TWI511287B - 半導體裝置和其製造方法 - Google Patents

半導體裝置和其製造方法 Download PDF

Info

Publication number
TWI511287B
TWI511287B TW099105656A TW99105656A TWI511287B TW I511287 B TWI511287 B TW I511287B TW 099105656 A TW099105656 A TW 099105656A TW 99105656 A TW99105656 A TW 99105656A TW I511287 B TWI511287 B TW I511287B
Authority
TW
Taiwan
Prior art keywords
layer
oxide semiconductor
oxide
electrode layer
semiconductor layer
Prior art date
Application number
TW099105656A
Other languages
English (en)
Other versions
TW201101490A (en
Inventor
Hiromichi Godo
Kengo Akimoto
Shunpei Yamazaki
Original Assignee
Semiconductor Energy Lab
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Lab filed Critical Semiconductor Energy Lab
Publication of TW201101490A publication Critical patent/TW201101490A/zh
Application granted granted Critical
Publication of TWI511287B publication Critical patent/TWI511287B/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78606Thin film transistors, i.e. transistors with a channel being at least partly a thin film with supplementary region or layer in the thin film or in the insulated bulk substrate supporting it for controlling or increasing the safety of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • H01L29/78693Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate the semiconducting oxide being amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/24Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only semiconductor materials not provided for in groups H01L29/16, H01L29/18, H01L29/20, H01L29/22
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78696Thin film transistors, i.e. transistors with a channel being at least partly a thin film characterised by the structure of the channel, e.g. multichannel, transverse or longitudinal shape, length or width, doping structure, or the overlap or alignment between the channel and the gate, the source or the drain, or the contacting structure of the channel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)
  • Electroluminescent Light Sources (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
  • Chemical Vapour Deposition (AREA)
  • Formation Of Insulating Films (AREA)
  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Physical Vapour Deposition (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Electrodes Of Semiconductors (AREA)

