Inc. Noise canceling in-situ NMR detection
US8816684B2 (en) * 2009-11-09 2014-08-26 Vista Clara Inc. Noise canceling in-situ NMR detection
US8378682B2 (en) 2009-11-17 2013-02-19 Muralidhara Subbarao Field image tomography for magnetic resonance imaging
US8593141B1 (en) 2009-11-24 2013-11-26 Hypres, Inc. Magnetic resonance system and method employing a digital squid
JP5782450B2 (ja) * 2009-12-10 2015-09-24 コーニンクレッカ フィリップス エヌ ヴェ 高周波遮蔽若しくはエンクロージャを持つ磁気共鳴対応電気機器
WO2011075770A1 (en) * 2009-12-21 2011-06-30 Nmr Holdings No. 2 Pty Limited Open-bore magnet for use in magnetic resonance imaging
RU2573545C2 (ru) 2009-12-28 2016-01-20 Конинклейке Филипс Электроникс Н.В. Трубчатый тепловой переключатель для магнита, не использующего криогенные среды
BR112012015630A2 (pt) 2009-12-28 2018-04-10 Koninklijke Philips Eletronics N V "aparelho terapêutico e produto de programa de computador que contém instruções executáveis por maquina para execução por um controlador de um aparelho terapêutico"
US8427148B2 (en) 2009-12-31 2013-04-23 Analogic Corporation System for combining magnetic resonance imaging with particle-based radiation systems for image guided radiation therapy
CN106388823B (zh) 2010-02-24 2019-11-29 优瑞技术公司 分体式磁共振成像系统
US8970217B1 (en) * 2010-04-14 2015-03-03 Hypres, Inc. System and method for noise reduction in magnetic resonance imaging
WO2011127946A1 (en) 2010-04-15 2011-10-20 Elekta Ab (Publ) Radiotherapy apparatus
EP2388610A1 (en) * 2010-05-20 2011-11-23 Koninklijke Philips Electronics N.V. Magnetic Resonance Imaging Gradient Coil, Magnet Assembly, and System
GB201009101D0 (en) * 2010-06-01 2010-07-14 Nordic Bioscience As Computer based analysis of MRI images
CN101869479B (zh) * 2010-06-13 2012-04-18 苏州纽迈电子科技有限公司 可移动式低场核磁共振成像系统
BR112013001488A2 (pt) * 2010-07-23 2016-05-31 Konink Philps Electronics Nv dispositivo de detecção do estado fisiológico para a detecção de um estado fisiológico de um paciente e a minimização da quantidade de interferência gerada durante uma varredura de ressonância magnética por um sistema de ressonância magnética, sistema de irm, método para a detecção de um estado fisiológico de um paciente e a minimização de uma quantidade de interferência gerada durante uma verradura de ressonância magnética, método para a operação de um sistema de irm e dispositivo de detecção de pressão para a detecção de um sinal de pressão e a minimização da quantidade de interferência gerada durante uma varredura de ressonância magnética por um sistema de ressonância magnética com um orifício.
JP5618683B2 (ja) * 2010-08-03 2014-11-05 株式会社日立メディコ 磁気共鳴イメージング装置及び輝度不均一補正方法
JP5482554B2 (ja) * 2010-08-04 2014-05-07 株式会社村田製作所 積層型コイル
EP2418516A3 (en) * 2010-08-12 2014-02-19 E-Pharma Trento S.p.A. Apparatus and method for detecting the presence of a particle of a ferromagnetic metal in a packaging of a paramagnetic material
EP2609443A1 (en) * 2010-08-25 2013-07-03 Koninklijke Philips Electronics N.V. Rf shield for mri comprising conductive coating as shielding material
EP2423699A1 (en) * 2010-08-30 2012-02-29 Koninklijke Philips Electronics N.V. Magnetic resonance imaging system, computer system, and computer program product for sending control messages to an anesthesia system
GB2483890A (en) * 2010-09-22 2012-03-28 Tesla Engineering Ltd MRIS gradient coil assembly with screening layers connected to respective coil layers