Description

半導體裝置和其製造方法
本發明係關於使用氧化物半導體的半導體裝置、使用該半導體裝置的顯示裝置及它們的製造方法。
多樣地存在的金屬氧化物被用於各種各樣的用途。氧化銦是公知材料,被用作在液晶顯示器等中所必需的具有透光性的電極材料。
在金屬氧化物中存在呈現半導體特性的金屬氧化物。作為呈現半導體特性的金屬氧化物,例如有氧化鎢、氧化錫、氧化銦、氧化鋅等,以這樣的呈現半導體特性的金屬氧化物為通道形成區的薄膜電晶體已公知(專利文獻1~4、非專利文獻1)。
另外,金屬氧化物不僅有一元氧化物,還已知多元氧化物。例如,已知具有均質相(homologous phase)的InGaO3 (ZnO)m (m為自然數)是具有In、Ga及Zn的多元氧化物半導體(非專利文獻2至4)。
並且,已確認由如上所述的In-Ga-Zn類氧化物構成的氧化物半導體可以用作薄膜電晶體的通道層(專利文獻5、非專利文獻5和6)。
一直以來,設置在主動矩陣型液晶顯示器的各像素中的薄膜電晶體(TFT)使用非晶矽或多晶矽,但是使用如上所述的金屬氧化物半導體代替這些矽材料來製造薄膜電晶體的技術受到關注。例如,在專利文獻6及專利文獻7中揭示了作為金屬氧化物半導體膜使用氧化鋅、In-Ga-Zn-O類氧化物半導體來製造薄膜電晶體並用於影像顯示裝置的切換元件等的技術。
專利文獻1:日本專利特開昭60-198861號公報
專利文獻2:日本專利特開平8-264794號公報
專利文獻3:日本專利特表平11-505377號公報
專利文獻4:日本專利特開2000-150900號公報
專利文獻5:日本專利特開2004-103957號公報
專利文獻6:日本專利特開2007-123861號公報
專利文獻7:日本專利特開2007-96055號公報
非專利文獻1:M. W. Prins,K. O. Grosse-Holz,G. Muller,J. F. M. Cillessen,J. B. Giesbers,R. P. Weening和R. M. Wolf,《透明鐵電薄膜電晶體(A ferroelectric transparent thin-film transistor)》,Appl. Phys. Lett.,1996年6月17日,第68卷3650-3652頁
非專利文獻2:M. Nakamura,N. Kimizuka和T. Mohri,《In2 O3 -Ga2 ZnO4 -ZnO體系在1350℃時的相的關係(The Phase Relations in the In2 O3 -Ga2 ZnO4 -ZnO System at 1350℃)》,J. Solid State Chem.,1991,第93卷,298-315頁
非專利文獻3:N. Kimizuka,M. Isobe和M. Nakamura,《In2 O3 -ZnGa2 O4 -ZnO體系的同系物In2 O3 (ZnO)m (m=3、4或5)、InGaO3 (ZnO)3 和Ga2 O3 (ZnO)m (m=7、8、9或16)的合成和單晶資料(Syntheses and Single-Crystal Data of Homologous Compounds,In2 O3 (ZnO)m (m=3,4,and 5),InGaO3 (ZnO)3 ,and Ga2 O3 (ZnO)m (m=7,8,9,and 16) in the In2 O3 -ZnGa2 O4 -ZnO System)》,J. Solid State Chem.,1995,第116卷,170-178頁
非專利文獻4:M. Nakamura,N. Kimizuka,T. Mohri,and M. Isobe,"Syntheses and crystal structures of new homologous compounds,indium iron zinc oxides(InFeO3 (ZnO)m )(m:natural number)and related compounds",KOTAI BUTSURI(SOLID STATE PHYSICS),1993,Vol. 28,No. 5,p. 317-327
非專利文獻5:K. Nomura,H. Ohta,K. Ueda,T. Kamiya,M. Hirano和H. Hosono,《由單晶透明氧化物半導體製造的薄膜電晶體(Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor)》,《科學(SCIENCE)》,2003,第300卷,1269-1272頁
非專利文獻6:K. Nomura,H. Ohta,A. Takagi,T. Kamiya,M. Hirano和H. Hosono,《室溫下的使用非晶氧化物半導體的透明撓性薄膜電晶體的製造(Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors)》,《自然(NATURE)》,2004,第432卷488-492頁
本發明的一種實施例的課題之一在於,在使用氧化物半導體層的薄膜電晶體中,減少該薄膜電晶體的臨界值電壓的偏差,使電特性穩定。另外,本發明的一種實施例的課題目的還在於,在使用氧化物半導體層的薄膜電晶體中,減少斷態電流,使電特性穩定。另外,本發明的一種實施例的目的還在於提供具有該使用氧化物半導體層的薄膜電晶體的顯示裝置。
為了解決上述問題,在使用氧化物半導體層的薄膜電晶體中,在氧化物半導體層上層疊包含絕緣性氧化物的氧化物半導體層,以氧化物半導體層與源極電極層或汲極電極層隔著包含絕緣性氧化物的氧化物半導體層接觸的方式形成薄膜電晶體。
本發明的一種實施例是一種半導體裝置,其特徵在於,包括:閘極電極層、閘極電極層上的閘極絕緣層、閘極絕緣層上的氧化物半導體層、氧化物半導體層上的包含絕緣性氧化物的氧化物半導體層以及包含絕緣性氧化物的氧化物半導體層上的源極電極層及汲極電極層,氧化物半導體層上的包含絕緣性氧化物的氧化物半導體層呈非晶結構,包含絕緣性氧化物的氧化物半導體層與源極電極層及汲極電極層電連接。
本發明的另一種實施例是一種半導體裝置,其特徵在於,包括:閘極電極層、閘極電極層上的閘極絕緣層、閘極絕緣層上的氧化物半導體層、氧化物半導體層上的包含絕緣性氧化物的氧化物半導體層、包含絕緣性氧化物的氧化物半導體層上的具有n型導電性的緩衝層以及緩衝層上的源極電極層及汲極電極層,氧化物半導體層上的包含絕緣性氧化物的氧化物半導體層呈非晶結構,緩衝層的電導率高於氧化物半導體層的電導率,包含絕緣性氧化物的氧化物半導體層隔著緩衝層與源極電極層及汲極電極層電連接。
還有,絕緣性氧化物較佳的為氧化矽。另外,包含絕緣性氧化物的氧化物半導體層較佳的藉由使用包含0.1重量%~30重量%的SiO2 的靶材的濺射法來形成。另外,氧化物半導體層及包含絕緣性氧化物的氧化物半導體層較佳的包含銦、錫或鋅中的至少一種。另外,緩衝層較佳的使用由氧化物半導體形成的非單晶膜。
另外,氧化物半導體層可以在源極電極層和汲極電極層之間具有厚度比與源極電極層及汲極電極層重疊的區域小的區域。另外,可以蝕刻源極電極層和汲極電極層之間的包含絕緣性氧化物的氧化物半導體層,從而露出氧化物半導體層。另外,可以在氧化物半導體層上具有由無機材料形成的通道保護層。另外,閘極電極層的通道方向的寬度可以大於包含絕緣性氧化物的氧化物半導體層及氧化物半導體層的通道方向的寬度。另外,可以在包含絕緣性氧化物的氧化物半導體層的端部下形成有空洞。另外,氧化物半導體層的端部可以被包含絕緣性氧化物的氧化物半導體層覆蓋。
本發明的另一種實施例是一種半導體裝置的製造方法,其特徵在於,在基板上形成閘極電極層,在閘極電極層上形成閘極絕緣層,在閘極絕緣層上藉由濺射法形成第一氧化物半導體膜,在第一氧化物半導體膜上藉由使用包含SiO2 的靶材的濺射法形成包含氧化矽的第二氧化物半導體膜,對第一氧化物半導體膜及第二氧化物半導體膜進行蝕刻而形成氧化物半導體層和島狀的第二氧化物半導體膜,在島狀的第二氧化物半導體膜上形成導電層,對島狀的第二氧化物半導體膜和導電層進行蝕刻而形成包含絕緣性氧化物的氧化物半導體層和源極電極層及汲極電極層,包含SiO2 的靶材包含0.1重量%~30重量%的SiO2
本發明的另一種實施例是一種半導體裝置的製造方法,其特徵在於,在基板上形成閘極電極層,在閘極電極層上形成閘極絕緣層,在閘極絕緣層上藉由濺射法形成第一氧化物半導體膜,對第一氧化物半導體膜進行蝕刻而形成氧化物半導體層,在氧化物半導體層上藉由使用包含SiO2 的靶材的濺射法形成包含氧化矽的第二氧化物半導體膜,對第二氧化物半導體膜進行蝕刻而以覆蓋氧化物半導體層的方式形成島狀的第二氧化物半導體膜,在島狀的第二氧化物半導體膜上形成導電層,對島狀的第二氧化物半導體膜和導電層進行蝕刻而形成包含絕緣性氧化物的氧化物半導體層和源極電極層及汲極電極層,包含SiO2 的靶材包含0.1重量%~30重量%的SiO2
還有,包含SiO2 的靶材較佳的包含1重量%~10重量%的SiO2 。另外,第一氧化物半導體膜及第二氧化物半導體膜較佳的包含銦、錫或鋅中的至少一種。另外,可以藉由對第一氧化物半導體膜及第二氧化物半導體膜進行濕法蝕刻,從而對第一氧化物半導體膜進行側面蝕刻,在包含絕緣性氧化物的氧化物半導體層的端部下形成空洞。另外,可以在氧化物半導體層中的源極電極層和汲極電極層之間的區域設置厚度比與源極電極層及汲極電極層重疊的區域小的區域。
還有,為了便於說明而附加了第一、第二等序數詞,其並不表示製程順序或層疊順序。另外,其在本說明書中不作為用來對發明進行特定的事項表示固有的名稱。
還有,在本說明書中,半導體裝置是指所有能夠藉由利用半導體特性而工作的裝置,因此光電裝置、半導體電路及電子設備都是半導體裝置。
根據本發明的一種實施例,在使用氧化物半導體層的薄膜電晶體中,在氧化物半導體層上層疊包含絕緣性氧化物的氧化物半導體層,以氧化物半導體層與源極電極層或汲極電極層隔著包含絕緣性氧化物的氧化物半導體層接觸的方式形成薄膜電晶體,從而可以減少該薄膜電晶體的臨界值電壓的偏差,使電特性穩定。另外,根據本發明的一種實施例,還可以減少斷態電流。
藉由將該薄膜電晶體用於顯示裝置的像素部及驅動電路部,可以提供電特性穩定且可靠性高的顯示裝置。
下面,參照附圖對實施例模式進行詳細說明。但是,本發明不局限於以下的說明,所屬技術領域的普通技術人員可以很容易地理解,在不脫離本發明的宗旨及其範圍內的情況下其方式及詳細內容可以作各種改變。因此,本發明不應當被解釋為僅限定在以下所示的實施例模式所記或的內容中。還有,在以下說明的發明的構成中,對於同一部分或具有相同功能的部分在不同的附圖中共用同一符號,略去對其的重複說明。
[實施例模式1]
在本實施例模式中,使用圖1說明薄膜電晶體的結構。
本實施例模式的底閘結構的薄膜電晶體示於圖1。圖1A是截面圖,圖1B是平面圖。圖1A是沿圖1B中的線A1-A2的截面圖。
圖1所示的薄膜電晶體中,在基板100上設置有閘極電極層101,在閘極電極層101上設置有閘極絕緣層102,在閘極絕緣層102上設體有氧化物半導體層106,在氧化物半導體層106上設置有包含絕緣性氧化物的氧化物半導體層103,在包含絕緣性氧化物的氧化物半導體層103上設置有源極電極層或汲極電極層105a、105b。
閘極電極層101使用鋁、銅、鉬、鈦、鉻、鉭、鎢、釹、鈧等金屬材料或者以這些金屬材料為主要成分的合金材料或以這些金屬材料為成分的氮化物,以單層或疊層的結構形成。閘極電極層101理想的是由鋁或銅等低電阻導電性材料形成,但因為存在耐熱性低或容易腐蝕的問題,所以較佳的與耐熱性導電性材料組合來使用。作為耐熱性導電性材料,使用鉬、鈦、鉻、鉭、鎢、釹、鈧等。
例如,作為閘極電極層101的疊層結構,較佳的採用在鋁層上層疊鉬層的雙層的疊層結構、在銅層上層疊鉬層的雙層的疊層結構、在銅層上層疊氮化鈦層或氮化鉭層的雙層的疊層結構或者層疊氮化鈦層和鉬層而得的雙層結構。作為三層的疊層結構,較佳的採用層疊鎢層或氮化鎢層、鋁和矽的合金層或鋁和鈦的合金層、氮化鈦層或鈦層而得的結構。
作為氧化物半導體層106,較佳的由In-Ga-Zn-O類、In-Sn-Zn-O類、Ga-Sn-Zn-O類、In-Zn-O類、Sn-Zn-O類、In-Sn-O類、Ga-Zn-O類、In-O類、Sn-O類或Zn-O類的氧化物半導體形成的非單晶膜。
在本說明書中,In-Ga-Zn-O類氧化物半導體是指至少包含In、Ga及Zn的氧化物半導體。另外,In-Sn-Zn-O類氧化物半導體是指至少包含In、Sn及Zn的氧化物半導體。另外,Ga-Sn-Zn-O類氧化物半導體是指至少包含Ga、Sn及Zn的氧化物半導體。另外,In-Zn-O類氧化物半導體是指至少包含In及Zn的氧化物半導體。另外,Sn-Zn-O類氧化物半導體是指至少包含Sn及Zn的氧化物半導體。另外,In-Sn-O類氧化物半導體是指至少包含In及Sn的氧化物半導體。另外,Ga-Zn-O類氧化物半導體是指至少包含Ga及Zn的氧化物半導體。另外,In-O類氧化物半導體是指至少包含In的氧化物半導體。另外,Sn-O類氧化物半導體是指至少包含Sn的氧化物半導體。另外,Zn-O類氧化物半導體是指至少包含Zn的氧化物半導體。另外,在上述氧化物半導體中,可以包含選自Fe、Ni、Mn或Co中的一種或多種金屬元素。
另外,氧化物半導體層106並不一定必須是非晶結構,有時在內部包含晶粒(奈米晶體)。晶粒(奈米晶體)的直徑為1nm~10nm,具代表性的為2nm~4nm左右。還有,晶體狀態藉由X射線衍射(XRD:X-ray diffraction)的分析進行評價。
氧化物半導體層106的厚度為10nm~300nm,較佳的為20nm~100nm。
作為包含絕緣性氧化物的氧化物半導體層103,較佳的使由In-Ga-Zn-O類、In-Sn-Zn-O類、Ga-Sn-Zn-O類、In-Zn-O類、Sn-Zn-O類、In-Sn-O類、Ga-Zn-O類、In-O類、Sn-O類或Zn-O類的氧化物半導體形成的非單晶膜包含絕緣性氧化物而得的層。在此,作為絕緣性氧化物,較佳的為氧化矽。另外,可以對絕緣性氧化物添加氮。
另外,包含絕緣性氧化物的氧化物半導體層103呈非晶結構。還有,與氧化物半導體層106同樣,晶體狀態藉由X射線衍射(XRD:X-ray diffraction)的分析進行評價。
另外,包含絕緣性氧化物的氧化物半導體層103較佳的藉由濺射法形成,作為靶材,使用包含0.1重量%~30重量%、較好是1重量%~10重量%的SiO2 的靶材。
藉由使包含絕緣性氧化物的氧化物半導體層103包含如氧化矽等絕緣性氧化物,可以抑制包含該絕緣性氧化物的氧化物半導體層103的晶化,從而使其呈非晶結構。藉由抑制包含絕緣性氧化物的氧化物半導體層103的晶化而使其呈非晶結構,可以減少薄膜電晶體的特性的偏差,使其穩定。另外,即使進行300℃~600℃的熱處理,也可以防止包含絕緣性氧化物的氧化物半導體層103的晶化或微晶粒的生成。
包含絕緣性氧化物的氧化物半導體層103呈非晶結構,且內部不含結晶或晶粒,因此導電性下降。因而,藉由在氧化物半導體層106與源極電極層或汲極電極層105a、105b之間介以呈非晶結構的包含絕緣性氧化物的氧化物半導體層103,從而可以減少薄膜電晶體的臨界值電壓的偏差,使電特性穩定。另外,也可以減少斷態電流。
包含絕緣性氧化物的氧化物半導體層103的厚度為10nm~300nm,較佳的為20nm~100nm。另外,包含絕緣性氧化物的氧化物半導體層103可以在源極電極層或汲極電極層105a、105b之間具有厚度比與源極電極層或汲極電極層105a、105b重疊的區域小的區域。
源極電極層或汲極電極層105a、105b可以使用鋁、銅、鉬、鈦、鉻、鉭、鎢、釹、鈧等金屬材料或者以這些金屬材料為主要成分的合金材料或以這些金屬材料為成分的氮化物。源極電極層或汲極電極層105a、105b理想的是由鋁和銅等低電阻導電性材料形成,但因為存在耐熱性較低或容易腐蝕等問題,所以較佳與耐熱性導電性材料組合來使用。作為耐熱性導電性材料,使用鉬、鈦、鉻、鉭、鎢、釹、鈧等。
例如,源極電極層或汲極電極層105a、105b較佳的採用三層結構,其中,第一導電層及第三導電層使用作為耐熱性導電性材料的鈦,第二導電層使用包含低電阻的釹的鋁合金。藉由採用這種結構,可以利用鋁的低電阻性且減少小丘的產生。還有,不局限於該結構,也可以採用單層結構、雙層結構或四層以上的結構。
接著,基於計算模擬的結果,對在氧化物半導體層106上層疊有包含絕緣性氧化物的氧化物半導體層103的薄膜電晶體的效果進行說明。在此,對在背通道中產生的載子引發的薄膜電晶體的臨界值電壓的變化進行硏究。還有,在本說明書中,背通道是指薄膜電晶體的主動層中的與源極電極層或汲極電極層不重疊且位於與閘極電極及閘極絕緣層相反的一側的部分。
在圖36A~36C中,示出用作計算模型的薄膜電晶體的結構。各薄膜電晶體由閘極電極層601、設置在閘極電極層601上的閘極絕緣層602、設置在閘極絕緣層602上且由氧化物半導體形成的主動層、設置在主動層上的源極電極層或汲極電極層605a、605b構成。各薄膜電晶體的通道長度為10μm,通道寬度為100μm。閘極電極層601假設為厚度100nm的鎢,功函數假定為4.6eV。另外,閘極絕緣層602假設為厚度100nm的氧氮化矽,介電常數假定為4.1。另外,源極電極層或汲極電極層605a、605b假設為厚度100nm的鈦,功函數假定為4.3eV。
在此,已知氧化物半導體因氧缺陷或氫的侵入而形成剩餘載子。薄膜電晶體的背通道由於蝕刻源極電極層或汲極電極層605a、605b時的電漿損傷而容易產生氧缺陷,容易產生剩餘載子。另外,由於來自大氣中或層間膜的氫的侵入,也會在背通道中產生剩餘載子。因此,在各薄膜電晶體的背通道中設定由於蝕刻和成膜等製程引發的氧缺陷或氫的侵入而產生的載子(電子)。
圖36A所示的結構A的薄膜電晶體具有由單層的氧化物半導體層606構成的主動層。氧化物半導體層606假設為厚度50nm的In-Ga-Zn-O類非單晶膜,假定電子的本徵遷移率為20cm2 /Vs,帶隙(Eg)為3.05eV,電子親合能(χ)為4.3eV。
圖36B示出的結構B的薄膜電晶體具有主動層,該主動層具有氧化物半導體層616和形成在氧化物半導體層616上的包含絕緣性氧化物的氧化物半導體層613的疊層結構。包含絕緣性氧化物的氧化物半導體層613假設為厚度25nm的包含氧化矽的In-Ga-Zn-O類非單晶膜,電子的本徵遷移率假定為2cm2 /Vs。藉由包含氧化矽,使In-Ga-Zn-O類非單晶膜的電子的本徵遷移率較低。氧化物半導體層616假設為厚度25nm的In-Ga-Zn-O類非單晶膜,電子的本徵遷移率假定為20cm2 /Vs。包含絕緣性氧化物的氧化物半導體層613及氧化物半導體層616都假設帶隙(Eg)為3.05eV,電子親合能(χ)為4.3eV。
圖36C示出的結構C的薄膜電晶體具有主動層,該主動層具有氧化物半導體層626和形成在氧化物半導體層626上的包含絕緣性氧化物的氧化物半導體層623的疊層結構。但是,結構C的包含絕緣性氧化物的氧化物半導體層623包含比結構B的包含絕緣性氧化物的氧化物半導體層613更多的氧化矽。包含絕緣性氧化物的氧化物半導體層623假設為厚度25nm的包含氧化矽的In-Ga-Zn-O類非單晶膜,電子的本徵遷移率假定為0.2cm2 /Vs。藉由包含比結構B更多的氧化矽,使In-Ga-Zn-O類非單晶膜的電子的本徵遷移率比結構B更低。氧化物半導體層626假設為厚度25nm的In-Ga-Zn-O類非單晶膜,電子的本徵遷移率假定為20cm2 /Vs。包含絕緣性氧化物的氧化物半導體層623及氧化物半導體層626都假設帶隙(Eg)為3.05eV,電子親合能(χ)為4.3eV。
在上述的各薄膜電晶體的距背通道的表面5nm的深度設定由於蝕刻和成膜等製程引發的氧缺陷或氫的侵入而產生的載子(電子),且將載子密度設定為5×1016 cm-3 、1×1017 cm-3 、2.5×1017 cm-3 、5×1017 cm-3 、1×1018 cm-3 ,藉由計算模擬算出各載子密度下的臨界值電壓。
還有,在上述模型的計算中使用矽穀科技有限公司(Silvaco Data Systems Inc.)製的裝置仿真系統“Atlas”。對於斷態電流的計算,使用帶間隧道模型。
圖36A~36C所示的各結構的薄膜電晶體的臨界值電壓的背通道的載子密度依賴性示於圖37。在圖37中,縱軸表示各結構的薄膜電晶體的臨界值電壓(Vth[V]),橫軸表示在各結構的主動層的背通道中產生的載子的密度(cm-3 )。
在本計算中,將薄膜電晶體的臨界值電壓(Vth[V])定義為以閘極電壓(Vg[V])為橫軸、汲極電流的平方根(Id1/2 )為縱軸而製得的圖中Id1/2 的斜率達到最大的切線與Vg軸的交點。
如圖37所示,結構A的薄膜電晶體中,隨著背通道的載子密度的增加,臨界值電壓的絕對值也增加。對於5×1016 cm-3 ~1×1018 cm-3 的背通道的載子密度,結構A的臨界值電壓偏移近3V。
與結構A相比,在主動層為氧化物半導體層616和包含絕緣性氧化物的氧化物半導體層613的疊層結構的結構B中,臨界值電壓的絕對值相對於背通道的載子密度的增加變小。對於5×1016 cm-3 ~1×1018 cm-3 的背通道的載子密度,結構B的臨界值電壓只偏移1V以下。
與結構B相比,在包含絕緣性氧化物的氧化物半導體層623包含更多的氧化矽的結構C中,臨界值電壓的絕對值相對於背通道的載子密度的增加比結構B更小。對於5×1016 cm-3 ~1×1018 cm-3 的背通道的載子密度,結構C的臨界值電壓只偏移0.5V左右。
另外,圖36A~36C所示的各結構的薄膜電晶體的飽和遷移率的載子密度依賴性示於圖38。縱軸表示各結構的薄膜電晶體的飽和遷移率(μFE (sat)[cm2 /Vs]),橫軸與圖37相同。
由圖38可知,結構B和結構C的薄膜電晶體具有與結構A的電晶體大致相同程度的飽和遷移率。因此,即使疊層電子的本徵遷移率低的包含絕緣性氧化物的氧化物半導體層而減少由背通道的載子導致的臨界值電壓的變化,也可以維持薄膜電晶體的飽和遷移率及通態電流。
以上的結果顯示,藉由對薄膜電晶體的主動層採用包含絕緣性氧化物的氧化物半導體層和氧化物半導體層的疊層結構,可以在不降低薄膜電晶體的飽和遷移率的情況下減少由背通道的載子導致的臨界值電壓的變化。因此,藉由將具有包含絕緣性氧化物的氧化物半導體層和氧化物半導體層層疊而得的主動層的薄膜電晶體用於影像顯示裝置的像素部,可以減少開關電晶體的臨界值電壓的偏差,減少各像素之間的亮度偏差。
另外,不局限於圖1A和圖1B所示的反交錯型結構的薄膜電晶體,如圖12A和圖12B所示,也可以採用在包含絕緣性氧化物的氧化物半導體層103上設置有通道保護層104的反交錯型結構的薄膜電晶體。還有,圖12A是沿圖12B中的線A1-A2的截面圖。作為通道保護層104,可以使用藉由電漿CVD法或熱CVD法等氣相沉積法或者濺射法成膜而得的無機材料(氧化矽、氮化矽、氧氮化矽、氮氧化矽等)。藉由採用在包含絕緣性氧化物的氧化物半導體層103上設置通道保護層104的結構,可以防止製造製程中對於包含絕緣性氧化物的氧化物半導體層103的通道形成區的損傷,如形成包含絕緣性氧化物的氧化物半導體層103時的蝕刻的電漿、蝕刻劑導致的膜減少和氧化等。因此,可以提高薄膜電晶體的可靠性。還有,圖12A及圖12B所示的薄膜電晶體採用除了形成在包含絕緣性氧化物的氧化物半導體層103上的通道保護層104之外與圖1所示的薄膜電晶體相同的結構,附圖的符號也使用與圖1所示的薄膜電晶體相同的符號。
另外,在圖1A和圖1B所示的反交錯型結構的薄膜電晶體中,呈閘極電極層101的通道方向的寬度大於包含絕緣性氧化物的氧化物半導體層103及氧化物半導體層106的通道方向的寬度的結構,但是本實施例模式所示的薄膜電晶體不局限於此。如圖30A和圖30B所示,也可以使用通道方向的寬度小於包含絕緣性氧化物的氧化物半導體層103及氧化物半導體層106的通道方向的寬度的閘極電極層201。還有,圖30A是沿圖30B中的線A1-A2的截面圖。藉由採用這種結構,閘極電極層201與源極電極層或汲極電極層105a、105b的距離變遠,所以可以減少從源極電極層或汲極電極層105a、105b直接流到氧化物半導體層106的斷態電流。因此,可以實現薄膜電晶體的可靠性的提高。還有,圖30A和圖30B所示的薄膜電晶體除了閘極電極層201之外,對於與圖1A和圖1B所示的薄膜電晶體對應的部位,附圖的符號也使用與圖1A和圖1B所示的薄膜電晶體相同的符號。
另外,在圖1A和圖1B所示的反交錯型結構的薄膜電晶體中,氧化物半導體層106與源極電極層或汲極電極層105a、105b在氧化物半導體層106的端部直接接觸,但本實施例模式所示的薄膜電晶體不局限於此。如圖31A和圖31B所示那樣,也可以採用如下結構:氧化物半導體106的面積比包含絕緣性氧化物的氧化物半導體層103小,在包含絕緣性氧化物的氧化物半導體層103的端部下形成有空洞210。空洞210以被氧化物半導體層106、包含絕緣性氧化物的氧化物半導體層103、源極電極層或汲極電極層105a、105b及閘極絕緣層102圍繞的方式形成。還有,在氧化物半導體層106上未設置源極電極層或汲極電極層105a、105b的部分中,薄膜電晶體上的保護絕緣層形成空洞210來代替源極電極層或汲極電極層105a、105b。空洞210可以利用包含絕緣性氧化物的氧化物半導體層103對於濕法蝕刻的蝕刻速度比氧化物半導體層106慢這一點而容易地形成。藉由採用這種結構,氧化物半導體層106與源極電極層或汲極電極層105a、105b不直接接觸,所以可以減少從源極電極層或汲極電極層105a、105b直接流到氧化物半導體層106的端部的斷態電流。因此,可以實現薄膜電晶體的可靠性的提高。還有,圖31A和圖31B所示的薄膜電晶體採用除了在包含絕緣性氧化物的氧化物半導體層103的端部下形成有空洞210之外與圖1所示的薄膜電晶體相同的結構,附圖的符號也使用與圖1所示的薄膜電晶體相同的符號。
另外,如圖32A和圖32B所示,還可以採用氧化物半導體層226的端部被包含絕緣性氧化物的氧化物半導體層223覆蓋的結構。還有,圖32A是沿圖32B中的線A1-A2的截面圖。藉由採用這種結構,氧化物半導體層226與源極電極層或汲極電極層105a、105b不直接接觸,所以可以減少從源極電極層或汲極電極層105a、105b直接流到氧化物半導體層226的端部的斷態電流。因此,可以實現薄膜電晶體的可靠性的提高。還有,圖32A和圖32B所示的薄膜電晶體採用除了氧化物半導體層226的端部被包含絕緣性氧化物的氧化物半導體層223覆蓋之外與圖1所示的薄膜電晶體相同的結構,附圖的符號也使用與圖1所示的薄膜電晶體相同的符號。
另外,圖1A和圖1B所示的反交錯型結構的薄膜電晶體中,在源極電極層或汲極電極層105a、105b之間形成有包含絕緣性氧化物的氧化物半導體層103,氧化物半導體層106被覆蓋,但是本實施例模式所示的薄膜電晶體不局限於此。如圖33A和圖33B所示,也可以採用如下結構:對源極電極層或汲極電極層105a、105b之間的包含絕緣性氧化物的氧化物半導體層進行蝕刻而形成包含絕緣性氧化物的氧化物半導體層233a、233b,從而露出氧化物半導體層106。還有,圖33A是沿圖33B中的線A1-A2的截面圖。另外,氧化物半導體層106可以在包含絕緣性氧化物的氧化物半導體層233a、233b之間具有厚度比與包含絕緣性氧化物的氧化物半導體層233a、233b重疊的區域小的區域。藉由採用這種結構,可以僅在一般導電性比包含絕緣性氧化物的氧化物半導體層233a、233b高的氧化物半導體層106中形成通道形成區,因此除了藉由包含絕緣性氧化物的氧化物半導體層233a、233b減少斷態電流之外,還可以電現S值(亞臨界值擺幅)的改善。因此,可以實現薄膜電晶體的可靠性的提高。還有,圖33A和圖33B所示的薄膜電晶體採用除了包含絕緣性氧化物的氧化物半導體層233a、233b被分離至源極電極側和汲極電極側之外與圖1所示的薄膜電晶體相同的結構,附圖的符號也使用與圖1所示的薄膜電晶體相同的符號。
藉由採用上述結構,可以在氧化物半導體層上層疊包含絕緣性氧化物的氧化物半導體層,以氧化物半導體層與源極電極層或汲極電極層隔著包含絕緣性氧化物的氧化物半導體層接觸的方式形成薄膜電晶體,減少該薄膜電晶體的臨界值電壓的偏差,使電特性穩定。另外,也可以減少斷態電流。
還有,本電施例模式所示的構成可以與其他實施例模式所示的構成適當地組合使用。另外,也可以將本實施例模式所示的構成相互適當地組合使用。
[實施例模式2]
在本實施例模式中,使用圖2~圖9說明包括實施例模式1所示的薄膜電晶體的顯示裝置的製造製程。圖2和圖3是截面圖,圖4~圖7是平面圖,圖4~圖7、圖9所示的線A1-A2及線B1-B2與圖2和圖3的截面圖中的線A1-A2、線B1-B2對應。
首先,準備基板100。作為基板100,除了鋇硼矽酸鹽玻璃、鋁硼矽酸鹽玻璃或鋁矽酸鹽玻璃等藉由熔融法或浮法製造的無鹼玻璃基板或者陶瓷基板之外,還可以使用具有可承受本製造製程的處理溫度的耐熱性的塑膠基板等。此外,還可以使用在不鏽鋼合金等的金屬基板的表面設置絕緣膜而得的基板。基板100的尺寸可以採用320mm×400mm、370mm×470mm、550mm×650mm、600mm×720mm、680mm×880mm、730mm×920mm、1000mm×1200mm、1100mm×1250mm、1150mm×1300mm 1500mm×1800mm、1900mm×2200mm、2160mm×2460mm、2400mm×2800mm或2850mm×3050mm等。
另外,還可以在基板100上形成絕緣膜作為基底膜。作為基底膜,利用CVD法或濺射法等以單層或疊層的結構形成氧化矽膜、氮化矽膜、氧氮化矽膜或氮氧化矽膜即可。在作為基板100使用如玻璃基板等含有可動離子的基板的情況下,藉由使用氮化矽膜、氮氧化矽膜等含氮的膜作為基底膜,可以防止可動離子侵入到氧化物半導體層。
接著,藉由濺射法或真空蒸鍍法在基板100整面形成用來形成包括閘極電極層101的閘極佈線、電容佈線108以及第一端子121的導電膜。接著,進行光微影製程,形成抗蝕掩模,藉由蝕刻去除不需要的部分來形成佈線及電極(包括閘極電極層101的閘極佈線、電容佈線108以及第一端子121)。此時,為了防止斷開,較佳的以至少在閘極電極層101的端部形成錐形形狀的方式進行蝕刻。這個步驟的截面圖示於圖2A。另外,這個步驟的平面圖示於圖4。
包括閘極電極層101的閘極佈線、電容佈線108、端子部的第一端子121可以使用實施例模式1所示的導電性材料以單層或疊層的結構形成。
在此,可以採用如下方式形成閘極電極層101:閘極電極層101的通道方向的寬度小於後續製程中所製造的包含絕緣性氧化物的氧化物半導體層103及氧化物半導體層106的通道方向的寬度。藉由如此形成閘極電極層101,可以形成如圖30A和圖30B所示的薄膜電晶體。如圖30所示的薄膜電晶體中,閘極電極層201與源極電極層或汲極電極層105a、105b的距離變遠,所以可以減少從源極電極層或汲極電極層105a、105b直接流到氧化物半導體層106的斷態電流。
接著,在閘極電極層101整面上形成閘極絕緣層102。閘極絕緣層102採用CVD法或濺射法等,厚度設為50~250nm。
例如,作為閘極絕緣層102,藉由CVD法或濺射法並使用氧化矽膜以100nm的厚度來形成。當然,閘極絕緣層102不局限於這種氧化矽膜,也可以使用氧氮化矽膜、氮氧化矽膜、氮化矽膜、氧化鋁膜、氧化鉭膜等其他絕緣膜以由這些材料形成的單層或疊層的結構形成。
此外,作為閘極絕緣層102,也可以藉由使用有機矽烷氣體的CVD法形成氧化矽層。作為有機矽烷氣體,可以使用矽酸乙酯(TEOS:化學式Si(OC2 H5 )4 )、四甲基矽烷(TMS:化學式Si(CH3 )4 )、四甲基環四矽氧烷(TMCTS)、八甲基環四矽氧烷(OMCTS)、六甲基二矽氮烷(HMDS)、三乙氧基矽烷(SiH(OC2 H5 )3 )、三(二甲氨基)矽烷(SiH(N(CH3 )2 )3 )等含矽化合物。
此外,作為閘極絕緣層102,也可以使用鋁、釔或鉿的氧化物、氮化物、氧氮化物或氮氧化物中的一種或者包含至少其中兩種以上的化合物的化合物。
還有,在本說明書中,氧氮化物是指在組成方面氧原子的數量多於氮原子的物質,而氮氧化物是指在組成方面氮原子的數量多於氧原子的物質。例如,氧氮化矽膜是指如下的膜:在組成方面氧原子的數量比氮原子多,當使用盧瑟福背散射能譜法(RBS:Rutherford Backscattering Spectrometry)以及氫正散射法(HFS:Hydrogen Forward Scattering)測定時,作為濃度範圍,氧的含量在50~70原子%的範圍內,氮的含量在0.5~15原子%的範圍內,矽的含量在25~35原子%的範圍內,氫的含量在0.1~10原子%的範圍內。此外,氮氧化矽膜是指如下的膜:在組成方面氮原子的數量比氧原子多,當使用RBS和HFS測定時,作為濃度範圍,氧的含量在5~30原子%的範圍內,氮的含量在20~55原子%的範圍內,矽的含量在25~35原子%的範圍內,氫的含量10~30原子%的範圍內。其中,當將構成氧氮化矽或氮氧化矽的原子總量設為100原子%時,氮、氧、矽及氫的含有比例在上述範圍內。
還有,在形成用來形成氧化物半導體層106的氧化物半導體膜之前,較佳的進行在設置有基板100的處理室內引入氬氣來產生電漿的反濺射,去除附著於閘極絕緣層表面的塵埃。另外,藉由進行反濺射,也可以提高閘極絕緣層102表面的平坦性。反濺射是指如下的方法:不對靶材側施加電壓,而在氬氣圍下使用RF電源對基板側施加電壓,在基板上產生電漿來對表面進行改性。另外,也可以使用氮、氦等代替氬氣圍。另外,也可以在氬氣圍中加入氧、N2 O等而得的氣圍下進行。另外,還可以在氬氣圍中加入Cl2 、CF4 等而得的氣圍下進行。在反濺射處理之後,藉由在不暴露於大氣的情況下形成第一氧化物半導體膜,可以防止塵埃或水分附著於閘極絕緣層102和氧化物半導體層106的介面。
接著,在氬等稀有氣體和氧氣的氣圍下藉由濺射法在閘極絕緣層102上形成用來形成氧化物半導體層106的第一氧化物半導體膜。此時,藉由以氬等稀有氣體的流量比例大於氧氣的流量比例的條件成膜或者不使用氧氣而在僅有氬等稀有氣體的氣圍下成膜,可以提高氧化物半導體層106的電導率。作為第一氧化物半導體膜,可以使用實施例模式1所示的氧化物半導體。作為具體的條件例,例如使用直徑為8英寸的包含In、Ga及Zn的氧化物半導體靶材(In2 O3 :Ga2 O3 :ZnO=1:1:1),基板和靶材之間的距離為170mm,壓力為0.4Pa,直流(DC)電源為0.5kW,成膜氣體滿足Ar:O2 =30:15(sccm),將成膜溫度設定為室溫來進行濺射成膜。另外,作為靶材,可以在包含In2 O3 的直徑為8英寸的圓盤上配置顆粒狀的Ga2 O3 和ZnO。此外,如果使用脈衝直流(DC)電源,則可以減少塵埃,膜厚分佈也變得均勻,所以較佳。另外,第一氧化物半導體膜的厚度設定為10nm~300nm,較佳的為20nm~100nm。
接著,在氬等稀有氣體和氧氣體的氣圍下藉由濺射法於不暴露於大氣的情況下在第一氧化物半導體膜上形成用於形成包含絕緣性氧化物的氧化物半導體層103的第二氧化物半導體膜。在此,作為絕緣性氧化物,較佳的為氧化矽。此時,藉由加大氧氣的流量比例來成膜,可以降低包含絕緣性氧化物的氧化物半導體層103的電導率。作為第二氧化物半導體膜,可以使用實施例模式1所示的氧化物半導體。當形成第二氧化物半導體膜時,較好是使用包含0.1重量%~30重量%、較佳的為1重量%~10重量%的SiO2 的氧化物半導體靶材。作為具體的條件例,例如使用以2重量%的比例包含SiO2 的直徑為8英寸的包含In、Ga及Zn的氧化物半導體靶材(In2 O3 :Ga2 O3 :ZnO=1:1:1),基板和靶材之間的距離為170mm,壓力為0.4Pa,直流(DC)電源為0.5kW,成膜氣體滿足Ar:O2 =30:15(sccm),將成膜溫度設定為室溫來進行濺射成膜。另外,作為靶材,可以在包含In2 O3 的直徑為8英寸的圓盤上配置顆粒狀的SiO2 、Ga2 O3 及ZnO。此外,如果使用脈衝直流(DC)電源,則可以減少塵埃,膜厚分佈也變得均勻,所以較佳。另外,第二氧化物半導體膜的膜厚設定為10nm~300nm,較佳的為20nm~100nm。
藉由使第二氧化物半導體膜包含如氧化矽等絕緣性氧化物,容易使形成的氧化物半導體非晶化。另外,在對氧化物半導體膜進行熱處理的情況下,可以抑制氧化物半導體的晶化。
當形成第一氧化物半導體膜及第二氧化物半導體膜時,可以與之前進行的反濺射使用同一處理室,也可以與之前進行的反濺射使用不同的處理室。
在濺射法中,有濺射電源使用高頻電源的RF濺射法和DC濺射法,還有以脈衝方式施加偏壓的脈衝DC濺射法。RF濺射法主要用於絕緣膜的形成,而DC濺射法主要用於金屬膜的形成。
此外,還有可以設置多種材料不同的靶材的多元濺射裝置。多元濺射裝置既可以在同一處理室中層疊形成不同材料的膜,又可以在同一處理室中同時使多種材料放電來進行成膜。
此外,有採用在處理室內具備磁石機構的磁控管濺射法的濺射裝置和不使用輝光放電而利用使用微波來產生的電漿的ECR濺射法的濺射裝置。
此外,作為使用濺射法的成膜方法,還有在成膜時使靶材物質和濺射氣體成分發生化學反應而形成它們的化合物薄膜的反應濺射法以及在成膜時對基板也施加電壓的偏壓濺射法。
接著,進行光微影製程,形成抗蝕掩模,對第一氧化物半導體膜及第二氧化物半導體膜進行蝕刻。蝕刻可以使用檸檬酸或草酸等有機酸作為蝕刻劑。在此,藉由使用ITO-07N(關東化學株式會社(関東化學社)製)的濕法蝕刻去除不需要的部分而使第一氧化物半導體膜及第二氧化物半導體膜呈島狀,從而形成氧化物半導體層106及包含絕緣性氧化物的氧化物半導體層111。藉由將氧化物半導體層106及包含絕緣性氧化物的氧化物半導體層111的端部蝕刻為錐形,可以防止因臺階形狀導致的佈線的斷裂。這個步驟的截面圖示於圖2B。還有,這個步驟的平面圖對應於圖5。
在此,包含如氧化矽等絕緣性氧化物的第二氧化物半導體膜對於濕法蝕刻的蝕刻速度低於第一氧化物半導體膜。如果層疊第一氧化物半導體膜和第二氧化物半導體膜並進行濕法蝕刻,則與第二氧化物半導體膜相比,第一氧化物半導體膜進行的側面蝕刻的幅度大。因此,與圖31所示的薄膜電晶體同樣,氧化物半導體層106的端部形成比包含絕緣性氧化物的氧化物半導體層111的端部更靠內的形狀,在包含絕緣性氧化物的氧化物半導體層111的端部下形成空洞210。由此,在後續製程中,當形成源極電極層或汲極電極層105a、105b時,可以使該源極電極層或汲極電極層105a、105b與氧化物半導體層106的端部不接觸,可以防止在該源極電極層或汲極電極層105a、105b與氧化物半導體層106的端部之間直接流過電流。
另外,在本實施例模式中,在層疊形成第一氧化物半導體膜和第二氧化物半導體膜之後,藉由光微影製程形成氧化物半導體層106和包含絕緣性氧化物的氧化物半導體層111,但是本實施例模式不局限於此。也可以形成第一氧化物半導體膜,藉由光微影形成氧化物半導體層106,然後形成第二氧化物半導體膜,藉由光微影形成包含絕緣性氧化物的氧化物半導體層111。此時,如圖32所示,採用以包含絕緣性氧化物的氧化物半導體層111(包含絕緣性氧化物的氧化物半導體層223)覆蓋氧化物半導體層106(氧化物半導體層226)的結構。由此,在後續製程中,當形成源極電極層或汲極電極層105a、105b時,可以使該源極電極層或汲極電極層105a、105b與氧化物半導體層226的端部不接觸,可以防止在該源極電極層或汲極電極層105a、105b與氧化物半導體層226的端部之間直接流過電流。
此外,此時的蝕刻不局限於濕法蝕刻,而也可以利用乾法蝕刻。作為用於乾法蝕刻的蝕刻裝置,可以使用如下裝置:利用反應性離子蝕刻法(Reactive Ion Etching;RIE法)的蝕刻裝置、利用ECR(Electron Cyclotron Resonance;電子迴旋共振)或ICP(Inductively Coupled Plasma;感應耦合電漿)等高密度電漿源的乾法蝕刻裝置。另外,作為容易在比ICP蝕刻裝置更大的面積上獲得均勻放電的乾法蝕刻裝置,有ECCP(Enhanced Capacitively COupled Plasma:增強電容耦合電漿)模式的蝕刻裝置,在該ECCP模式的蝕刻裝置中,上部電極接地,下部電極連接到13.56MHz的高頻電源,並且下部電極還連接到3.2MHz的低頻電源。如果是該ECCP模式的蝕刻裝置,則在例如作為基板使用第10代的邊長超過3m的尺寸的基板時也可以適用。
接著,進行光微影製程,形成抗蝕掩模,藉由蝕刻去除閘極絕緣層102的不需要的部分,形成到達與閘極電極層101相同材料的佈線或電極層的接觸孔。該接觸孔為了與後面形成的導電膜直接連接而設置。例如,當在驅動電路部中形成如下結構時形成接觸孔:形成有閘極電極層與源極電極層或汲極電極層直接接觸的二極體連接的薄膜電晶體、與端子部的閘極佈線電連接的端子。
接著,藉由濺射法或真空蒸鍍法在包含絕緣性氧化物的氧化物半導體層111及閘極絕緣層102上形成由金屬材料形成的導電膜112。這個步驟的截面圖示於圖2C。
作為導電膜112的材料,可以使用實施例模式1所示的導電性材料以單層或疊層的結構形成。例如,導電膜112可以採用如下構成:第一導電層及第三導電層由作為耐熱性導電性材料的鈦形成,第二導電層由包含釹的鋁合金形成。藉由使導電膜112呈這種構成,可以在利用鋁的低電阻性的同時,減少小丘的產生。
接著,進行光微影製程,形成抗蝕掩模131,藉由蝕刻去除不需要的部分,從而形成源極電極層或汲極電極層105a、105b、包含絕緣性氧化物的氧化物半導體層103及連接電極120。作為此時的蝕刻方法,使用濕法蝕刻或乾法蝕刻。例如,在作為導電膜112,第一導電層及第三導電層使用鈦且第二導電層使用包含釹的鋁合金的情況下,可以將過氧化氫水溶液或加熱鹽酸或者含氟化銨的硝酸水溶液用作蝕刻劑來進行濕法蝕刻。例如,可以使用KSMF-240(關東化學株式會社製)一個步驟對由第一導電層、第二導電層及第三導電層構成的導電膜112進行蝕刻。在該蝕刻製程中,包含絕緣性氧化物的氧化物半導體層111的露出區域也被部分蝕刻,從而成為在源極電極層或汲極電極層105a、105b之間具有厚度比與源極電極層或汲極電極層105a、105b重疊的區域小的區域的包含絕緣性氧化物的氧化物半導體層103。因此,包含絕緣性氧化物的氧化物半導體層103及氧化物半導體層106的通道形成區與包含絕緣性氧化物的氧化物半導體層103的厚度小的區域重疊。
在圖3A中,因為可以一個步驟對導電膜112及包含絕緣性氧化物的氧化物半導體層111進行蝕刻,所以源極電極層或汲極電極層105a、105b及包含絕緣性氧化物的氧化物半導體層103的端部一致,可以形成連續結構。另外,由於使用濕法蝕刻,因此蝕刻各向同性地進行,源極電極層或汲極電極層105a、105b的端部比抗蝕掩模131更靠內。藉由上述製程可以製造將包含絕緣性氧化物的氧化物半導體層103及氧化物半導體層106作為通道形成區的薄膜電晶體170。這個步驟的截面圖示於圖3A。另外,這個步驟的平面圖對應於圖6。
此時,不僅是導電膜112及包含絕緣性氧化物的氧化物半導體層111,蝕刻可以進行至氧化物半導體層106。如此,如圖33A和圖33B所示,可以形成源極電極層或汲極電極層105a、105b及包含絕緣性氧化物的氧化物半導體層223a、223b。在該蝕刻製程中,氧化物半導體層106的露出區域也被部分蝕刻,從而成為在包含絕緣性氧化物的氧化物半導體層233a、233b之間具有厚度比與包含絕緣性氧化物的氧化物半導體層233a、233b重疊的區域小的區域的氧化物半導體層106。因此,氧化物半導體層106的通道形成區與氧化物半導體層106的厚度小的區域重疊。藉由採用這種結構,可以僅在一般導電性比包含絕緣性氧化物的氧化物半導體層233a、233b高的氧化物半導體層106中形成通道形成區,因此除了藉由包含絕緣性氧化物的氧化物半導體層233a、233b減少斷態電流之外,還可以實現S值(亞臨界值擺幅)的改善。
另外,在該光微影製程中,在端子部中殘留材料與源極電極層或汲極電極層105a、105b相同的第二端子122。還有,第二端子122與源極佈線(包括源極電極層或汲極電極層105a、105的源極佈線)電連接。
另外,在端子部中,連接電極120透過形成在閘極絕緣層102的接觸孔與端子部的第一端子121直接連接。還有,雖然在此未圖示,但是經過與上述製程相同的製程,驅動電路的薄膜電晶體的源極佈線或汲極佈線閘極電極直接連接。
在上述光微影製程中,需要在將導電膜112蝕刻為島狀的製程和在形成源極電極層或汲極電極層105a、105b的製程中使用兩塊掩模。但是,如果使用由多灰階(高灰階)掩模形成的具有多種(代表性的為兩種)厚度的區域的抗蝕掩模,則可以縮減抗蝕掩模數量,所以可以實現製程簡化和低成本化。使用圖35說明利用多灰階掩模的光微影製程。
首先,從圖2A的狀態開始,藉由上述方法形成閘極絕緣層102、第一氧化物半導體膜、第二氧化物半導體膜及導電膜112,藉由使用透過的光呈多種強度的多灰階(高灰階)掩模的曝光,在導電膜112上形成如圖35A所示的具有多種不同厚度的區域的抗蝕掩模132。抗蝕掩模132在與閘極電極層101的一部分重疊的區域具有厚度小的區域。接著,使用抗蝕掩模132,對第一氧化物半導體膜、第二氧化物半導體膜及導電層112進行蝕刻來將其加工為島狀,形成氧化物半導體層106、包含絕緣性氧化物的氧化物半導體層143、導電層115及第二端子124。這個步驟的截面圖對應於圖35A。
然後,對抗蝕掩模132進行灰化,形成抗蝕掩模131。如圖35B所示,抗蝕掩模131由於灰化而面積縮小,厚度減小,厚度小的區域的抗蝕劑被去除。
最後,使用抗蝕掩模131,對包含絕緣性氧化物的氧化物半導體層143、導電層115及第二端子124進行蝕刻,形成包含絕緣性氧化物的氧化物半導體層103、源極電極層或汲極電極層105a、105b及第二端子122。由於抗蝕掩模131被縮小,包含絕緣性氧化物的氧化物半導體層103、源極電極層或汲極電極層105a、105b及第二端子122的端部也被蝕刻。這個步驟的截面圖對應於圖35B。還有,對於第一端子121,在後面的製程中形成保護絕緣層107之後,對閘極絕緣層102及保護絕緣層107進行蝕刻形成接觸孔,形成透明導電膜並與FPC連接。如上所述,可以利用多灰階掩模製造薄膜電晶體170。
接著,在去除抗蝕掩模131之後,較佳的進行200℃~600℃、代表性的為250℃~500℃的熱處理(也包括光退火)。在此將其放置在爐中,在大氣氣圍下進行350℃、1小時的熱處理。藉由該熱處理,包含絕緣性氧化物的氧化物半導體層103及氧化物半導體層106發生原子位準的重新排列。另外,包含絕緣性氧化物的氧化物半導體層103因為包含如氧化矽等絕緣性氧化物,所以可以避免因該熱處理而晶化,可以維持非晶結構。另外,進行熱處理的時機只要在形成包含絕絕緣性氧化物的氧化物半導體層103之後即可,沒有特別的限制,例如可以在形成像素電極之後進行。
另外,可以對露出的包含絕緣性氧化物的氧化物半導體層103的通道形成區域進行氧自由基處理。藉由進行氧自由基處理,可以使薄膜電晶體呈常閉狀態。另外,藉由進行自由基處理,可以修復包含絕緣性氧化物的氧化物半導體層103的由蝕刻導致的損傷。自由基處理較佳的在O2 、N2 O氣圍下,較好是在N2 、He、Ar中的任一種中包含氧的氣圍下進行。另外,還可以在上述氣圍中添加有Cl2 、CF4 的氣圍下進行自由基處理。還有,自由基處理較佳的以無偏壓的方式進行。
接著,形成覆蓋薄膜電晶體170的保護絕緣層107。保護絕緣層107可以使用利用濺射法等而得到的氮化矽膜、氧化矽膜、氧氮化矽膜、氧化鋁膜、氧化鉭膜等。
接著,進行光微影製程,形成抗蝕掩模,藉由對保護絕緣層107的蝕刻來形成到達源極電極層或汲極電極層105b的接觸孔125。此外,藉由該蝕刻,還形成到達第二端子122的接觸孔127、到達連接電極120的接觸孔126。這個步驟中的截面圖示於圖3B。
接著,在去除抗蝕掩模之後,形成透明導電膜。作為透明導電膜的材料,藉由濺射法及真空蒸鍍法等形成氧化銦(In2 O3 )、氧化銦-氧化錫合金(In2 O3 -SnO2 ,簡略記作ITO)等。這些材料的蝕刻處理使用鹽酸類的溶液進行。然而,特別是ITO的蝕刻容易產生殘渣,因此可以使用氧化銦-氧化鋅合金(In2 O3 -ZnO),以便改善蝕刻加工性。
接著,進行光微影製程,形成抗蝕掩模,藉由蝕刻去除不需要的部分,從而形成像素電極層110。
此外,在該光微影製程中,以電容部中的閘極絕緣層102及保護絕緣層107為電介質,以電容佈線108和像素電極層110形成儲存電容。
另外,在該光微影製程中,使用抗蝕掩模覆蓋第一端子121及第二端子122上,殘留形成在端子部的透明導電膜128、129。透明導電膜128、129成為用來與FPC連接的電極或佈線。形成在與第一端子121直接連接的連接電極120上的透明導電膜128成為起到閘極佈線的輸入端子的作用的連接用端子電極。形成在第二端子122上的透明導電膜129是起到源極佈線的輸入端子的作用的連接用端子電極。
接著,去除抗蝕掩模。這個步驟的截面圖示於圖3C。另外,這個步驟的平面圖對應於圖7。
此外,圖8A1和圖8A2分別示出這個步驟的閘極佈線端子部的截面圖及平面圖。圖8A1對應於沿圖8A2中的線C1-C2的截面圖。在圖8A1中,形成在保護絕緣層154上的透明導電膜155是起到輸入端子的作用的連接用端子電極。另外,在圖8A1中,在端子部,由與閘極佈線相同的材料形成的第一端子151和由與源極佈線相同的材料形成的連接電極153隔著閘極絕緣層152重疊,並且直接接觸而實現導通。另外,連接電極153與透明導電膜155透過設置在保護絕緣層154中的接觸孔直接接觸而實現導通。
另外,圖8B1及圖8B2分別示出源極佈線端子部的截面圖及平面圖。此外,圖8B1對應於沿圖8B2中的線D1-D2的截面圖。在圖8B1中,形成在保護絕緣層154上的透明導電膜155是起到輸入端子的作用的連接用端子電極。另外,在圖8B1中,在端子部,由與閘極佈線相同的材料形成的電極156隔著閘極絕緣層152重疊於與源極佈線電連接的第二端子150的下方。電極156不與第二端子150電連接,如果將電極156設定為與第二端子150不同的電位,例如浮動狀態、GND、0V等,可以形成用於應對雜訊的電容或用於應對靜電的電容。此外,第二端子150藉由保護絕緣層154中的接觸孔與透明導電膜155電連接。
閘極佈線、源極佈線及電容佈線根據像素密度設置多條。此外,在端子部中,排列配置有多個與閘極佈線相同電位的第一端子、與源極佈線相同電位的第二端子、與電容佈線相同電位的第三端子等。各端子的數量都可以是任意的,實施者適當地決定即可。
由此,可以完成包括作為底閘型的n通道型薄膜電晶體的薄膜電晶體170的像素部、儲存電容。而且,藉由將它們對應於各個像素呈矩陣狀配置而構成像素部,可以製成用來製造主動矩陣型顯示裝置的一方的基板。在本說明書中,為了便於說明,將這種基板稱為主動矩陣基板。
當製造主動矩陣型液晶顯示裝置時,在主動矩陣基板和設置有對置電極的對置基板之間設置液晶層,固定主動矩陣基板和對置基板。另外,在主動矩陣基板上設置與設置在對置基板上的對置電極電連接的共用電極,在端子部設置與共用電極電連接的第四端子。該第四端子是用來將共用電極設定為例如GND、0V等固定電位的端子。