GB2483889A (en) * 2010-09-22 2012-03-28 Tesla Engineering Ltd Gradient coil sub assemblies
US9500731B2 (en) 2010-10-15 2016-11-22 Eleazar Castillo Shimming device and method to improve magnetic field homogeneity in magnetic resonance imaging devices
US8638096B2 (en) * 2010-10-19 2014-01-28 The Board Of Trustees Of The Leland Stanford Junior University Method of autocalibrating parallel imaging interpolation from arbitrary K-space sampling with noise correlations weighted to reduce noise of reconstructed images
US8563298B2 (en) 2010-10-22 2013-10-22 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
US8409807B2 (en) 2010-10-22 2013-04-02 T2 Biosystems, Inc. NMR systems and methods for the rapid detection of analytes
US8901928B2 (en) 2010-11-09 2014-12-02 Imris Inc. MRI safety system
KR101152835B1 (ko) * 2010-12-27 2012-06-12 한국표준과학연구원 자기장 상쇄 장치 및 자기장 상쇄 방법
CN102073024B (zh) * 2011-01-31 2013-03-06 汕头市超声仪器研究所有限公司 一种手持式超低场mri的成像装置
US8374663B2 (en) 2011-01-31 2013-02-12 General Electric Company Cooling system and method for cooling superconducting magnet devices
US20140178901A1 (en) 2011-03-22 2014-06-26 The General Hospital Corporation Molecular Analysis of Tumor Samples
CN103597370B (zh) * 2011-04-21 2016-01-06 马普协会 空间编码的相位对比磁共振成像
US8558547B2 (en) * 2011-05-05 2013-10-15 General Electric Company System and method for magnetic resonance radio-frequency field mapping
US9833168B2 (en) * 2011-06-06 2017-12-05 St. Jude Medical, Atrial Fibrillation Division, Inc. Noise tolerant localization systems and methods
WO2012173635A1 (en) 2011-06-13 2012-12-20 Vanderbilt University Multiple resonance nmr spectroscopy using a single transmitter
US9351662B2 (en) 2011-06-17 2016-05-31 Microsoft Technology Licensing, Llc MRI scanner that outputs bone strength indicators
CN102360691B (zh) * 2011-06-24 2013-03-13 中国科学院电工研究所 一种带有铁环结构的开放式核磁共振磁体系统
EP2736409A4 (en) 2011-07-28 2015-04-22 Brigham & Womens Hospital Systems and methods for mobile magnetic resonance measurements of lung properties
US9254097B2 (en) 2011-09-19 2016-02-09 Los Alamos National Security, Llc System and method for magnetic current density imaging at ultra low magnetic fields
DE102011083204B4 (de) * 2011-09-22 2018-12-20 Siemens Healthcare Gmbh Kühleinrichtung für eine Gradientenspule und deren Verwendung
WO2013058062A1 (ja) * 2011-10-21 2013-04-25 株式会社 日立メディコ 磁気共鳴イメージング装置およびその運転方法
FI125397B (en) * 2012-01-24 2015-09-30 Elekta Ab A method for using spatial and temporal oversampling in multichannel measurements
TWI587597B (zh) * 2012-02-17 2017-06-11 Lg伊諾特股份有限公司 無線電力傳輸器,無線電力接收器,以及無線電力傳輸系統的電力傳輸方法
JP2013175028A (ja) 2012-02-24 2013-09-05 Alps Electric Co Ltd 操作感触付与型入力装置
US9316707B2 (en) 2012-04-18 2016-04-19 General Electric Company System and method of receive sensitivity correction in MR imaging
US9500727B2 (en) 2012-04-20 2016-11-22 Regents Of The University Of Minnesota System and method for control of RF circuits for use with an MRI system
US9883878B2 (en) 2012-05-15 2018-02-06 Pulse Therapeutics, Inc. Magnetic-based systems and methods for manipulation of magnetic particles
US9244139B2 (en) 2012-05-18 2016-01-26 Neocoil, Llc Method and apparatus for MRI compatible communications
PL2852423T3 (pl) * 2012-05-21 2019-03-29 Boehringer Ingelheim International Gmbh System z inhalatora i kapsułki