此外,本實施例模式不局限於圖7的像素結構,與圖7不同的平面圖的例子示於圖9。圖9是不設置電容佈線而隔著保護絕緣層及閘極絕緣層重疊像素電極層與相鄰的像素的閘極佈線來形成儲存電容的例子,該情況下可以省略電容佈線及與電容佈線連接的第三端子。另外,在圖9中,與圖7相同的部分使用相同的符號說明。
在主動矩陣型液晶顯示裝置中,藉由驅動呈矩陣狀配置的像素電極,在畫面上形成顯示圖案。詳細地說,藉由在被選擇的像素電極和對應於該像素電極的對置電極之間施加電壓,進行配置在像素電極和對置電極之間的液晶層的光學調制,該光學調制作為顯示圖案被觀察者識別。
當液晶顯示裝置顯示動態圖像時,由於液晶分子本身的響應慢,所以有產生殘影或動態圖像模糊的問題。為了改善液晶顯示裝置的動態圖像特性,有一種每隔一幀進行整個畫面的黑色顯示的被稱為插黑的驅動技術。
此外,還有藉由將垂直同步頻率設定為通常的1.5倍以上、較佳的為2倍以上來改善動態圖像特性的被稱為倍速驅動的驅動技術。
另外,為了改善液晶顯示裝置的動態圖像特性,還有如下的驅動技術:作為背光源,使用多個LED(發光二極體)光源或多個EL光源等構成面光源,使構成面光源的各光源獨立地在1幀的時間內進行間歇點亮驅動。作為面光源,可以使用三種以上的LED或白色發光的LED。由於可以獨立地控制多個LED,因此也可以使LED的發光時序與液晶層的光學調制的切換時序同步。這種驅動技術由於可以部分地關閉LED,所以尤其是黑色顯示區在一個畫面中所占的比例高的圖像顯示的情況下,可以得到減少耗電量的效果。
藉由組合這些驅動技術,可以改善液晶顯示裝置的動態圖像特性等顯示特性,使其比現在更佳。
根據本實施例模式而得到的n通道型電晶體由於將氧化物半導體層用於通道形成區,具有良好的動態特性,因此可以組合這些驅動技術。
此外,在製造發光顯示裝置的情況下,因為將有機發光元件的一方的電極(也稱為陰極)設定為例如GND、0V等低電源電位,所以在端子部設置用來將陰極設定為例如GND、0V等低電源電位的第四端子。此外,在製造發光顯示裝置的情況下,除了源極佈線及閘極佈線之外,還設置電源供給線。因此,在端子部設置與電源供給線電連接的第五端子。
如上所述,在使用氧化物半導體層的薄膜電晶體中,藉由在氧化物半導體層上層疊包含絕緣性氧化物的氧化物半導體層,以氧化物半導體層與源極電極層或汲極電極層隔著包含絕緣性氧化物的氧化物半導體層接觸的方式形成薄膜電晶體,可以減少該薄膜電晶體的臨界值電壓的偏差,使電特性穩定。另外,也可以減少斷態電流。
藉由將該薄膜電晶體用於顯示裝置的像素部及驅動電路部,可以提供電特性高且可靠性優異的顯示裝置。
還有,本實施例模式所示的構成和方法可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式3]
在本實施例模式中,使用圖10說明與實施例模式1所示的薄膜電晶體不同的形狀的薄膜電晶體。
本實施例模式的底閘結構的薄膜電晶體示於圖10。在圖10所示的薄膜電晶體中,在基板100上設置有閘極電極層101,在閘極電極層101上設置有閘極絕緣層102,在閘極絕緣層102上設置有氧化物半導體層106,在氧化物半導體層106上設置有包含絕緣性氧化物的氧化物半導體層103,在包含絕緣性氧化物的氧化物半導體層103上設置有緩衝層301a、301b,在緩衝層301a、301b上設置有源極電極層或汲極電極層105a、105b。即,圖10所示的薄膜電晶體是在實施例模式1中的圖1所示的薄膜電晶體的包含絕緣性氧化物的氧化物半導體層103與源極電極層或汲極電極層105a、105b之間設置有緩衝層301a、301b的薄膜電晶體。
作為起到源極區域或汲極區域的作用的緩衝層301a、301b,與氧化物半導體層106同樣,較佳的使用由In-Ga-Zn-O類、In-Sn-Zn-O類、Ga-Sn-Zn-O類、In-Zn-O類、Sn-Zn-O類、In-Sn-O類、Ga-Zn-O類、In-O類、Sn-O類或Zn-O類的氧化物半導體形成的非單晶膜形成。另外,作為起到源極區域或汲極區域的作用的緩衝層301a、301b,較佳的使用由包含氮的In-Ga-Zn-O類、包含氮的Ga-Zn-O類、包含氮的Zn-O-N類或包含氮的Sn-Zn-O-N類的氧化物半導體形成的非單晶膜。在本實施例模式中,作為緩衝層301a、301b,使用由In-Ga-Zn-O類氧化物半導體形成的非單晶膜。其中,緩衝層301a、301b具有n型導電性,其電導率設定為高於包含絕緣性氧化物的氧化物半導體層103的電導率的值。另外,緩衝層301a、301b至少具有非晶成分,有時在非晶結構中包含晶粒(奈米晶體)。晶粒(奈米晶體)的直徑為1nm~10nm,具代表性的為2nm~4nm左右。
接著,用於緩衝層301a、301b的氧化物半導體膜在氬等稀有氣體和氧氣的氣圍下藉由濺射法形成。此時,藉由以氬等稀有氣體的流量的比例大於氧氣的流量的比例成膜或者不使用氧氣而在僅有氬等稀有氣體的氣圍下成膜,可以提高氧化物半導體層106的電導率。作為具體的條件例,使用直徑為8英寸的包含In、Ga以及Zn的氧化物半導體靶材(In2 O3 :Ga2 O3 :ZnO=1:1:1),基板和靶材之間的距離為170mm,壓力為0.4Pa,直流(DC)電源為0.5kW,成膜氣體滿足Ar:O2 =50:1(sccm),將成膜溫度設定為室溫來進行濺射成膜。
用於緩衝層301a、301b的氧化物半導體膜的膜厚為5nm~20nm。當然,在膜中包含晶粒的情況下,所包含的晶粒的尺寸不得超過膜厚。
藉由如上所述設置緩衝層301a、301b,在氧化物半導體層與源極電極層或汲極電極層105a、105b之間,可以使熱穩定性比肖特基接面更高,可以使薄膜電晶體的工作特性穩定。另外,因為導電性優異,所以即使施加有高汲極電壓也可以保持良好的遷移率。
還有,關於本實施例模式的薄膜電晶體的緩衝層301a、301b以外的結構和材料參照實施例模式1。
本實施例模式的薄膜電晶體的製造製程與電施例模式2所示的薄膜電晶體的製造製程大致相同。首先,藉由實施例模式2所示的方法成膜至用來形成包含絕緣性氧化物的氧化物半導體層103的氧化物半導體膜,連續地藉由上述方法濺射形成用來形成緩衝層301a、301b的氧化物半導體膜。接著,藉由光微影製程,與包含絕緣性氧化物的氧化物半導體層111及氧化物半導體層106同樣,將用來形成緩衝層301a、301b的氧化物半導體膜蝕刻為島狀,從而形成氧化物半導體膜302(參照圖11A)。接著,藉由實施例模式2所示的方法進行至導電膜112的成膜(參照圖11B)。接著,藉由光微影製程,與源極電極層或汲極電極層105a、105b、包含絕緣性氧化物的氧化物半導體層103同樣,蝕刻氧化物半導體膜302,從而形成緩衝層301a、301b(參照圖11C)。其後的製程與實施例模式2同樣。
還有,本實施例模式所示的構成和方法可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式4]
在本實施例模式中,使用圖34說明使用2個實施例模式1所示的底閘型薄膜電晶體的反相器電路。
用來驅動像素部的驅動電路使用反相器電路、電容、電阻等構成。在組合2個n通道型TFT形成反相器電路的情況下,有組合增強型電晶體和空乏型電晶體形成反相器電路的情況(以下稱為EDMOS電路)以及使用2個增強型TFT形成反相器電路的情況(以下稱為EEMOS電路)。還有,n通道型TFT的臨界值電壓是正值的情況下,定義為增強型電晶體;n通道型TFT的臨界值電壓是負值的情況下,定義為空乏型電晶體。在本說明書中都按照上述定義進行描述。
像素部和驅動電路形成在同一基板上,在像素部中,使用呈矩陣狀配置的增強型電晶體來切換對像素電極的電壓施加的導通截止。該配置於像素部中的增強型電晶體使用氧化物半導體。
驅動電路的反相器電路的截面結構示於圖34A。還有,在圖34A中,作為第一薄膜電晶體430a及第二薄膜電晶體430b,使用圖30所示的結構的反交錯型薄膜電晶體。但是,可用於本實施例模式所示的反相器電路的薄膜電晶體不局限於該結構。
圖34A所示的第一薄膜電晶體430a中,在基板400上設置有第一閘極電極層401a,在第一閘極電極層401a上設置有閘極絕緣層402,在閘極絕緣層402上設置有第一氧化物半導體層406a,在第一氧化物半導體層406a上設置有第一包含絕緣性氧化物的氧化物半導體層403a,在第一包含絕緣性氧化物的氧化物半導體層403a上設置有第一佈線405a及第二佈線405b。同樣地,在第二薄膜電晶體430b中,在基板400上設置有第二閘極電極層401b,在第二閘極電極層401b上設置有閘極絕緣層402,在閘極絕緣層402上設置有第二氧化物半導體層406b,在第二氧化物半導體層406b上設置有第二包含絕緣性氧化物的氧化物半導體層403b,在第二包含絕緣性氧化物的氧化物半導體層403b上設置有第二佈線405b及第三佈線405c。在此,第二佈線405b透過形成在閘極絕緣層402的接觸孔404與第二閘極電極層401b直接連接。還有,各部分的結構和材料參照前述實施例模式所示的薄膜電晶體。
第一佈線405a是接地電位的電源線(接地電源線)。該接地電位的電源線也可以是被施加負電壓VDL的電源線(負電源線)。第三佈線405c是被施加正電壓VDD的電源線(正電源線)。
如圖34A所示,與第一包含絕緣性氧化物的氧化物半導體層403a和第二包含絕緣性氧化物的氧化物半導體層403b這兩者電連接的第二佈線405b透過形成在閘極絕緣層402的接觸孔404與第二薄膜電晶體430b的第二閘極電極層401b直接連接。藉由直接連接,可以獲得良好的接觸,減少接觸電阻。與隔著例如透明導電膜等其他導電膜連接第二閘極電極層401b和第二佈線405b的情況相比,可以實現接觸孔數的減少、基於接觸孔數減少的驅動電路佔用面積的縮小。
此外,驅動電路的反相器電路的俯視圖示於圖34C。在圖34C中,沿虛線Z1-Z2截斷的截面對應於圖34A。
另外,EDMOS電路的等效電路示於圖34B。圖34A及圖34C所示的電路連接對應於圖34B,是第一薄膜電晶體430a採用增強型n通道型電晶體且第二薄膜電晶體430b採用空乏型n通道型電晶體的例子。
作為在同一基板上製造增強型n通道型電晶體和空乏型n通道型電晶體的方法,例如使用不同的材料及不同的成膜條件製造第一包含絕緣性氧化物的氧化物半導體層403a及第一氧化物半導體層406a與第二包含絕緣性氧化物的氧化物半導體層403b及第二氧化物半導體層406b。此外,也可以在氧化物半導體層的上下設置閘極電極控制臨界值,對閘極電極施加電壓而使一方的TFT成為常開狀態,並使另一方的TFT成為常閉狀態,從而構成EDMOS電路。
另外,不僅是EDMOS電路,藉由採用增強型n通道型電晶體作為第一薄膜電晶體430a及第二薄膜電晶體430b,還可以製造EEMOS電路。在此情況下,將第三佈線405c和第二閘極電極層401b連接,代替第二佈線405b和第二閘極電極層401b的連接。
在本實施例模式中使用的薄膜電晶體中,藉由在氧化物半導體層上層疊包含絕緣性氧化物的氧化物半導體層,以氧化物半導體層與源極電極層或汲極電極層隔著包含絕緣性氧化物的氧化物半導體層接觸的方式形成薄膜電晶體,可以減少該薄膜電晶體的臨界值電壓的偏差,使電特性穩定。另外,也可以減少斷態電流。因此,可以提高本實施例模式所示的反相器電路的電路特性。
還有,本實施例模式所示的構成可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式5]
在本實施例模式中,以下說明作為半導體裝置的一例的顯示裝置中在同一基板上至少製造驅動電路的一部分和配置於像素部的薄膜電晶體的例子。
配置於像素部的薄膜電晶體根據實施例模式2形成。此外,因為實施例模式1~實施例模式3所示的薄膜電晶體是n通道型TFT,所以將驅動電路中可以由n通道型TFT構成的一部分驅動電路與像素部的薄膜電晶體形成在同一基板上。
作為半導體裝置的一例的主動矩陣型液晶顯示裝置的方塊圖的一例示於圖14A。圖14A所示的顯示裝置在基板5300上包括具有多個具備顯示元件的像素的像素部5301、選擇各像素的掃描線驅動電路5302、控制對被選擇的像素的視頻信號輸入的信號線驅動電路5303。
像素部5301藉由沿行方向從信號線驅動電路5303延伸配置的多條信號線S1-Sm(未圖示)與信號線驅動電路5303連接,藉由沿列方向從掃描線驅動電路5302延伸配置的多條掃描線G1-Gn(未圖示)與掃描線驅動電路5302連接,具有對應於信號線S1-Sm以及掃描線G1-Gn呈矩陣狀配置的多個像素(未圖示)。並且,各像素與信號線Sj(信號線S1-Sm中的任一條)、掃描線Gi(掃描線G1-Gn中的任一條)連接。
此外,實施例模式1~電施例模式3所示的薄膜電晶體是n通道型TFT,使用圖15說明由n通道型TFT構成的信號線驅動電路。
圖15所示的信號線驅動電路包括驅動器IC5601、開關組5602_1~5602_M、第一佈線5611、第二佈線5612、第三佈線5613以及佈線5621_1~5621_M。開關組5602_1~5602_M分別具有第一薄膜電晶體5603a、第二薄膜電晶體5603b以及第三薄膜電晶體5603c。
驅動器IC5601與第一佈線5611、第二佈線5612、第三佈線5613及佈線5621_1~5621_M連接。而且,開關組5602_1~5602_M分別與第一佈線5611、第二佈線5612、第三佈線5613及分別與開關組5602_1~5602_M的對應的佈線5621_1~5621_M連接。而且,佈線5621_1~5621_M分別透過第一薄膜電晶體5603a、第二薄膜電晶體5603b及第三薄膜電晶體5603c與三條信號線(信號線Sm-2、信號線Sm-1、信號線Sm(m=3M))連接。例如,第J行的佈線5621_J(佈線5621_1~佈線5621_M中的任一條)透過開關組5602_J所具有的第一薄膜電晶體5603a、第二薄膜電晶體5603b及第三薄膜電晶體5603c與信號線Sj-2、信號線Sj-1、信號線Sj(j=3J)連接。
還有,對第一佈線5611、第二佈線5612、第三佈線5613分別輸入信號。
還有,驅動器IC5601較佳使用單晶半導體形成。另外,開關組5602_1~5602_M較佳的與像素部形成在同一基板上。因此,驅動器IC5601和開關組5602_1~5602_M較佳的透過FPC等連接。或者,也可以藉由與像素部貼合在同一基板上等,設置單晶半導體層,從而形成驅動器IC5601。
接著,參照圖16的時序圖說明圖15所示的信號線驅動電路的工作。還有,圖16的時序圖示出選擇第i列掃描線Gi時的時序圖。另外,第i列掃描線Gi的選擇時間被分割為第一子選擇時間T1、第二子選擇時間T2及第三子選擇時間T3。而且,圖15的信號線驅動電路在其他行的掃描線被選擇的情況下也進行與圖16相同的工作。
還有,圖16的時序圖示出第J行的佈線5621_J透過第一薄膜電晶體5603a、第二薄膜電晶體5603b及第三薄膜電晶體5603c與信號線Sj-2、信號線Sj-1、信號線Sj連接的情況。
還有,圖16的時序圖示出第i列掃描線Gi被選擇的時序、第一薄膜電晶體5603a的導通/截止的時序5703a、第二薄膜電晶體5603b的導通/截止的時序5703b、第三薄膜電晶體5603c的導通/截止的時序5703c及輸入到第J行佈線5621_J的信號5721_J。
還有,在第一子選擇時間T1、第二子選擇時間T2及第三子選擇時間T3中,分別對佈線5621_1至佈線5621_M輸入不同的視頻信號。例如,在第一子選擇時間T1中輸入到佈線5621_J的視頻信號輸入到信號線Sj-2,在第二子選擇時間T2中輸入到佈線5621_J的視頻信號輸入到信號線Sj-1,在第三子選擇時間T3中輸入到佈線5621_J的視頻信號輸入到信號線Sj。另外,在第一子選擇時間T1、第二子選擇時間T2及第三子選擇時間T3中輸入到佈線5621_J的視頻信號依次分別記作Data_j-2、Data_j-1、Data_j。
如圖16所示,在第一子選擇時間T1中,第一薄膜電晶體5603a導通,第二薄膜電晶體5603b及第三薄膜電晶體5603c截止。此時,輸入到佈線5621_J的Data_j-2透過第一薄膜電晶體5603a輸入到信號線Sj-2。在第二子選擇時間T2中,第二薄膜電晶體5603b導通,第一薄膜電晶體5603a及第三薄膜電晶體5603c截止。此時,輸入到佈線5621_J的Data_j-1藉由第二薄膜電晶體5603b輸入到信號線Sj-1。在第三子選擇時間T3中,第三薄膜電晶體5603c導通,第一薄膜電晶體5603a及第二薄膜電晶體5603b截止。此時,輸入到佈線5621_J的Data_j藉由第三薄膜電晶體5603c輸入到信號線Sj。
據此,圖15的信號線驅動電路藉由將1段閘極選擇時間分割為3部分,可以在1段閘極選擇時間中從1條佈線5621將視頻信號輸入到3條信號線。因此,圖15的信號線驅動電路可以將形成有驅動器IC5601的基板和形成有像素部的基板的連接數設定為信號線數的約1/3。由於連接數變為約1/3,可以提高圖15的信號線驅動電路的可靠性、成品率等。
還有,只要能夠如圖15所示將1段閘極選擇時間分割為多段子選擇時間並在各子選擇時間中從某1條佈線向多條信號線分別輸入視頻信號即可,對於薄膜電晶體的配置、數量及驅動方法等沒有限制。
例如,當在3段以上的子選擇時間中分別從1條佈線將視頻信號分別輸入到3條以上的信號線時,追加薄膜電晶體及用來控制薄膜電晶體的佈線即可。但是,如果將1段閘極選擇時間分割為3段以上的子選擇時間,則每段子選擇時間變短。因此,較佳的將1段閘極選擇時間分割為2段或3段子選擇時間。
作為另一例,也可以如圖17的時序圖所示,將1段選擇時間分割為預充電時間Tp、第一子選擇時間T1、第二子選擇時間T2、第三子選擇時間T3。另外,圖17的時序圖示出第i列掃描線Gi被選擇的時序、第一薄膜電晶體5603a的導通/截止的時序5803a、第二薄膜電晶體5603b的導通/截止的時序5803b、第三薄膜電晶體5603c的導通/截止的時序5803c以及輸入到第J行佈線5621_J的信號5821_J。如圖17所示,在預充電時間Tp中,第一薄膜電晶體5603a、第二薄膜電晶體5603b及第三薄膜電晶體5603c導通。此時,輸入到佈線5621_J的預充電電壓Vp透過第一薄膜電晶體5603a、第二薄膜電晶體5603b及第三薄膜電晶體5603c分別輸入到信號線Sj-2、信號線Sj-1、信號線Sj。在第一子選擇時間T1中,第一薄膜電晶體5603a導通,第二薄膜電晶體5603b及第三薄膜電晶體5603c截止。此時,輸入到佈線5621_J的Data_j-2藉由第一薄膜電晶體5603a輸入到信號線Sj-2。在第二子選擇時間T2中,第二薄膜電晶體5603b導通,第一薄膜電晶體5603a及第三薄膜電晶體5603c截止。此時,輸入到佈線5621_J的Data_j-1藉由第二薄膜電晶體5603b輸入到信號線Sj-1。在第三子選擇時間T3中,第三薄膜電晶體5603c導通,第一薄膜電晶體5603a及第二薄膜電晶體5603b截止。此時,輸入到佈線5621_J的Data_j藉由第三薄膜電晶體5603c輸入到信號線Sj。
據此,應用圖17的時序圖的圖15的信號線驅動電路藉由在子選擇時間之前設置預充電選擇時間,可以對信號線進行預充電,所以可以高速地進行對像素的視頻信號的寫入。還有,在圖17中,對與圖16相同的部分使用共通的符號表示,省略對於同一部分或具有相同的功能的部分的詳細說明。
此外,說明掃描線驅動電路的構成。掃描線驅動電路包括移位暫存器、緩衝器。此外,根據情況,還可以包括位準移位器。在掃描線驅動電路中,藉由對移位暫存器輸入時鐘信號(CLK)及起始脈衝信號(SP),生成選擇信號。所生成的選擇信號在緩衝器中被緩衝放大,並供給到對應的掃描線。掃描線與1行的像素的電晶體的閘極電極連接。而且,由於必須將1行的像素的電晶體同時導通,因此使用能夠藉由大電流的緩衝器。
使用圖18和圖19說明用於掃描線驅動電路的一部分的移位暫存器的一種實施例。
圖18示出移位暫存器的電路結構。圖18所示的移位暫存器由正反器5701_1~5701_n這多個正反器構成。此外,輸入第一時鐘信號、第二時鐘信號、起始脈衝信號、重置信號來進行工作。
說明圖18的移位暫存器的連接關係。第一級正反器5701_1與第一佈線5711、第二佈線5712、第四佈線5714、第五佈線5715、第七佈線5717_1及第七佈線5717_2連接。另外,第二級正反器5701_2與第三佈線5713、第四佈線5714、第五佈線5715、第七佈線5717_1、第七佈線5717_2及第七佈線5717_3連接。
同樣地,第i級正反器5701_i(正反器5701_1~5701_n中的任一個)與第二佈線5712或第三佈線5713的一方、第四佈線5714、第五佈線5715、第七佈線5717_i-1、第七佈線5717_i及第七佈線5717_i+1連接。在此,在i為奇數的情況下,第i級正反器5701_i與第二佈線5712連接,在i為偶數的情況下,第i級正反器5701_i與第三佈線5713連接。
另外,第n級正反器5701_n與第二佈線5712或第三佈線5713的一方、第四佈線5714、第五佈線5715、第七佈線5717_n-1、第七佈線5717_n及第六佈線5716連接。
還有,第一佈線5711、第二佈線5712、第三佈線5713、第六佈線5716也可以依次分別稱為第一信號線、第二信號線、第三信號線、第四信號線。另外,第四佈線5714、第五佈線5715也可以依次分別稱為第一電源線、第二電源線。
接著,使用圖19說明圖18所示的正反器的詳細結構。圖19所示的正反器包括第一薄膜電晶體5571、第二薄膜電晶體5572、第三薄膜電晶體5573、第四薄膜電晶體5574、第五薄膜電晶體5575、第六薄膜電晶體5576、第七薄膜電晶體5577以及第八薄膜電晶體5578。還有,第一薄膜電晶體5571、第二薄膜電晶體5572、第三薄膜電晶體5573、第四薄膜電晶體5574、第五薄膜電晶體5575、第六薄膜電晶體5576、第七薄膜電晶體5577以及第八薄膜電晶體5578是n通道型電晶體,當閘極源極間電壓(Vgs)高於臨界值電壓(Vth)時呈導通狀態。
另外,圖19所示的正反器具有第一佈線5501、第二佈線5502、第三佈線5503、第四佈線5504、第五佈線5505及第六佈線5506。
在此示出所有薄膜電晶體採用增強型n通道型電晶體的例子,但是沒有特別的限制,例如即使使用空乏型n通道型電晶體也可以驅動驅動電路。
接著,下面示出圖19所示的正反器的連接結構。
第一薄膜電晶體5571的第一電極(源極電極或汲極電極中的一方)與第四佈線5504連接,第一薄膜電晶體5571的第二電極(源極電極或汲極電極中的另一方)與第三佈線5503連接。
第二薄膜電晶體5572的第一電極與第六佈線5506連接,第二薄膜電晶體5572的第二電極與第三佈線5503連接。
第三薄膜電晶體5573的第一電極與第五佈線5505連接,第三薄膜電晶體5573的第二電極與第二薄膜電晶體5572的閘極電極連接,第三薄膜電晶體5573的閘極電極與第五佈線5505連接。
第四薄膜電晶體5574的第一電極與第六佈線5506連接,第四薄膜電晶體5574的第二電極與第二薄膜電晶體5572的閘極電極連接,第四薄膜電晶體5574的閘極電極與第一薄膜電晶體5571的閘極電極連接。
第五薄膜電晶體5575的第一電極與第五佈線5505連接,第五薄膜電晶體5575的第二電極與第一薄膜電晶體5571的閘極電極連接,第五薄膜電晶體5575的閘極電極與第一佈線5501連接。
第六薄膜電晶體5576的第一電極與第六佈線5506連接,第六薄膜電晶體5576的第二電極與第一薄膜電晶體5571的閘極電極連接,第六薄膜電晶體5576的閘極電極與第二薄膜電晶體5572的閘極電極連接。
第七薄膜電晶體5577的第一電極與第六佈線5506連接,第七薄膜電晶體5577的第二電極與第一薄膜電晶體5571的閘極電極連接,第七薄膜電晶體5577的閘極電極與第二佈線5502連接。
第八薄膜電晶體5578的第一電極與第六佈線5506連接,第八薄膜電晶體5578的第二電極與第二薄膜電晶體5572的閘極電極連接,第八薄膜電晶體5578的閘極電極與第一佈線5501連接。
還有,將第一薄膜電晶體5571的閘極電極、第四薄膜電晶體5574的閘極電極、第五薄膜電晶體5575的第二電極、第六薄膜電晶體5576的第二電極以及第七薄膜電晶體5577的第二電極的連接處記作節點5543。另外,將第二薄膜電晶體5572的閘極電極、第三薄膜電晶體5573的第二電極、第四薄膜電晶體5574的第二電極、第六薄膜電晶體5576的閘極電極以及第八薄膜電晶體5578的第二電極的連接處記作節點5544。
還有,第一佈線5501、第二佈線5502、第三佈線5503以及第四佈線5504也可以依次分別稱為第一信號線、第二信號線、第三信號線、第四信號線。另外,第五佈線5505也可以稱為第一電源線,第六佈線5506也可以稱為第二電源線。
在第i級正反器5701_i中,圖19中的第一佈線5501和圖18中的第七佈線5717_i-1連接。另外,圖19中的第二佈線5502和圖18中的第七佈線5717_i+1連接。另外,圖19中的第三佈線5503和第七佈線5717_i連接。而且,圖19中的第六佈線5506和第五佈線5715連接。
在i為奇數的情況下,圖19中的第四佈線5504與圖18中的第二佈線5712連接,在i為偶數的情況下,圖19中的第四佈線5504與圖18中的第三佈線5713連接。另外,圖19中的第五佈線5505和圖18中的第四佈線5714連接。
但是,在第一級正反器5701_1中,圖19中的第一佈線5501與圖18中的第一佈線5711連接。另外,在第n級正反器5701_n中,圖19中的第二佈線5502與圖18中的第六佈線5716連接。
此外,也可以僅使用實施例模式1~實施例模式3所示的n通道型TFT來製造信號線驅動電路及掃描線驅動電路。因為實施例模式1~實施例模式3所示的n通道型TFT的電晶體遷移率大,所以可以提高驅動電路的驅動頻率。另外,實施例模式1~實施例模式3所示的n通道型TFT藉由使用以In-Ga-Zn-O類非單晶膜為代表的氧化物半導體層,寄生電容得到降低,因此頻率特性(被稱為f特性)優良。例如,由於使用實施例模式1~實施例模式3所例示的n通道型TFT的掃描線驅動電路可以進行高速工作,因此可以實現幀頻的提高或黑屏插入等。
另外,藉由增大掃描線驅動電路的電晶體的通道寬度或配置多個掃描線驅動電路等,可以實現更高的幀頻。在配置多個掃描線驅動電路的情況下,藉由將用來驅動偶數行的掃描線的掃描線驅動電路配置在一側,將用來驅動奇數行的掃描線的掃描線驅動電路配置在其相反側,可以實現幀頻的提高。此外,如果藉由多個掃描線驅動電路對同一掃描線輸出信號,有利於顯示裝置的大型化。
此外,在製造作為半導體裝置的一例的主動矩陣型發光顯示裝置的情況下,因為至少在一個像素中配置多個薄膜電晶體,因此較佳的配置多個掃描線驅動電路。主動矩陣型發光顯示裝置的方塊圖的一例示於圖14B。
圖14B所示的發光顯示裝體在基板5400上包括具有多個具備顯示元件的像素的像素部5401、選擇各像素的第一掃描線驅動電路5402及第二掃描線驅動電路5404、控制對被選擇的像素的視頻信號輸入的信號線驅動電路5403。
在輸入到圖14B所示的發光顯示裝置的像素的視頻信號為數位方式的情況下,藉由切換電晶體的導通和截止,像素呈現發光或非發光的狀態。因此,可以採用面積灰度法或時間灰度法進行灰度的顯示。面積灰度法是藉由將1個像素分割為多個子像素並根據視頻信號獨立地驅動各子像素來進行灰度顯示的驅動方法。此外,時間灰度法是藉由控制像素發光的時間來進行灰度顯示的驅動方法。
發光元件因為回應速度比液晶元件等快,所以比液晶元件更適合時間灰度法。具體而言,在採用時間灰度法進行顯示的情況下,將1幀時間分割為多段子幀時間。然後,根據視頻信號,在各子幀時間中使像素的發光元件呈發光或非發光的狀態。藉由分割為多段子幀時間,可以藉由視頻信號控制在1幀時間中像素實際上發光的時間的總長度,可進行灰度顯示。
還有,在圖14B所示的發光顯示裝置中示出如下的例子:當在一個像素中配置兩個開關TFT時,使用第一掃描線驅動電路5402生成輸入到一方的開關TFT的作為閘極佈線的第一掃描線的信號,使用第二掃描線驅動電路5404生成輸入到另一方的開關TFT的作為閘極佈線的第二掃描線的信號;但是,也可以使用一個掃描線驅動電路生成輸入到第一掃描線的信號和輸入到第二掃描線的信號。此外,例如根據1個像素所具有的開關TFT的數量,也可在各像素中設置多條用來控制切換元件的工作的掃描線。在此情況下,既可以使用一個掃描線驅動電路生成輸入到多條掃描線的所有信號,也可以使用多個掃描線驅動電路生成輸入到多條掃描線的信號。
此外,在發光顯示裝置中,也可以將驅動電路中能夠由n通道型TFT構成的一部分驅動電路與像素部的薄膜電晶體形成在同一基板上。另外,也可以僅使用實施例模式1~實施例模式3所示的n通道型TFT來製造信號線驅動電路及掃描線驅動電路。
此外,上述驅動電路並不局限於液晶顯示裝置及發光顯示裝置,還可以用於利用與切換元件電連接的元件來驅動電子墨水的電子紙。電子紙也被稱為電泳顯示裝置(電泳顯示器),具有如下優點:與紙相同的易讀性、比其他顯示裝置低的耗電量、可形成為輕薄的形狀。
電泳顯示器可考慮各種實施例,在溶劑或溶質中分散有多個包含具有正電荷的第一粒子和具有負電荷的第二粒子的多個微膠囊,藉由對微膠囊施加電場,使微膠囊中的粒子各自向相反的方向移動,從而僅顯示集中在一側的粒子的顏色。還有,第一粒子或第二粒子包含染料,在沒有電場時不移動。此外,第一粒子和第二粒子的顏色不同(包括無色)。
如上所述,電泳顯示器是利用介電常數高的物質向高電場區域移動的所謂介電泳效應的顯示器。電泳顯示器不需要液晶顯示裝置所需的偏光板和對置基板,厚度和重量減半。
上述在溶劑中分散微膠囊而得的材料被稱作電子墨水,該電子墨水可以印刷到玻璃、塑膠、布、紙等的表面上。另外,還可以藉由使用彩色濾光片或具有染料的粒子來進行彩色顯示。
此外,藉由在主動矩陣基板上適當地以夾於兩個電極之間的方式設置多個上述微膠囊,就完成了主動矩陣型顯示裝置,若對微膠囊施加電場,可以進行顯示。例如,可以使用利用實施例模式1~實施例模式3的薄膜電晶體得到的主動矩陣基板。
此外,作為微膠囊中的第一粒子及第二粒子採用選自導電體材料、絕緣體材料、半導體材料、磁性材料、液晶材料、鐵電性材料、電致發光材料、電致變色材料、磁泳材料的一種或它們的複合材料即可。
藉由上述構成,可以製造作為半導體裝置的可靠性高的顯示裝置。
還有,本實施例模式所示的構成和方法可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式6]
藉由製造實施例模式1~實施例模式3所示的薄膜電晶體並將該薄膜電晶體用於像素部及驅動電路,從而可以製造具有顯示功能的半導體裝置(也稱為顯示裝置)。此外,可以將使用實施例模式1~實施例模式3所示的薄膜電晶體的驅動電路的一部分或全部一體地與像素部形成在同一基板上,從而形成系統整合面板(system-on-panel)。
顯示裝置包括顯示元件。作為顯示元件,可以使用液晶元件(也稱為液晶顯示元件)、發光元件(也稱為發光顯示元件)。在發光元件的範疇內包括利用電流或電壓控制亮度的元件,具體包括無機EL(Electro Luminescence,電致發光)元件、有機EL元件等。此外,也可以應用電子墨水等對比度根據電作用而變化的顯示介質。
此外,顯示裝置包括呈密封有顯示元件的狀態的面板和呈在該面板中安裝有包括控制器的IC等的狀態的模組。另外,關於相當於製造該顯示裝置的過程中的顯示元件完成之前的一種形態的元件基板,該元件基板在多個像素中分別具備用於將電流供給到顯示元件的單元。具體而言,元件基板既可以是只形成有顯示元件的像素電極的狀態,也可以是形成成為像素電極的導電膜之後且蝕刻而形成像素電極之前的狀態,可以採用任意形態。
還有,本說明書中的顯示裝置是指圖像顯示裝置、顯示裝置或光源(包括照明裝置)。另外,以下的裝置也都屬於顯示裝置:安裝有例如FPC(Flexible Printed Circuit;撓性印刷電路)、TAB(Tape Automated Bonding;帶式自動焊)帶或TCP(Tape Carrier Package;載帶封裝)等連接器的模組,在TAB帶或TCP的前端設有印刷電路板的模組,顯示元件上藉由COG(Chip On Glass;玻璃覆晶)方式直接安裝有IC(積體電路)的模組。
在本實施例模式中,使用圖22說明相當於半導體裝置的一種實施例的液晶顯示面板的外觀及截面。圖22A1、A2是面板的俯視圖,其中形成於第一基板4001上的實施例模式1~實施例模式3所示的使用以In-Ga-Zn-O類非單晶膜為代表的氧化物半導體層的可靠性高的薄膜電晶體4010、4011及液晶元件4013藉由密封材料4005密封在第一基板4001和第二基板4006之間;圖22B相當於沿圖22A1、A2的線M-N的截面圖。
以包圍設置在第一基板4001上的像素部4002和掃描線驅動電路4004的方式設置有密封材料4005。此外,在像素部4002和掃描線驅動電路4004上設置有第二基板4006。因此,像素部4002和掃描線驅動電路4004與液晶層4008一起藉由第一基板4001、密封材料4005和第二基板4006被密封。此外,在第一基板4001上的除被密封材料4005包圍的區域以外的區域中,安裝有使用單晶半導體膜或多晶半導體膜形成在另行準備的基板上的信號線驅動電路4003。
還有,對於另行形成的驅動電路的連接方法沒有特別的限制,可以採用COG方法、引線接合方法或TAB方法等。圖22A1是藉由COG方法安裝信號線驅動電路4003的例子,而圖22A2是藉由TAB方法安裝信號線驅動電路4003的例子。
此外,設置在第一基板4001上的像素部4002和掃描線驅動電路4004包括多個薄膜電晶體,在圖22B中例示了像素部4002所包括的薄膜電晶體4010和掃描線驅動電路4004所包括的薄膜電晶體4011。在薄膜電晶體4010、4011上設置有絕緣層4020、4021。
作為薄膜電晶體4010、4011可以採用實施例模式1~實施例模式3所示的使用以In-Ga-Zn-O類非單晶膜為代表的氧化物半導體層的可靠性高的薄膜電晶體。在本實施例模式中,薄膜電晶體4010、4011是n通道型薄膜電晶體。
此外,液晶元件4013所具有的像素電極層4030與薄膜電晶體4010電連接。而且,液晶元件4013的對置電極層4031形成在第二基板4006上。像素電極層4030、對置電極層4031和液晶層4008重疊的部分相當於液晶元件4013。還有,像素電極層4030、對置電極層4031分別設置有起到對準膜的作用的絕緣層4032、4033,隔著絕緣層4032、4033夾著液晶層4008。
還有,作為第一基板4001、第二基板4006,可以使用玻璃、金屬(代表性的是不鏽鋼)、陶瓷、塑膠。作為塑膠,可以使用FRP(Fiberglass-Reinforced Plastics;玻璃纖維強化塑膠)板、PVF(聚氟乙烯)膜、聚酯膜或丙烯酸樹脂膜。此外,還可以使用具有將鋁箔夾在PVF膜之間或聚酯膜之間的結構的片。
此外,4035是藉由對絕緣膜選擇性地進行蝕刻而得到的柱狀間隔物,是為控制像素電極層4030和對置電極層4031之間的距離(盒間隙)而設置。還有,還可以使用球狀間隔物。另外,對置電極層4031與設置在與薄膜電晶體4010同一基板上的共用電位線電連接。可以使用共用連接部,透過配置在一對基板之間的導電性粒子將對置電極層4031和共用電位線電連接。此外,使密封材料4005中包含導電性粒子。
另外,可以採用不使用對準膜的顯示藍相的液晶。藍相是液晶相的一種,是指當使膽甾相液晶的溫度上升時即將從膽甾相轉變到均質相之前出現的相。由於藍相只出現在較窄的溫度範圍內,所以為了改善溫度範圍,將混合有5重量%以上的手性劑的液晶組成物用於液晶層4008。顯示藍相的包含液晶和手性劑的液晶組成物由於回應速度短至10μs~100μs且呈光學各向同性,因此而不需要對準處理,視角依賴小。
另外,雖然本實施例模式是透射型液晶顯示裝置的例子,但是也可以適用於反射型液晶顯示裝置或半透射型液晶顯示裝置。
另外,雖然在本實施例模式的液晶顯示裝置中示出在基板的外側(觀察側)設置偏光板並在內側依次設置著色層、用於顯示元件的電極層的例子,但是偏光板也可以設置在基板的內側。另外,偏光板和著色層的疊層結構也不局限於本實施例模式的結構,只要根據偏光板和著色層的材料或製造製程條件適當地設定即可。另外,還可以設置起到黑色矩陣的作用的遮光膜。
另外,在本實施例模式中,為了降低薄膜電晶體的表面凹凸和提高薄膜電晶體的可靠性,呈以起到保護膜或平坦化絕緣膜的作用的絕緣層(絕緣層4020、絕緣層4021)覆蓋藉由實施例模式1~實施例模式3獲得的薄膜電晶體的構成。另外,因為保護膜用來防止懸浮在大氣中的有機物、金屬物、水蒸氣等污染雜質的侵入,所以較佳的採用緻密的膜。保護膜利用濺射法以氧化矽膜、氮化矽膜、氧氮化矽膜、氮氧化矽膜、氧化鋁膜、氮化鋁膜、氧氮化鋁膜或氮氧化鋁膜的單層或疊層的結構形成即可。雖然在本實施例模式中示出利用濺射法形成保護膜的例子,但是並不局限於此,可以使用各種方法形成保護膜。
作為保護膜,形成疊層結構的絕緣層4020。在此,作為絕緣層4020的第一層,利用濺射法形成氧化矽膜。如果使用氧化矽膜作為保護膜,則對防止用作源極電極層及汲極電極層的鋁膜的小丘有效。
另外,作為絕緣層4020的第二層,利用濺射法形成氮化矽膜。如果使用氮化矽膜作為保護膜,則可以抑制鈉等可動離子侵入到半導體區域中而使TFT的電特性變化的現象。
另外,可以在形成保護膜之後進行對氧化物半導體層的退火(300℃~400℃)。
另外,作為平坦化絕緣膜,形成絕緣層4021。作為絕緣層4021,可以使用聚醯亞胺、丙烯酸樹脂、苯並環丁烯、聚醯胺、環氧樹脂等具有耐熱性的有機材料。另外,除了上述有機材料之外,還可以使用低介電常數材料(低k材料)、矽氧烷類樹脂、PSG(磷矽玻璃)、BPSG(硼磷矽玻璃)等。另外,也可以藉由層疊多層由這些材料形成的絕緣膜來形成絕緣層4021。
另外,矽氧烷類樹脂是指以矽氧烷類材料為起始材料而形成的包含Si-O-Si鍵的樹脂。矽氧烷類樹脂除了氫之外,還可以具有氬、烷基或芳基中的至少1種作為取代基。
對絕緣層4021的形成方法沒有特別的限制,可以根據其材料採用濺射法、SOG法、旋塗、浸漬、噴塗、液滴噴射法(噴墨法、絲網印刷、膠版印刷等)、刮片、輥塗機、幕塗機、刮刀塗布機等。在使用材料液形成絕緣層4021的情況下,可以在進行焙燒的製程中同時進行對氧化物半導體層的退火(300℃~400℃)。藉由同時實施絕緣層4021的焙燒製程和對氧化物半導體層的退火,可以高效地製造半導體裝置。
像素電極層4030、對置電極層4031可以使用包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦錫氧化物(以下表示為ITO)、銦鋅氧化物、添加有氧化矽的銦錫氧化物等具有透光性的導電性材料。
此外,作為像素電極層4030、對置電極層4031,可以使用包含導電性高分子(也稱為導電性聚合物)的導電性組成物形成。使用導電性組成物形成的像素電極較佳薄層電阻為10000Ω/平方以下,波長550nm時的透光率為70%以上。另外,導電性組成物所包含的導電性聚合物的電阻率較佳的為0.1Ω‧cm以下。
作為導電性聚合物,可以使用所謂的π電子共軛類導電性聚合物。例如,可以例舉聚苯胺或其衍生物、聚吡咯或其衍生物、聚噻吩或其衍生物或者上述材料的2種以上的共聚物等。
另外,給予另行形成的信號線驅動電路4003、掃描線驅動電路4004或像素部4002的各種信號及電位由FPC4018提供。
在本實施例模式中,連接端子電極4015由與液晶元件4013所具有的像素電極層4030相同的導電膜形成,端子電極4016由與薄膜電晶體4010、4011的源極電極層及汲極電極層相同的導電膜形成。
連接端子電極4015透過各向異性導電膜4019與FPC4018所具有的端子電連接。
此外,雖然在圖22中示出另行形成信號線驅動電路4003並將它安裝在第一基板4001上的例子,但是本實施例模式不局限於該結構。既可以另行形成並安裝掃描線驅動電路,也可以僅另行形成並安裝信號線驅動電路的一部分或掃描線驅動電路的一部分。
圖23示出使用採用實施例模式1~實施例模式3所示的TFT製造的TFT基板2600來構成作為半導體裝置的液晶顯示模組的一例。
圖23是液晶顯示模組的一例,TFT基板2600和對置基板2601被以密封材料2602固定,在其間設置包括TFT等的像素部2603、包括液晶層的顯示元件2604、著色層2605而形成顯示區域。在進行彩色顯示時需要著色層2605,當採用RGB方式時,對應於各像素設置有分別對應紅色、綠色、藍色的著色層。在TFT基板2600和對置基板2601的外側配置有偏光板2606、偏光板2607、散射板2613。光源由冷陰極管2610和反射板2611構成,電路基板2612藉由撓性佈線基板2609與TFT基板2600的佈線電路部2608連接,並且組合有控制電路及電源電路等外部電路。此外,也可以以在偏光板和液晶層之間具有相位差板的狀態層疊。
液晶顯示模組可以採用TN(扭曲向列;Twisted Nematic)模式、IPS(平面內轉換;In-Plane-Switching)模式、FFS(邊緣場轉換;Fringe Field Switching)模式、MVA(多疇垂直對準;Multi-domain Vertical Alignment)模式、PVA(垂直對準構型;Patterned Vertical Alignment)模式、ASM(軸對稱排列微單元;Axially Symmetric aligned Micro-cell)模式、OCB(光補償雙折射;Optically Compensated Birefringence)模式、FLC(鐵電液晶;Ferroelectric Liquid Crystal)模式、AFLC(反鐵電液晶;AntiFerroelectric Liquid Crystal)模式等。
藉由上述構成,可以製造作為半導體裝置的可靠性高的液晶顯示面板。
還有,本實施例模式所示的構成和方法可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式7]
在本實施例模式中,作為採用實施例模式1~實施例模式3所示的薄膜電晶體的半導體裝置,示出電子紙的例子。
圖13示出作為半導體裝置的例子的主動矩陣型電子紙。作為用於半導體裝置的薄膜電晶體581,可以採用實施例模式1~實施例模式3所示的薄膜電晶體。
圖13的電子紙是採用扭轉球顯示方式(twist ball type)的顯示裝置的例子。扭轉球顯示方式是指如下的方法:將分別塗成白色和黑色的球形粒子配體在作為用於顯示元件的電極層的第一電極層與第二電極層之間,使第一電極層與第二電極層之間產生電位差來控制球形粒子的朝向,從而進行顯示。
密封在基板580和基板596之間的薄膜電晶體581是底閘型結構的薄膜電晶體,藉由源極電極層或汲極電極層與第一電極層587在形成於絕緣層583、584、585中的開口接觸並電連接。在第一電極層587和第二電極層588之間設置有球形粒子589,該球形粒子589包括具有黑色區590a、白色區590b且在周圍充滿了液體的空腔594,球形粒子589的周圍填充有樹脂等填充材料595(參照圖13)。在本實施例模式中,第一電極層587相當於像素電極,第二電極層588相當於共用電極。第二電極層588與設置在與薄膜電晶體581同一基板上的共用電位線電連接。可以使用實施例模式1~實施例模式3所示的任一共用連接部,透過配置在一對基板之間的導電性粒子將第二電極層588與共用電位線電連接。
此外,還可以使用電泳元件代替扭轉球。使用直徑為10μm~200μm左右的微膠囊,該微膠囊中封入有透明液體、帶正電的白色微粒和帶負電的黑色微粒。如果藉由第一電極層和第二電極層施加電場,則在設置於第一電極層和第二電極層之間的微膠囊中,白色微粒和黑色微粒向相反方向移動,從而可以顯示白色或黑色。應用這種原理的顯示元件就是電泳顯示元件,一般被稱為電子紙。電泳顯示元件由於反射率高於液晶顯示元件,因而不需要輔助光源,且耗電量低,在昏暗的地方也能夠辨識顯示部。另外,即使不向顯示部供應電源,也能夠保持已顯示的圖像,因此即使帶顯示功能的半導體裝置(也簡稱顯示裝置或具備顯示裝置的半導體裝置)遠離電波發射源的情況下,也能夠保存已顯示的圖像。
藉由上述構成,可以製造作為半導體裝置的可靠性高的電子紙。
還有,本實施例模式所示的構成可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式8]
在本實施例模式中,作為採用實施例模式1~實施例模式3所示的薄膜電晶體的半導體裝置,示出發光顯示裝置的例子。在此,作為顯示裝置所具有的顯示元件,以利用電致發光的發光元件來示例。電致發光的發光元件根據發光材料是有機化合物還是無機化合物來區分,一般前者被稱為有機EL元件,後者被稱為無機EL元件。
在有機EL元件中,藉由對發光元件施加電壓,電子和電洞從一對電極分別植入到包含發光性的有機化合物的層,從而電流流通。然後,由於這些載子(電子和電洞)的複合,發光性的有機化合物形成激發態,當該激發態恢復到基態時發光。根據這種機理,該發光元件被稱為電流激勵型發光元件。
無機EL元件根據其元件結構被分為分散型無機EL元件和薄膜型無機EL元件。分散型無機EL元件包括在黏合劑中分散發光材料的粒子而得的發光層,發光機理是利用施主能級和受主能級的施主-受主複合型發光。薄膜型無機EL元件具有利用電介質層夾住發光層並再以電極夾住電解質層的結構,發光機理是利用金屬離子的內殼電子躍遷的局部型發光。還有,在此作為發光元件使用有機EL元件進行說明。
圖20是作為採用本發明的一種實施例的半導體裝置的例子,示出能夠應用數位時間灰度驅動的像素結構的一例的圖。
以下,對能夠應用數字時間灰度驅動的像素的結構及像素的工作進行說明。在此,示出在1個像素中使用2個實施例模式1~實施例模式3所示的將以In-Ga-Zn-O類非單晶膜為代表的氧化物半導體層用於通道形成區的n通道型電晶體的例子。
像素6400包括開關電晶體6401、驅動電晶體6402、發光元件6404以及電容元件6403。在開關電晶體6401中,閘極與掃描線6406連接,第一電極(源極電極及汲極電極中的一方)與信號線6405連接,第二電極(源極電極及汲極電極中的另一方)與驅動電晶體6402的閘極連接。在驅動電晶體6402中,閘極透過電容元件6403與電源線6407連接,第一電極與電源線6407連接,第二電極與發光元件6404的第一電極(像素電極)連接。發光元件6404的第二電極相當於共用電極6408。共用電極6408與形成在同一基板上的共用電位線電連接。
此外,發光元件6404的第二電極(共用電極6408)設置為低電源電位。另外,低電源電位是指以電源線6407所設定的高電源電位為基準滿足低電源電位<高電源電位的電位,作為低電源電位,例如可以設定為GND、0V等。為了將該高電源電位與低電源電位的電位差施加到發光元件6404上,使電流流過發光元件6404而使發光元件6404發光,以高電源電位與低電源電位的電位差達到發光元件6404的正向臨界值電壓以上的條件設定各個電位。
另外,還可以使用驅動電晶體6402的閘極電容代替電容元件6403而省略電容元件6403。至於驅動電晶體6402的閘極電容,可以在通道形成區與閘極電極之間形成電容。
這裏,在採用電壓輸入電壓驅動方式的情況下,對驅動電晶體6402的閘極輸入能夠使驅動電晶體6402充分導通或截止的兩種狀態的視頻信號。即,使驅動電晶體6402在線形區域進行工作。為了使驅動電晶體6402在線形區域進行工作,對驅動電晶體6402的閘極施加比電源線6407的電壓高的電壓。另外,對信號線6405施加(電源線電壓+驅動電晶體6402的Vth)以上的電壓。
另外,當進行類比灰度驅動來代替數位時間灰度驅動時,藉由使信號的輸入不同,可以使用與圖20相同的像素結構。
當進行模擬灰度驅動時,對驅動電晶體6402的閘極施加(發光元件6404的正向電壓+驅動電晶體6402的Vth)以上的電壓。發光元件6404的正向電壓是指得到所希望的亮度時的電壓,大於正向臨界值電壓。此外,藉由輸入驅動電晶體6402在飽和區域中進行工作的視頻信號,可以使電流流過發光元件6404。為了使驅動電晶體6402在飽和區域中進行工作,使電源線6407的電位高於驅動電晶體6402的閘極電位。藉由使視頻信號為類比信號,可以使對應於視頻信號的電流流過發光元件6404,從而進行模擬灰度驅動。
此外,圖20所示的像素結構不局限於此。例如,也可以對圖20所示的像素另外添加開關、電阻元件、電容元件、電晶體或邏輯電路等。
接著,使用圖21說明發光元件的結構。在此,以驅動TFT是n型的情況為例來說明像素的截面結構。作為用於圖21A、21B和21C的半導體裝置的驅動TFT的TFT7001、7011、7021可以與實施例模式1~實施例模式3所示的薄膜電晶體同樣地製造,是使用以In-Ga-Zn-O類非單晶膜為代表的氧化物半導體層的可靠性高的薄膜電晶體。
發光元件只要至少陽極或陰極中的一方透明而可獲取發射光即可。而且,有如下結構的發光元件:在基板上形成薄膜電晶體及發光元件,從與基板相反的一側的面獲取發射光的頂部發射,或者從基板側的面獲取發射光的底部發射,或者從基板側及與基板相反的一側的面獲取發射光的雙面發射;本發明的一種實施例的像素結構可以應用於任一發射結構的發光元件。
使用圖21A說明頂部發射結構的發光元件。
在圖21A中示出作為驅動TFT的TFT7001是n型且從發光元件7002發射的光從陽極7005側透射時的像素的截面圖。在圖21A中,發光元件7002的陰極7003和作為驅動TFT的TFT7001電連接,在陰極7003上依次層疊有發光層7004、陽極7005。作為陰極7003,只要是功函數小且反射光的導電膜,可以使用各種材料。例如,較佳的採用Ca、Al、MgAg、AlLi等。而且,發光層7004可以由單層構成,也可以層疊多層而構成。在由多層構成時,在陰極7003上依次層疊電子植入層、電子輸送層、發光層、電洞輸送層、電洞植入層。還有,不需要設置所有上述的層。陽極7005使用具有透射光的透光性的導電性材料形成,可以使用例如包含氧化鎢的銦氧化物、包含氧化鎢的銦鋅氧化物、包含氧化鈦的銦氧化物、包含氧化鈦的銦錫氧化物、銦錫氧化物(下面表示為ITO)、銦鋅氧化物、添加有氧化矽的銦錫氧化物等的具有透光性的導電膜。
使用陰極7003及陽極7005夾住發光層7004的區域相當於發光元件7002。在圖21A所示的像素中,從發光元件7002發射的光如箭頭所示射出到陽極7005側。
接著,使用圖21B說明底部發射結構的發光元件。圖21B示出作為驅動TFT的TFT7011是n型且從發光元件7012發射的光射出到陰極7013側時的像素的截面圖。在圖21B中,在與驅動TFT7011電連接的具有透光性的導電膜7017上形成有發光元件7012的陰極7013,在陰極7013上依次層疊有發光層7014、陽極7015。還有,在陽極7015具有透光性的情況下,可以形成用於反射或遮罩光的遮罩膜7016以覆蓋陽極上表面。作為陰極7013,與圖21A的情況同樣,只要是功函數小的導電性材料,可以使用各種材料。但是,其厚度設定為透射光的程度,較佳的為5nm~30nm左右。例如,可以使用膜厚為20nm的鋁膜作為陰極7013。而且,與圖21A同樣,發光層7014可以由單層構成,也可以層疊多層而構成。陽極7015不需要透射光,但是可以與圖21A同樣,使用具有透光性的導電性材料形成。並且,雖然遮罩膜7016例如可以使用反射光的金屬等,但是不局限於金屬膜。例如,也可以使用添加有黑色顏料的樹脂等。