KR102020534B1 (ko) 2012-06-15 2019-09-10 더 제너럴 하스피탈 코포레이션 영구 자석들의 로테이팅 어레이를 사용하는 자기 공명 이미징을 위한 시스템 및 방법
US8993898B2 (en) 2012-06-26 2015-03-31 ETS-Lindgren Inc. Movable EMF shield, method for facilitating rapid imaging and treatment of patient
US8825132B2 (en) * 2012-07-04 2014-09-02 Bruker Biospin Gmbh Field cycling method for magnetic resonance
GB201212813D0 (en) 2012-07-19 2012-09-05 Univ Aberdeen Apparatus for use with an MRI scanner
US20140066739A1 (en) 2012-08-29 2014-03-06 Bin He System and method for quantifying or imaging pain using electrophysiological measurements
CN102800057A (zh) * 2012-09-18 2012-11-28 苏州安科医疗系统有限公司 一种用于磁共振成像基于相位一致性的图像去噪方法
US9910115B2 (en) 2012-10-22 2018-03-06 The General Hospital Corporation System and method for portable magnetic resonance imaging using a rotating array of magnets
JP5902317B2 (ja) 2012-11-16 2016-04-13 株式会社日立製作所 磁気共鳴イメージング装置および定量的磁化率マッピング法
CN103852740B (zh) * 2012-11-30 2016-12-07 通用电气公司 降低涡电流磁场的系统和方法
US10060997B2 (en) 2012-12-05 2018-08-28 Hitachi, Ltd. Magnetic resonance imaging apparatus and operating method of cooling fan motor of magnetic resonance imaging apparatus
US9268572B2 (en) 2012-12-11 2016-02-23 International Business Machines Corporation Modify and execute next sequential instruction facility and instructions therefor
EP2749318A1 (en) 2012-12-28 2014-07-02 Theraclion SA Image-guided therapeutic apparatus and method of preparation of an image-guided therapeutic apparatus for treatment of tissue
US9355774B2 (en) * 2012-12-28 2016-05-31 General Electric Company System and method for manufacturing magnetic resonance imaging coils using ultrasonic consolidation
US9782141B2 (en) 2013-02-01 2017-10-10 Kineticor, Inc. Motion tracking system for real time adaptive motion compensation in biomedical imaging
EP2765437B1 (en) * 2013-02-12 2020-05-06 Siemens Healthcare GmbH A simple method to denoise ratio images in magnetic resonance imaging
WO2014133186A1 (ja) * 2013-03-01 2014-09-04 株式会社東芝 磁気共鳴イメージング装置及び傾斜磁場コイル
WO2014143796A2 (en) 2013-03-15 2014-09-18 Mobius Imaging, Llc Mobile x-ray imaging system
US9814390B2 (en) 2013-03-15 2017-11-14 Synaptive Medical (Barbados) Inc. Insert imaging device for surgical procedures
US10311598B2 (en) 2013-05-16 2019-06-04 The Regents Of The University Of California Fully automated localization of electroencephalography (EEG) electrodes
US20160011290A1 (en) 2013-05-21 2016-01-14 Victor Iannello Non-Invasive, In-Vivo Measurement of Blood Constituents Using a Portable Nuclear Magnetic Resonance Device
DE102013210237B4 (de) 2013-06-03 2016-12-29 Siemens Healthcare Gmbh Verfahren zum Betreiben eines mobilen Magnetresonanztomographiesystems
EP3047292B1 (en) 2013-09-17 2021-06-30 Synaptive Medical Inc. Coil assembly for magnetic resonance imaging
DE202013105212U1 (de) 2013-11-17 2013-12-19 Aspect Imaging Ltd. Schließvorrichtung eines MRT-Inkubators
US10264995B2 (en) * 2013-12-04 2019-04-23 Obalon Therapeutics, Inc. Systems and methods for locating and/or characterizing intragastric devices
WO2015085257A1 (en) 2013-12-06 2015-06-11 Sonitrack Systems, Inc. Mechanically driven ultrasound scanning system and method
US20150198684A1 (en) * 2014-01-13 2015-07-16 Tamer BASHA System and Method For Flexible Automated Magnetic Resonance Imaging Reconstruction