由陰極7013及陽極7015夾住發光層7014的區域相當於發光元件7012。在圖21B所示的像素中,從發光元件7012發射的光如箭頭所示射出到陰極7013側。
接著,使用圖21C說明雙面發射結構的發光元件。在圖21C中,在與作為驅動TFT的TFT7021電連接的具有透光性的導電膜7027上形成有發光元件7022的陰極7023,在陰極7023上依次層疊有發光層7024、陽極7025。作為陰極7023,與圖21A的情況同樣,只要是功函數小的導電性材料,可以使用各種材料。但是,其厚度設定為透射光的程度。例如,可以使用膜厚為20nm的Al作為陰極7023。而且,與圖21A同樣,發光層7024可以由單層構成,也可以層疊多層而構成。陽極7025可以與圖21A同樣使用具有透射光的透光性的導電性材料形成。
陰極7023、發光層7024和陽極7025重疊的部分相當於發光元件7022。在圖21C所示的像素中,從發光元件7022發射的光如箭頭所示同時射出到陽極7025側和陰極7023側。
還有,雖然在此作為發光元件描述了有機EL元件,但是也可以設置無機EL元件作為發光元件。
還有,雖然在本實施例模式中示出了控制發光元件的驅動的薄膜電晶體(驅動TFT)和發光元件電連接的例子,但是也可以採用在驅動TFT和發光元件之間連接有電流控制TFT的結構。
還有,本實施例模式所示的半導體裝置不局限於圖21所示的結構,可以根據本發明的技術思想進行各種變形。
接著,使用圖24說明相當於採用實施例模式1~實施例模式3所示的薄膜電晶體的半導體裝置的一種實施例的發光顯示面板(也稱為發光面板)的外觀及截面。圖24A是藉由密封材料將形成在第一基板上的薄膜電晶體及發光元件密封在與第二基板之間的面板的俯視圖,圖24B相當於沿圖24A的H-I的截面圖。
以包圍設置在第一基板4501上的像素部4502、信號線驅動電路4503a、4503b及掃描線驅動電路4504a、4504b的方式設置有密封材料4505。此外,在像素部4502、信號線驅動電路4503a、4503b及掃描線驅動電路4504a、4504b的上方設置有第二基板4506。因此,像素部4502、信號線驅動電路4503a、4503b及掃描線驅動電路4504a、4504b與填充材料4507一起藉由第一基板4501、密封材料4505和第二基板4506被密封。較佳的如上所述使用氣密性高且漏氣少的保護膜(貼合膜、紫外線固化樹脂膜等)或覆蓋材料進行封裝(密封),使其不暴露於空氣。
此外,設置在第一基板4501上的像素部4502、信號線驅動電路4503a、4503b及掃描線驅動電路4504a、4504b包括多個薄膜電晶體,在圖24B中例示了像素部4502中所包括的薄膜電晶體4510和信號線驅動電路4503a中所包括的薄膜電晶體4509。
作為薄膜電晶體4509、4510可以採用實施例模式1~實施例模式3所示的使用以In-Ga-Zn-O類非單晶膜為代表的氧化物半導體層的可靠性高的薄膜電晶體。在本實施例模式中,薄膜電晶體4509、4510是n通道型薄膜電晶體。
此外,4511對應於發光元件,發光元件4511所具有的作為像素電極的第一電極層4517與薄膜電晶體4510的源極電極層或汲極電極層電連接。還有,雖然發光元件4511的結構是第一電極層4517、電致發光層4512、第二電極層4513的疊層結構,但是不局限於本實施例模式所示的結構。可以根據從發光元件4511獲取的光的方向等適當地改變發光元件4511的結構。
分隔壁4520使用有機樹脂膜、無機絕緣膜或有機聚矽氧烷形成。特別較佳的是,使用感光性的材料,在第一電極層4517上形成開口部,使該開口部的側壁呈具有連續的曲率的傾斜面。
電致發光層4512既可以由單層構成,也可以層疊多層而構成。
可以在第二電極層4513及分隔壁4520上形成保護膜,以防止氧、氫、水分、二氧化碳等侵入到發光元件4511中。作為保護膜,可以形成氮化矽膜、氮氧化矽膜、DLC膜等。
另外,給予信號線驅動電路4503a、4503b、掃描線驅動電路4504a、4504b或像素部4502的各種信號及電位是從FPC4518a、4518b供給。
在本實施例模式中,連接端子電極4515由與發光元件4511所具有的第一電極層4517相同的導電膜形成,端子電極4516由與薄膜電晶體4509、4510所具有的源極電極層及汲極電極層相同的導電膜形成。
連接端子電極4515透過各向異性導電膜4519與FPC4518a所具有的端子電連接。
位於從發光元件4511獲取光的方向上的第二基板4506必須具有透光性。在此情況下,使用如玻璃板、塑膠板、聚酯膜或丙烯酸樹脂膜等具有透光性的材料。
此外,作為填充材料4507,除了氮及氬等惰性的氣體之外,還可以使用紫外線固化樹脂或熱固化樹脂,可以使用PVC(聚氯乙烯)、丙烯酸樹脂、聚醯亞胺、環氧樹脂、有機矽樹脂、PVB(聚乙烯醇縮丁醛)或EVA(乙烯-乙酸乙烯酯)。本實施例模式使用氮作為填充材料4507。
另外,若有需要,也可以在發光元件的射出面上適當地設置偏光板、圓偏光板(包括橢圓偏光板)、相位差板(λ/4片、λ/2片)、彩色濾光片等光學膜。另外,可以在偏光板或圓偏光板上設體防反射膜。例如,可以進行抗眩光處理,該處理可以利用表面的凹凸來散射反射光,從而減少眩光。
信號線驅動電路4503a、4503b及掃描線驅動電路4504a、4504b可以藉由在另外準備的基板上由單晶半導體膜或多晶半導體膜形成的驅動電路的形式安裝。此外,可以僅另行形成並安裝信號線驅動電路或其一部分或者掃描線驅動電路或其一部分,本實施例模式不局限於圖24的結構。
藉由上述構成,可以製造作為半導體裝置的可靠性高的發光顯示裝置(顯示面板)。
還有,本實施例模式所示的構成可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式9]
採用實施例模式1~實施例模式3所示的薄膜電晶體的半導體裝置可以用作電子紙。電子紙可以用於顯示資訊的所有領域的電子設備。例如,可以將電子紙應用於電子書籍(電子書)、海報、電車等交通工具的車內廣告、信用卡等各種卡片中的顯示等。電子設備的一例示於圖25和圖26。
圖25A示出使用電子紙製造的海報2631。在廣告媒體是紙的印刷物的情況下,人工進行廣告的更換,但是如果使用電子紙,則可以在短時間內改變廣告的顯示內容。此外,顯示不會走樣,可以獲得穩定的圖像。還有,海報也可以採用能以無線方式收發資訊的結構。
此外,圖25B示出電車等交通工具的車內廣告2632。在廣告媒體是紙的印刷物的情況下,人工進行廣告的更換,但是如果使用電子紙,則不需要許多人手就可以在短時間內改變廣告的顯示內容。此外,顯示不會走樣,可以得到穩定的圖像。還有,車內廣告也可以採用能以無線方式收發資訊的結構。
另外,圖26示出電子書籍2700的一例。例如,電子書籍2700由兩個框體、即框體2701及框體2703構成。框體2701及框體2703藉由軸部2711形成為一體,且可以以該軸部2711為軸進行開閉動作。藉由這種結構,可以進行像紙制書籍那樣的動作。
框體2701中組裝有顯示部2705,框體2703中組裝有顯示部2707。顯示部2705及顯示部2707既可以採用顯示連續畫面的結構,也可以採用顯示不同畫面的結構。藉由採用顯示不同的畫面的結構,例如可以在右側的顯示部(圖26中的顯示部2705)中顯示文章,而在左側的顯示部(圖26中的顯示部2707)中顯示圖像。
此外,在圖26中示出框體2701中具備操作部等的例子。例如,在框體2701中具備電源2721、操作鍵2723、揚聲器2725等。藉由操作鍵2723,可以翻頁。還有,也可以採用與框體的顯示部在同一面具備鍵盤或指示器件等的結構。另外,也可以採用在框體的背面或側面具備外部連接用端子(耳機端子、USB端子或可與AC適配器及USB電纜等各種電纜連接的端子等)、記錄媒體插入部等的結構。另外,電子書籍2700也可以採用具有作為電子詞典的功能的結構。
此外,電子書籍2700也可以採用能以無線方式收發資訊的結構。還可以採用以無線方式從電子書籍伺服器購買所期望的書籍資料等並下載的構成。
還有,本實施例模式所示的構成可以與其他實施例模式所示的構成和方法適當地組合使用。
[實施例模式10]
採用實施例模式1~實施例模式3所示的薄膜電晶體的半導體裝置可以應用於各種電子設備(包括遊藝機)。作為電子設備,例如可以舉出電視裝置(也稱為電視或電視接收機)、用於計算機等的監視器、數位相機、數位攝像機、數位相框、行動電話機(也稱為行動電話、行動電話裝置)、可攜式遊戲機、移動資訊終端、聲音再現裝置、彈子機等大型遊戲機等。
圖27A示出電視裝置9600的一例。在電視裝置9600中,框體9601中組裝有顯示部9603。藉由顯示部9603,可以顯示影像。此外,在此示出藉由支架9605支撐框體9601的結構。
電視裝置9600的操作可以藉由框體9601所具備的操作開關或另行提供的遙控操作機9610進行。藉由遙控操作機9610所具備的操作鍵9609,可以進行頻道及音量的操作,並可以對在顯示部9603上顯示的影像進行操作。此外,也可以採用在遙控操作機9610中設置顯示從該遙控操作機9610輸出的資訊的顯示部9607的結構。
還有,電視裝置9600採用具備接收機或數據機等的結構。可以藉由接收機接收一般的電視廣播,還可以藉由數據機以有線或無線的方式連接通信網路,從而進行單向(從發送者到接收者)或雙向(在發送者和接收者之間或在接收者之間等)的資訊通信。
圖27B示出數位相框9700的一例。例如,在數位相框9700中,框體9701中組裝有顯示部9703。顯示部9703可以顯示各種圖像,例如藉由顯示使用數位相機等拍攝的圖像資料,可以發揮與一般的相框同樣的功能。
還有,數位相框9700採用具備操作部、外部連接用端子(USB端子、可以與USB電纜等各種電纜連接的端子等)、記錄媒體插入部等的結構。這種結構也可以與顯示部組裝於同一面,但是如果設置在側面或背面,則設計性提高,所以是較佳的。例如,可以在數位相框的記錄媒體插入部插入儲存有由數位相機拍攝的圖像資料的記憶體並提取圖像資料,使所提取的圖像資料顯示於顯示部9703。
此外,數位相框9700也可以採用能以無線方式收發資訊的結構。還可以採用以無線方式提取所期望的圖像資料並進行顯示的結構。
圖28A是一種可攜式遊戲機,由框體9881和框體9891這2個框體構成,且藉由連接部9893以可開閉的方式連接。框體9881中組裝有顯示部9882,框體9891中組裝有顯示部9883。另外,圖28A所示的可攜式遊戲機還具備揚聲器部9884、記錄媒體插入部9886、LED燈9890、輸入單元(操作鍵9885、連接端子9887、感測器9888(具有測定力、位移、位置、速度、加速度、角速度、轉速、距離、光、液體、磁、溫度、化學物質、聲音、時間、硬度、電場、電流、電壓、電力、放射線、流量、濕度、傾斜度、振動、氣味或紅外線的功能的感測器)、麥克風9889)等。當然,可攜式遊戲機的結構不局限於上述結構,只要是至少具備本發明的一種實施例的半導體裝置的結構即可,可以採用適當地設置有其他附屬設備的結構。圖28A所示的可攜式遊戲機具有如下功能:讀取儲存在記錄媒體中的程式或資料並顯示在顯示部、藉由與其他可攜式遊戲機進行無線通信而共用資訊。還有,圖28A所示的可攜式遊戲機所具有的功能不局限於此,可以具有各種各樣的功能。
圖28B示出作為大型遊藝機的投幣遊藝機9900的一例。在投幣遊藝機9900中,框體9901中組裝有顯示部9903。另外,投幣遊藝機9900還具備起動手柄或停止開關等操作單元、投幣口、揚聲器等。當然,投幣遊藝機9900的結構不局限於此,只要是至少具備本發明的一種實施例的半導體裝置的結構即可,可以採用適當地設置有其他附屬設備的結構。
圖29A示出行動電話機1000的一例。行動電話機1000除了組裝在框體1001中的顯示部1002之外,還具備操作按鈕1003、外部連接埠1004、揚聲器1005、麥克風1006等。
圖29A所示的行動電話機1000可以藉由用手指等接觸顯示部1002來輸入資訊。此外,打電話或輸入電子郵件等操作可以藉由用手指等借觸顯示部1002來進行。
顯示部1002的畫面主要有3種模式。第1種是以圖像的顯示為主的顯示模式,第2種是以文字等資訊的輸入為主的輸入模式。第3種是顯示模式和輸入模式這2種模式混合的顯示+輸入模式。
例如,在打電話或編寫電子郵件的情況下,將顯示部1002設定為以文字輸入為主的文字輸入模式來進行在畫面上顯示的文字的輸入操作即可。在此情況下,較佳的是在幾乎所有的顯示部1002的畫面中顯示鍵盤或號碼按鈕。
此外,藉由在行動電話機1000的內部設置具有陀螺儀、加速度感測器等檢測傾斜度的感測器的檢測裝置,可以使其判斷行動電話機1000的朝向(縱向或橫向)並自動地切換顯示部1002的畫面顯示。
畫面模式的切換藉由接觸顯示部1002或對框體1001的操作按鈕1003的操作來進行。此外,還可以使其根據顯示在顯示部1002上的圖像種類切換畫面模式。例如,如果顯示在顯示部上的視頻信號為動態圖像的資料,則切換成顯示模式,如果顯示在顯示部上的視頻信號為文本資料,則切換成輸入模式。
另外,在輸入模式中可以進行如下的控制;藉由檢測出顯示部1002的光感測器所檢測的信號,在一定時間內沒有藉由顯示部1002的觸摸操作的輸入時,以將畫面模式從輸入模式切換成顯示模式。
顯示部1002還可以用作圖像感測器。例如,藉由用手掌或手指觸摸顯示部1002來拍攝掌紋、指紋等,可以進行身份識別。此外,如果在顯示部中使用發射近紅外光的背光源或發射近紅外光的感測用光源,則還可以拍攝手指靜脈、手掌靜脈等。
圖29B也是行動電話機的一例。圖29B中的行動電話機具有顯示裝置9410和通信裝置9400,顯示裝置9410在框體9411中包括顯示部9412和操作按鈕9413,通信裝置9400在框體9401中包括操作按鈕9402、外部輸入端子9403、麥克風9404、揚聲器9405和收到來電時發光的發光部9406。具有顯示功能的顯示裝置9410可以在箭頭所示的2個方向上與具有電話功能的通信裝置9400進行安裝和脫卸。因此,顯示裝置9410和通信裝置9400可以沿短軸或長軸相互安裝。當只需要顯示功能時,可以將顯示裝置9410從通信裝置9400上取下,單獨使用顯示裝置9410。通信裝置9400和顯示裝置9410可以藉由無線通信或有線通信發射和接收圖像或輸入資訊,分別具有可充電電池。
還有,本實施例模式所示的構成可以與其他實施例模式所示的構成適當地組合使用。
100...基板
101...閘極電極層
102...閘極絕緣層
103...包含絕緣性氧化物的氧化物半導體層
104...通道保護層
105a...源極電極層或汲極電極層
105b...源極電極層或汲極電極層
106...氧化物半導體層
107...保護絕緣層
108...電容佈線
110...像素電極層
111...包含絕緣性氧化物的氧化物半導體層
112...導電膜
115...導電層
120...連接電極
121...端子
122...端子
123...連接電極
124...端子
125...接觸孔
126...接觸孔
127...接觸孔
128...透明導電膜
129...透明導電膜
131...抗蝕掩模
132...抗蝕掩模
143...包含絕緣性氧化物的氧化物半導體層
150...端子
151...端子
152...閘極絕緣層
153...連接電極
154...保護絕緣層
155...透明導電膜
156...電極
170...薄膜電晶體
201...閘極電極層
210...空洞
223...包含絕緣性氧化物的氧化物半導體層
226...氧化物半導體層
233a...包含絕緣性氧化物的氧化物半導體層
233b...包含絕緣性氧化物的氧化物半導體層
301a...緩衝層
302...氧化物半導體膜
400...基板
401a...第一閘極電極層
401b...第二閘極電極層
402...閘極絕緣層
403a...第一包含絕緣性氧化物的氧化物半導體層
403b...第二包含絕緣性氧化物的氧化物半導體層
404...接觸孔
405a...第一佈線
405b...第二佈線
405c...第三佈線
406a...第一氧化物半導體層
406b...第二氧化物半導體層
430a...第一薄膜電晶體
430b...第二薄膜電晶體
580...基板
581...薄膜電晶體
583...絕緣層
584...絕緣層
585...絕緣層
587...電極層
588...電極層
589...球形粒子
590a...黑色區
590b...白色區
594...空腔
595...填充材料
596...基板
601...閘極電極層
602...閘極絕緣層
605a...源極電極層或汲極電極層
606...氧化物半導體層
613...包含絕緣性氧化物的氧化物半導體層
616...氧化物半導體層
623...包含絕緣性氧化物的氧化物半導體層
626...氧化物半導體層
1000...行動電話機
1001...框體
1002...顯示部
1003...操作按鈕
1004...外部連接埠
1005...揚聲器
1006...麥克風
2600...TFT基板
2601...對置基板
2602...密封材料
2603...像素部
2604...顯示元件
2605...著色層
2606...偏光板
2607...偏光板
2608...佈線電路部
2609...撓性佈線基板
2610...冷陰極管
2611...反射板
2612...電路基板
2613...散射板
2631...海報
2632...車內廣告
2700...電子書籍
2701...框體
2703...框體
2705...顯示部
2707...顯示部
2711...軸部
2721...電源
2723...操作鍵
2725...揚聲器
4001...基板
4002...像素部
4003...信號線驅動電路
4004...掃描線驅動電路
4005...密封材料
4006...基板
4008...液晶層
4010...薄膜電晶體
4011...薄膜電晶體
4013...液晶元件
4015...連接端子電極
4016...端子電極
4018...FPC
4019...各向異性導電膜
4020...絕緣層
4021...絕緣層
4030...像素電極層
4031...對置電極層
4032...絕緣層
4033...絕緣層
4501...基板
4502...像素部
4503a...信號線驅動電路
4503b...信號線驅動電路
4504a...掃描線驅動電路
4504b...掃描線驅動電路
4505...密封材料
4506...基板
4507...填充材料
4509...薄膜電晶體
4510...薄膜電晶體
4511...發光元件
4512...電致發光層
4513...電極層
4515...連接端子電極
4516...端子電極
4517...電極層
4518a...FPC
4519...各向異性導電膜
4520...分隔壁
5300...基板
5301...像素部
5302...掃描線驅動電路
5303...信號線驅動電路
5400...基板
5401...像素部
5402...掃描線驅動電路
5403...信號線驅動電路
5404...掃描線驅動電路
5501...佈線
5502...佈線
5503...佈線
5504...佈線
5505...佈線
5506...佈線
5543...節點
5544...節點
5571...第一薄膜電晶體
5572...第二薄膜電晶體
5573...第三薄膜電晶體
5574...第四薄膜電晶體
5575...第五薄膜電晶體
5576...第六薄膜電晶體
5577...第七薄膜電晶體
5578...第八薄膜電晶體
5601...驅動器IC
5602...開關組
5603a...第一薄膜電晶體
5603b...第二薄膜電晶體
5603c...第三薄膜電晶體
5611...佈線
5612...佈線
5613...佈線
5621...佈線
5701...正反器
5703a...時序
5703b...時序
5703c...時序
5711...佈線
5712...佈線
5713...佈線
5714...佈線
5715...佈線
5716...佈線
5717...佈線
5721...信號
5803a...時序
5803b...時序
5803c...時序
5821...信號
6400...像素
6401...開關電晶體
6402...驅動電晶體
6403...電容元件
6404...發光元件
6405...信號線
6406...掃描線
6407...電源線
6408...共用電極
7001...TFT
7002...發光元件
7003...陰極
7004...發光層
7005...陽極
7011...驅動TFT
7012...發光元件
7013...陰極
7014...發光層
7015...陽極
7016...遮罩膜
7017...導電膜
7021...驅動TFT
7022...發光元件
7023...陰極
7024...發光層
7025...陽極
7027...導電膜
9400...通信裝置
9401...框體
9402...操作按鈕
9403...外部輸入端子
9404...麥克風
9405...揚聲器
9406...發光部
9410...顯示裝體
9411...框體
9412...顯示部
9413...操作按鈕
9600...電視裝置
9601...框體
9603...顯示部
9605...支架
9607...顯示部
9609...操作鍵
9610...遙控操作機
9700...數位相框
9701...框體
9703...顯示部
9881...框體
9882...顯示部
9883...顯示部
9884...揚聲器部
9885...輸入單元
9886...記錄媒體插入部
9887...連接端子
9888...感測器
9889...麥克風
9890...LED燈
9891...框體
9893...連接部
9900...投幣遊藝機
9901...框體
9903...顯示部
圖1A和1B是說明本發明的一種實施例的半導體裝置的圖:
圖2A至2C是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖3A至3C是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖4是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖5是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖6是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖7是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖8A1,8A2,8B1,和8B2是說明本發明的一種實施例的半導體裝置的圖;
圖9是說明本發明的一種實施例的半導體裝置的圖;
圖10A和10B是說明本發明的一種實施例的半導體裝置的圖;
圖11A至11C是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖12A和12B是說明本發明的一種實施例的半導體裝置的圖;
圖13是說明本發明的一種實施例的半導體裝置的圖;
圖14A和14B是說明半導體裝置的方塊圖的圖;
圖15是說明信號線驅動電路的結構的圖;
圖16是說明信號線驅動電路的工作的時序圖;
圖17是說明信號線驅動電路的工作的時序圖;
圖18是說明移位暫存器的結構的圖;
圖19是說明圖18所示的正反器的連接結構的圖;
圖20是說明本發明的一種實施例的半導體裝置的像素等效電路的圖;
圖21A至21C是說明本發明的一種實施例的半導體裝置的圖;
圖22A1,22A2,和22B是說明本發明的一種實施例的半導體裝置的圖;
圖23是說明本發明的一種實施例的半導體裝置的圖;
圖24A和24B是說明本發明的一種實施例的半導體裝置的圖;
圖25A和25B是說明電子紙的使用方式的例子的圖;
圖26是表示電子書籍的一例的外觀圖;
圖27A和27B是表示電視裝置及數位相框的例子的外觀圖;
圖28A和28B是表示遊戲機的例子的外觀圖;
圖29A和29B是表示行動電話機的一例的外觀圖;
圖30A和30B是說明本發明的一種實施例的半導體裝置的圖;
圖31A和31B是說明本發明的一種實施例的半導體裝置的圖;
圖32A和32B是說明本發明的一種實施例的半導體裝置的圖;
圖33A和33B是說明本發明的一種實施例的半導體裝置的圖;
圖34A至34C是說明本發明的一種實施例的半導體裝置的圖;
圖35A和35B是說明本發明的一種實施例的半導體裝置的製造方法的圖;
圖36A至36C是說明用於模擬的薄膜電晶體的結構的圖;
圖37是示出藉由模擬求得的薄膜電晶體的臨界值電壓的圖;以及
圖38是示出藉由模擬求得的薄膜電晶體的飽和遷移率的圖。
100...基板
101...閘極電極層
102...閘極絕緣層
103...包含絕緣性氧化物的氧化物半導體層
105a...源極電極層或汲極電極層
105b...源極電極層或汲極電極層
106...氧化物半導體層
A1...線
A2...線