DE202014101104U1 (de) 2014-03-09 2014-04-03 Aspect Imaging Ltd. Eine wärmeisolierende MRT-Ummantelung
EP3126861B1 (en) * 2014-03-31 2023-10-18 Koninklijke Philips N.V. Magnetic resonance imaging with rf noise detection coils
US20150285882A1 (en) 2014-04-03 2015-10-08 University Of Maryland, Baltimore Portable system and method for mri imaging and tissue analysis
CN103913778B (zh) * 2014-04-10 2017-02-15 吉林大学 多个近端参考线圈的核磁共振信号实时噪声抵消装置
EP3132276A2 (en) 2014-04-15 2017-02-22 Imperial Innovations Ltd Mri apparatus and methods
DK3151663T3 (da) 2014-06-02 2020-11-30 Transmedics Inc Ex vivo-organplejesystem
US9678183B2 (en) 2014-08-14 2017-06-13 General Electric Company Wireless actuator circuit for wireless actuation of micro electromechanical system switch for magnetic resonance imaging
CN111896903A (zh) 2014-09-05 2020-11-06 海珀菲纳研究股份有限公司 噪声抑制方法和设备
US20160069967A1 (en) * 2014-09-10 2016-03-10 General Electric Company Apparatus and system for imaging an intubated patient
JP6464637B2 (ja) * 2014-09-26 2019-02-06 株式会社ノーリツ コージェネレーションシステム
EP3217872A4 (en) 2014-11-11 2018-07-18 Hyperfine Research, Inc. Pulse sequences for low field magnetic resonance
US10813564B2 (en) 2014-11-11 2020-10-27 Hyperfine Research, Inc. Low field magnetic resonance methods and apparatus
JP6268108B2 (ja) * 2015-01-30 2018-01-24 株式会社日立製作所 超電導磁石ならびに磁気共鳴撮像装置
AU2016250077B2 (en) 2015-04-13 2021-04-15 Hyperfine Operations, Inc. Magnetic coil power methods and apparatus
JP6784697B2 (ja) 2015-05-12 2020-11-11 ハイパーファイン リサーチ,インコーポレイテッド 高周波コイルの方法および装置
US9958521B2 (en) 2015-07-07 2018-05-01 Q Bio, Inc. Field-invariant quantitative magnetic-resonance signatures
US10194829B2 (en) 2015-07-07 2019-02-05 Q Bio, Inc. Fast scanning based on magnetic resonance history
US10031198B2 (en) * 2015-08-04 2018-07-24 General Electric Company Methods and systems for a dual wind gradient coil
CN106483483B (zh) * 2015-08-27 2019-09-06 通用电气公司 梯度线圈及其制造方法
KR102454746B1 (ko) * 2015-10-01 2022-10-17 삼성전자주식회사 통신 시스템에서 미디어 리소스 식별 정보를 송수신하는 장치 및 방법
CN109073681B (zh) 2016-03-22 2020-10-23 海珀菲纳研究股份有限公司 用于磁场匀场的方法和设备
US10359486B2 (en) 2016-04-03 2019-07-23 Q Bio, Inc. Rapid determination of a relaxation time
DE102016211072A1 (de) * 2016-06-21 2017-12-21 Siemens Healthcare Gmbh Verfahren zu einem Bereitstellen einer Auswahl von zumindest einem Protokollparameter aus einer Vielzahl von Protokollparametern sowie eine Magnetresonanzvorrichtung hierzu
TWI667487B (zh) 2016-09-29 2019-08-01 美商超精細研究股份有限公司 射頻線圈調諧方法及裝置
US10539637B2 (en) 2016-11-22 2020-01-21 Hyperfine Research, Inc. Portable magnetic resonance imaging methods and apparatus
US10585153B2 (en) 2016-11-22 2020-03-10 Hyperfine Research, Inc. Rotatable magnet methods and apparatus for a magnetic resonance imaging system
WO2018098141A1 (en) 2016-11-22 2018-05-31 Hyperfine Research, Inc. Systems and methods for automated detection in magnetic resonance images
US10627464B2 (en) 2016-11-22 2020-04-21 Hyperfine Research, Inc. Low-field magnetic resonance imaging methods and apparatus
EP3467531A1 (de) * 2017-10-05 2019-04-10 Siemens Healthcare GmbH Magnetresonanztomograph mit aktiver störunterdrückung und verfahren zur störunterdrückung in einem magnetresonanztomographen
CA3096397A1 (en) 2018-04-20 2019-10-24 Hyperfine Research, Inc. Deployable guard for portable magnetic resonance imaging devices