Claims (18)

  1. 一種半導體裝置,包含:閘極電極層、該閘極電極層上的閘極絕緣層、該閘極絕緣層上的氧化物半導體層、該氧化物半導體層上的含有絕緣性氧化物的氧化物半導體層、以及該含有絕緣性氧化物的氧化物半導體層上的源極電極層及汲極電極層,其中,該氧化物半導體層包括晶粒,以及其中,該含有絕緣性氧化物的氧化物半導體層與該源極電極層及該汲極電極層電連接。
  2. 一種半導體裝置,包含:閘極電極層、該閘極電極層上的閘極絕緣層、該閘極絕緣層上的氧化物半導體層、該氧化物半導體層上的含有絕緣性氧化物的氧化物半導體層、該含有絕緣性氧化物的氧化物半導體層上的具有n型導電性的緩衝層、以及該緩衝層上的源極電極層及汲極電極層,其中,該氧化物半導體層包括晶粒,其中,該緩衝層的電導率高於該氧化物半導體層的電導率,以及 其中,該含有絕緣性氧化物的氧化物半導體層隔著該緩衝層與該源極電極層及該汲極電極層中的一方電連接。
  3. 如申請專利範圍第2項的半導體裝置,其中,該緩衝層使用由氧化物半導體形成的非單晶膜形成。
  4. 如申請專利範圍第1或2項的半導體裝置,其中,該絕緣性氧化物為氧化矽。
  5. 如申請專利範圍第1或2項的半導體裝置,其中,該含有絕緣性氧化物的氧化物半導體層藉由使用含有0.1重量%~30重量%的SiO2 的靶材的濺射法形成。
  6. 如申請專利範圍第1或2項的半導體裝置,其中,該氧化物半導體層及該含有絕緣性氧化物的氧化物半導體層分別含有銦、錫和鋅中的至少一種。
  7. 如申請專利範圍第1或2項的半導體裝置,其中,該含有絕緣性氧化物的氧化物半導體層在該源極電極層和該汲極電極層之間具有厚度比與該源極電極層及該汲極電極層重疊的區域小的區域。
  8. 如申請專利範圍第1或2項的半導體裝置,其中,該源極電極層和該汲極電極層之間的該含有絕緣性氧化物的氧化物半導體層的一部分受到蝕刻,從而露出該氧化物半導體層。
  9. 如申請專利範圍第1或2項的半導體裝置,其中,該含有絕緣性氧化物的氧化物半導體層上設置有使用無機材料形成的通道保護層。
  10. 如申請專利範圍第1或2項的半導體裝置,其 中,該閘極電極層的通道方向的寬度大於該含有絕緣性氧化物的氧化物半導體層或該氧化物半導體層的通道方向的寬度。
  11. 如申請專利範圍第1或2項的半導體裝置,其中,在該含有絕緣性氧化物的氧化物半導體層的端部下形成有空洞。
  12. 如申請專利範圍第1或2項的半導體裝置,其中,該氧化物半導體層的端部被該含有絕緣性氧化物的氧化物半導體層覆蓋。
  13. 一種半導體裝置的製造方法,包含如下步驟:在基板上形成閘極電極層、在該閘極電極層上形成閘極絕緣層、在該閘極絕緣層上藉由濺射法形成第一氧化物半導體膜、在該第一氧化物半導體膜上藉由使用含有SiO2 的靶材的濺射法形成含有氧化矽的第二氧化物半導體膜、對該第一氧化物半導體膜及該第二氧化物半導體膜進行蝕刻來形成氧化物半導體層和含有氧化矽的氧化物半導體層、在該含有氧化矽的氧化物半導體層上形成導電層、以及對該導電層進行蝕刻來形成源極電極層及汲極電極層,其中,該含有SiO2 的靶材包含0.1重量%~30重量% 的SiO2
  14. 如申請專利範圍第13項的半導體裝置的製造方法,其中,該第一氧化物半導體膜及該第二氧化物半導體膜受到濕法蝕刻,從而該第一氧化物半導體膜受到側面蝕刻,且在該含有氧化矽的氧化物半導體層的端部下形成空洞。
  15. 一種半導體裝置的製造方法,包含如下步驟:在基板上形成閘極電極層、在該閘極電極層上形成閘極絕緣層、在該閘極絕緣層上藉由濺射法形成第一氧化物半導體膜、對該第一氧化物半導體膜進行蝕刻來形成氧化物半導體層、在該氧化物半導體層上藉由使用含有SiO2 的靶材的濺射法形成含有氧化矽的第二氧化物半導體膜、對該第二氧化物半導體膜進行蝕刻來形成覆蓋該氧化物半導體層的含有氧化矽的氧化物半導體層、在該含有氧化矽的氧化物半導體層上形成導電層、以及對該導電層進行蝕刻來形成源極電極層及汲極電極層,其中,該含有SiO2 的靶材包含0.1重量%~30重量%的SiO2
  16. 如申請專利範圍第13或15項的半導體裝置的製 造方法,其中,該含有SiO2 的靶材含有1重量%~10重量%的SiO2
  17. 如申請專利範圍第13或15項的半導體裝置的製造方法,其中,該第一氧化物半導體膜及該第二氧化物半導體膜分別含有銦、錫和鋅中的至少一種。
  18. 如申請專利範圍第13或15項的半導體裝置的製造方法,其中,在該含有氧化矽的氧化物半導體層中設置位於該源極電極層和該汲極電極層之間且厚度比與該源極電極層或該汲極電極層重疊的區域小的區域。
TW099105656A 2009-02-27 2010-02-26 半導體裝置和其製造方法 TWI511287B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009045536 2009-02-27