AU2019272580A1 (en) 2018-05-21 2020-11-12 Hyperfine Operations, Inc. Radio-frequency coil signal chain for a low-field MRI system
BR112020021872A2 (pt) 2018-05-21 2021-01-26 Hyperfine Research, Inc. métodos e aparelhos de magneto b0 para um sistema de ressonância magnética
TW202015621A (zh) 2018-07-19 2020-05-01 美商超精細研究股份有限公司 在磁共振成像中患者定位之方法及設備
JP2021532875A (ja) 2018-07-30 2021-12-02 ハイパーファイン,インコーポレイテッド 磁気共鳴画像再構成のための深層学習技術
TW202012951A (zh) 2018-07-31 2020-04-01 美商超精細研究股份有限公司 低場漫射加權成像
CA3106683A1 (en) 2018-07-31 2020-02-06 Hyperfine Research, Inc. Medical imaging device messaging service
JP2021534852A (ja) 2018-08-15 2021-12-16 ハイパーファイン,インコーポレイテッド 磁気共鳴画像においてアーティファクトを抑制するためのディープラーニング技術
CA3122087A1 (en) 2018-12-19 2020-06-25 Hyperfine Research, Inc. System and methods for grounding patients during magnetic resonance imaging
WO2020139476A2 (en) 2018-12-28 2020-07-02 Hyperfine Research, Inc. Correcting for hysteresis in magnetic resonance imaging
EP3937774A1 (en) 2019-03-12 2022-01-19 Hyperfine, Inc. Systems and methods for magnetic resonance imaging of infants
JP2022526718A (ja) 2019-03-14 2022-05-26 ハイパーファイン,インコーポレイテッド 空間周波数データから磁気共鳴画像を生成するための深層学習技術
KR20220005492A (ko) 2019-04-26 2022-01-13 하이퍼파인, 인크. 자기 공명 영상 시스템의 동적 제어를 위한 기술
KR20220007876A (ko) 2019-05-07 2022-01-19 하이퍼파인, 인크. 유아의 자기 공명 이미징을 위한 시스템, 디바이스 및 방법
US11698430B2 (en) 2019-08-15 2023-07-11 Hyperfine Operations, Inc. Eddy current mitigation systems and methods
US11510588B2 (en) 2019-11-27 2022-11-29 Hyperfine Operations, Inc. Techniques for noise suppression in an environment of a magnetic resonance imaging system
DE102020202830A1 (de) * 2020-03-05 2021-09-09 Siemens Healthcare Gmbh Magnetresonanztomograph und Verfahren zum Betrieb mit dynamischer B0-Kompensation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022000241A (ja) * 2014-09-05 2022-01-04 ハイパーファイン,インコーポレイテッド 低磁場磁気共鳴撮像方法及び装置

Also Published As

Publication number Publication date
IL250935B (en) 2021-08-31
WO2016037028A1 (en) 2016-03-10
TWI627428B (zh) 2018-06-21
US20170227616A1 (en) 2017-08-10
CA2960178A1 (en) 2016-03-10
US10466327B2 (en) 2019-11-05
US10613181B2 (en) 2020-04-07
AU2015311830A1 (en) 2017-04-20
CA3043061A1 (en) 2016-03-10
US20190101607A1 (en) 2019-04-04
EP3189340A4 (en) 2018-05-02
IL250935A0 (en) 2017-04-30
IL250939A0 (en) 2017-04-30
US20160069970A1 (en) 2016-03-10
CN107110932A (zh) 2017-08-29
MX2017002940A (es) 2017-12-07
US20190086497A1 (en) 2019-03-21
US11221386B2 (en) 2022-01-11
IL284727B (en) 2022-06-01
US20160169992A1 (en) 2016-06-16
US20160231402A1 (en) 2016-08-11
KR20170048577A (ko) 2017-05-08
US11175364B2 (en) 2021-11-16
US10591564B2 (en) 2020-03-17
AU2015311749A1 (en) 2017-04-20
CA3066755A1 (en) 2016-03-10
US20160231404A1 (en) 2016-08-11
CN111896903A (zh) 2020-11-06
CN112083365B (zh) 2023-06-27
IL250933B (en) 2021-06-30
US10241177B2 (en) 2019-03-26
AU2015311828B2 (en) 2019-05-02
MX2017002938A (es) 2017-12-07
CN112098912A (zh) 2020-12-18
EP3189343A4 (en) 2018-05-02
US10495712B2 (en) 2019-12-03
EP3189341A4 (en) 2018-05-02
JP2020121137A (ja) 2020-08-13
CA2960178C (en) 2020-03-24
US20220349975A1 (en) 2022-11-03
CN107110931A (zh) 2017-08-29
CN107110930A (zh) 2017-08-29
US20190033416A1 (en) 2019-01-31
JP6832852B2 (ja) 2021-02-24
AU2015311830B2 (en) 2020-11-19
CA2960200A1 (en) 2016-03-10
CN112083365A (zh) 2020-12-15
US20170102443A1 (en) 2017-04-13
JP2022000241A (ja) 2022-01-04
JP6674645B2 (ja) 2020-04-01
EP3189340A1 (en) 2017-07-12
US9797971B2 (en) 2017-10-24
AU2015311825B2 (en) 2019-01-17
KR20170048558A (ko) 2017-05-08
JP6761416B2 (ja) 2020-09-23
JP2017526513A (ja) 2017-09-14
CA2960189A1 (en) 2016-03-10
US20220043088A1 (en) 2022-02-10
US20160069972A1 (en) 2016-03-10
AU2015311828A1 (en) 2017-04-20
EP3189342A4 (en) 2018-06-20
US11397233B2 (en) 2022-07-26
JP2020127750A (ja) 2020-08-27
US20220091211A1 (en) 2022-03-24
CA2960189C (en) 2021-11-23
US9625544B2 (en) 2017-04-18
US20160223631A1 (en) 2016-08-04
US9817093B2 (en) 2017-11-14
AU2015311749B2 (en) 2018-06-21
US9541616B2 (en) 2017-01-10
KR20170052621A (ko) 2017-05-12
IL284727A (en) 2021-08-31
US10139464B2 (en) 2018-11-27
US9625543B2 (en) 2017-04-18
JP2017527425A (ja) 2017-09-21
IL250934A0 (en) 2017-04-30
EP3189344A4 (en) 2018-06-13
BR112017004336A2 (pt) 2017-12-05
US9638773B2 (en) 2017-05-02
US20160169993A1 (en) 2016-06-16
BR112017004369A2 (pt) 2017-12-05
US20200018806A1 (en) 2020-01-16
US20200025851A1 (en) 2020-01-23
US10768255B2 (en) 2020-09-08
US20160069968A1 (en) 2016-03-10
US20160069975A1 (en) 2016-03-10
BR112017004353A2 (pt) 2017-12-05
JP2017527424A (ja) 2017-09-21
WO2016037101A1 (en) 2016-03-10
JP6684804B2 (ja) 2020-04-22
EP3189341A1 (en) 2017-07-12
JP2017526512A (ja) 2017-09-14
JP6882569B2 (ja) 2021-06-02
KR20170048560A (ko) 2017-05-08
WO2016037025A1 (en) 2016-03-10
US20190162806A1 (en) 2019-05-30
JP2021120001A (ja) 2021-08-19
WO2016037030A1 (en) 2016-03-10
US10488482B2 (en) 2019-11-26
US9547057B2 (en) 2017-01-17
CN107110931B (zh) 2020-09-22
CN107110933B (zh) 2020-09-04
EP3189342A1 (en) 2017-07-12
US10379186B2 (en) 2019-08-13
IL250933A0 (en) 2017-04-30
EP3189344A1 (en) 2017-07-12
CA2960194C (en) 2020-12-08
US20180038931A1 (en) 2018-02-08
US20230333188A1 (en) 2023-10-19
EP3189343A1 (en) 2017-07-12
US20160069971A1 (en) 2016-03-10
US20160231403A1 (en) 2016-08-11
US20160231399A1 (en) 2016-08-11
AU2019201685A1 (en) 2019-04-04
CA2960194A1 (en) 2016-03-10
WO2016037042A1 (en) 2016-03-10
MX366786B (es) 2019-07-23
CN107110932B (zh) 2020-09-01
MX2017002937A (es) 2017-10-04
AU2019201685B2 (en) 2021-02-25
US20200011952A1 (en) 2020-01-09
US20180024208A1 (en) 2018-01-25
AU2015311725A1 (en) 2017-04-20
TW201712357A (zh) 2017-04-01
CN112098912B (zh) 2023-10-13
US11662412B2 (en) 2023-05-30
BR112017004357A2 (pt) 2017-12-05
AU2015311825A1 (en) 2017-04-20
US9645210B2 (en) 2017-05-09
CN107110930B (zh) 2020-08-04
AU2021203286A1 (en) 2021-06-17
CA3043063A1 (en) 2016-03-10
CN111983536A (zh) 2020-11-24
CA2960191A1 (en) 2016-03-10
IL250939B (en) 2022-07-01
US10145922B2 (en) 2018-12-04
CN107110933A (zh) 2017-08-29
JP2020078579A (ja) 2020-05-28
MX2017002939A (es) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6955595B2 (ja) 低磁場磁気共鳴撮像方法及び装置
US11714147B2 (en) Radio frequency coil tuning methods and apparatus
US10274561B2 (en) Electromagnetic shielding for magnetic resonance imaging methods and apparatus
WO2016073603A1 (en) Subject-loaded helical-antenna radio-frequency coil for magnetic resonance imaging
CN118284819A (zh) 磁共振成像所用的反向旋转电流线圈
CN117930100A (zh) 磁共振成像系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210902

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211001

R150 Certificate of patent or registration of utility model

Ref document number: 6955595

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150