Publications (2)

Publication Number Publication Date
TW201101490A TW201101490A (en) 2011-01-01
TWI511287B true TWI511287B (zh) 2015-12-01

Family

ID=42666639

Family Applications (5)

Application Number Title Priority Date Filing Date
TW107138764A TWI688104B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法
TW099105656A TWI511287B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法
TW109106550A TWI801721B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法
TW104112389A TWI570933B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法
TW105136940A TWI648859B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW107138764A TWI688104B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法

Family Applications After (3)

Application Number Title Priority Date Filing Date
TW109106550A TWI801721B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法
TW104112389A TWI570933B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法
TW105136940A TWI648859B (zh) 2009-02-27 2010-02-26 半導體裝置和其製造方法

Country Status (5)

Country Link
US (4) US8704216B2 (zh)
JP (10) JP5552334B2 (zh)
KR (3) KR20100098306A (zh)
CN (2) CN101826559B (zh)
TW (5) TWI688104B (zh)

Families Citing this family (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1998373A3 (en) * 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
TWI496295B (zh) 2008-10-31 2015-08-11 Semiconductor Energy Lab 半導體裝置及其製造方法
TWI656645B (zh) 2008-11-13 2019-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
US8344387B2 (en) 2008-11-28 2013-01-01 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
US9721825B2 (en) 2008-12-02 2017-08-01 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US9991311B2 (en) 2008-12-02 2018-06-05 Arizona Board Of Regents On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
US9601530B2 (en) 2008-12-02 2017-03-21 Arizona Board Of Regents, A Body Corporated Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Dual active layer semiconductor device and method of manufacturing the same
KR101648927B1 (ko) 2009-01-16 2016-08-17 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
KR101671210B1 (ko) 2009-03-06 2016-11-01 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
JP5521034B2 (ja) 2009-05-29 2014-06-11 アリゾナ・ボード・オブ・リージェンツ,フォー・アンド・オン・ビハーフ・オブ・アリゾナ・ステート・ユニバーシティ フレキシブル半導体デバイスを高温で提供する方法およびそのフレキシブル半導体デバイス
KR101812683B1 (ko) * 2009-10-21 2017-12-27 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 제작방법
KR101975741B1 (ko) 2009-11-13 2019-05-09 가부시키가이샤 한도오따이 에네루기 켄큐쇼 타깃 재료의 포장 방법 및 타깃의 장착 방법
KR20120101716A (ko) * 2009-12-24 2012-09-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치 및 전자 기기
CN102903758B (zh) 2009-12-28 2015-06-03 株式会社半导体能源研究所 半导体装置
WO2012021197A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method of manufacturing electronic devices on both sides of a carrier substrate and electronic devices thereof
WO2012021196A2 (en) 2010-05-21 2012-02-16 Arizona Board Of Regents, For And On Behalf Of Arizona State University Method for manufacturing electronic devices and electronic devices thereof
US9209314B2 (en) 2010-06-16 2015-12-08 Semiconductor Energy Laboratory Co., Ltd. Field effect transistor
KR102233958B1 (ko) 2010-07-02 2021-03-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8835917B2 (en) 2010-09-13 2014-09-16 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, power diode, and rectifier
US8558960B2 (en) 2010-09-13 2013-10-15 Semiconductor Energy Laboratory Co., Ltd. Liquid crystal display device and method for manufacturing the same
KR101932576B1 (ko) 2010-09-13 2018-12-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 그 제작 방법
US8803143B2 (en) * 2010-10-20 2014-08-12 Semiconductor Energy Laboratory Co., Ltd. Thin film transistor including buffer layers with high resistivity
KR20120045178A (ko) * 2010-10-29 2012-05-09 삼성전자주식회사 박막 트랜지스터 및 이의 제조 방법
US8569754B2 (en) 2010-11-05 2013-10-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8823092B2 (en) 2010-11-30 2014-09-02 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8816425B2 (en) * 2010-11-30 2014-08-26 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
TWI562379B (en) * 2010-11-30 2016-12-11 Semiconductor Energy Lab Co Ltd Semiconductor device and method for manufacturing semiconductor device
KR20240025046A (ko) 2010-12-03 2024-02-26 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 반도체막 및 반도체 장치
KR102181898B1 (ko) 2010-12-17 2020-11-23 가부시키가이샤 한도오따이 에네루기 켄큐쇼 산화물 재료 및 반도체 장치
CN103403849B (zh) * 2011-02-28 2016-08-03 夏普株式会社 半导体装置及其制造方法以及显示装置
KR20130138328A (ko) * 2011-04-07 2013-12-18 아리조나 보드 오브 리젠츠 퍼 앤 온 비하프 오브 아리조나 스테이트 유니버시티 반도체 장치용 이중 활성층들 및 이들을 제조하는 방법들
US9130044B2 (en) * 2011-07-01 2015-09-08 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
US8952377B2 (en) 2011-07-08 2015-02-10 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and manufacturing method thereof
JP5813874B2 (ja) * 2011-08-25 2015-11-17 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated スパッタリング装置およびスパッタリング方法
DE112012004061B4 (de) 2011-09-29 2024-06-20 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
DE112012004076T5 (de) * 2011-09-29 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Halbleitervorrichtung
KR20130040706A (ko) 2011-10-14 2013-04-24 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치 및 반도체 장치의 제작 방법
WO2013054933A1 (en) 2011-10-14 2013-04-18 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
US8829528B2 (en) * 2011-11-25 2014-09-09 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device including groove portion extending beyond pixel electrode
JP6147992B2 (ja) * 2011-11-30 2017-06-14 株式会社半導体エネルギー研究所 半導体装置
KR102254731B1 (ko) * 2012-04-13 2021-05-20 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
US8860022B2 (en) 2012-04-27 2014-10-14 Semiconductor Energy Laboratory Co., Ltd. Oxide semiconductor film and semiconductor device
KR102161077B1 (ko) * 2012-06-29 2020-09-29 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
JP6351947B2 (ja) 2012-10-12 2018-07-04 株式会社半導体エネルギー研究所 液晶表示装置の作製方法
TWI681233B (zh) 2012-10-12 2020-01-01 日商半導體能源研究所股份有限公司 液晶顯示裝置、觸控面板及液晶顯示裝置的製造方法
TWI691084B (zh) * 2012-10-24 2020-04-11 日商半導體能源研究所股份有限公司 半導體裝置及其製造方法
KR102072099B1 (ko) 2012-11-08 2020-01-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 금속 산화물 막 및 금속 산화물 막의 형성 방법
TWI624949B (zh) 2012-11-30 2018-05-21 半導體能源研究所股份有限公司 半導體裝置
WO2014103901A1 (en) 2012-12-25 2014-07-03 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method for manufacturing the same
KR102712705B1 (ko) * 2012-12-28 2024-10-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장치
TWI669824B (zh) * 2013-05-16 2019-08-21 日商半導體能源研究所股份有限公司 半導體裝置
TWI632688B (zh) 2013-07-25 2018-08-11 半導體能源研究所股份有限公司 半導體裝置以及半導體裝置的製造方法
CN103531639B (zh) 2013-10-22 2016-09-07 合肥京东方光电科技有限公司 薄膜晶体管及其制备方法、阵列基板、显示装置
KR102705567B1 (ko) * 2013-12-02 2024-09-12 가부시키가이샤 한도오따이 에네루기 켄큐쇼 표시 장치
WO2015156891A2 (en) 2014-01-23 2015-10-15 Arizona Board Of Regents, Acting For And On Behalf Of Arizona State University Method of providing a flexible semiconductor device and flexible semiconductor device thereof
US10381224B2 (en) 2014-01-23 2019-08-13 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an electronic device and electronic device thereof
WO2017034644A2 (en) 2015-06-09 2017-03-02 ARIZONA BOARD OF REGENTS a body corporate for THE STATE OF ARIZONA for and on behalf of ARIZONA STATE UNIVERSITY Method of providing an electronic device and electronic device thereof
CN103985639B (zh) * 2014-04-28 2015-06-03 京东方科技集团股份有限公司 一种薄膜晶体管及其制备方法、显示基板、显示装置
US20150311345A1 (en) * 2014-04-28 2015-10-29 Boe Technology Group Co., Ltd. Thin film transistor and method of fabricating the same, display substrate and display device
EP3143641A4 (en) 2014-05-13 2018-01-17 Arizona Board of Regents, a Body Corporate of the State of Arizona acting for and on behalf of Arizona State University Method of providing an electronic device and electronic device thereof
CN106537604B (zh) * 2014-07-15 2020-09-11 株式会社半导体能源研究所 半导体装置及其制造方法以及包括该半导体装置的显示装置
JP2016025321A (ja) * 2014-07-24 2016-02-08 関東化學株式会社 エッチング液組成物およびエッチング方法
WO2016013087A1 (ja) 2014-07-24 2016-01-28 ユニサンティス エレクトロニクス シンガポール プライベート リミテッド 半導体装置の製造方法、及び、半導体装置
KR101636146B1 (ko) * 2014-09-16 2016-07-07 한양대학교 산학협력단 박막 트랜지스터 및 그 제조 방법
US9741742B2 (en) 2014-12-22 2017-08-22 Arizona Board Of Regents, A Body Corporate Of The State Of Arizona, Acting For And On Behalf Of Arizona State University Deformable electronic device and methods of providing and using deformable electronic device
US10446582B2 (en) 2014-12-22 2019-10-15 Arizona Board Of Regents On Behalf Of Arizona State University Method of providing an imaging system and imaging system thereof
JP6503275B2 (ja) * 2015-10-09 2019-04-17 株式会社ジャパンディスプレイ センサ及びセンサ付き表示装置
JP6495808B2 (ja) * 2015-11-17 2019-04-03 株式会社東芝 酸化物半導体及び半導体装置
JP6747247B2 (ja) * 2016-01-29 2020-08-26 日立金属株式会社 半導体装置および半導体装置の製造方法
CN107026208B (zh) * 2016-01-29 2020-11-13 日立金属株式会社 半导体装置和半导体装置的制造方法
CN115954389A (zh) 2016-03-04 2023-04-11 株式会社半导体能源研究所 半导体装置以及包括该半导体装置的显示装置
KR20180123028A (ko) * 2016-03-11 2018-11-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체 장비, 상기 반도체 장치의 제작 방법, 및 상기 반도체 장치를 포함하는 표시 장치
US11302717B2 (en) * 2016-04-08 2022-04-12 Semiconductor Energy Laboratory Co., Ltd. Transistor and method for manufacturing the same
RU2675672C2 (ru) * 2016-05-31 2018-12-21 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Устройство для получения узких пазов в цанге проволочным электродом
US10741696B2 (en) * 2016-09-27 2020-08-11 Sharp Kabushiki Kaisha Semiconductor device and method for manufacturing same
CN108241820A (zh) * 2016-12-23 2018-07-03 创智能科技股份有限公司 生物辨识装置
WO2018168639A1 (ja) 2017-03-14 2018-09-20 シャープ株式会社 半導体装置およびその製造方法
TWI684283B (zh) 2017-06-07 2020-02-01 日商日新電機股份有限公司 薄膜電晶體的製造方法
CN107561801A (zh) * 2017-09-20 2018-01-09 深圳市华星光电半导体显示技术有限公司 一种液晶显示面板及阵列基板
WO2019164636A1 (en) * 2018-02-22 2019-08-29 Applied Materials, Inc. Method for processing a mask substrate to enable better film quality
JP7247546B2 (ja) * 2018-11-26 2023-03-29 日新電機株式会社 薄膜トランジスタの製造方法
CN113782573B (zh) * 2019-04-11 2024-04-05 Oppo广东移动通信有限公司 显示屏组件及电子设备
US20220230878A1 (en) * 2019-09-05 2022-07-21 Hewlett-Packard Development Company, L.P. Semiconductor composite layers
US20240213370A1 (en) * 2022-12-23 2024-06-27 Zinite Corporation Thin film transistor
TWI841366B (zh) * 2023-04-28 2024-05-01 國立中興大學 雙波段薄膜電晶體檢光器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105250A1 (en) * 2007-02-28 2008-09-04 Canon Kabushiki Kaisha Thin-film transistor and method of manufacturing same
US20080296568A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd Thin film transistors and methods of manufacturing the same

Family Cites Families (156)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60170972A (ja) 1984-02-15 1985-09-04 Sony Corp 薄膜半導体装置
JPS60198861A (ja) 1984-03-23 1985-10-08 Fujitsu Ltd 薄膜トランジスタ
JPH0244256B2 (ja) 1987-01-28 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn2o5deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244260B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn5o8deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPS63210023A (ja) 1987-02-24 1988-08-31 Natl Inst For Res In Inorg Mater InGaZn↓4O↓7で示される六方晶系の層状構造を有する化合物およびその製造法
JPH0244258B2 (ja) 1987-02-24 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn3o6deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244262B2 (ja) 1987-02-27 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn6o9deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH0244263B2 (ja) 1987-04-22 1990-10-03 Kagaku Gijutsucho Mukizaishitsu Kenkyushocho Ingazn7o10deshimesarerurotsuhoshokeinosojokozoojusurukagobutsuoyobisonoseizoho
JPH05251705A (ja) 1992-03-04 1993-09-28 Fuji Xerox Co Ltd 薄膜トランジスタ
JP3479375B2 (ja) 1995-03-27 2003-12-15 科学技術振興事業団 亜酸化銅等の金属酸化物半導体による薄膜トランジスタとpn接合を形成した金属酸化物半導体装置およびそれらの製造方法
JPH11505377A (ja) 1995-08-03 1999-05-18 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ 半導体装置
JP3625598B2 (ja) * 1995-12-30 2005-03-02 三星電子株式会社 液晶表示装置の製造方法
JPH1140814A (ja) 1997-07-18 1999-02-12 Furontetsuku:Kk 薄膜トランジスタ基板と液晶表示装置および薄膜トランジスタ基板の製造方法
US6680223B1 (en) * 1997-09-23 2004-01-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacturing the same
JP4170454B2 (ja) 1998-07-24 2008-10-22 Hoya株式会社 透明導電性酸化物薄膜を有する物品及びその製造方法
JP2000150861A (ja) * 1998-11-16 2000-05-30 Tdk Corp 酸化物薄膜
JP3276930B2 (ja) 1998-11-17 2002-04-22 科学技術振興事業団 トランジスタ及び半導体装置
TW460731B (en) 1999-09-03 2001-10-21 Ind Tech Res Inst Electrode structure and production method of wide viewing angle LCD
WO2002016679A1 (fr) * 2000-08-18 2002-02-28 Tohoku Techno Arch Co., Ltd. Matiere semi-conductrice polycristalline
JP4089858B2 (ja) 2000-09-01 2008-05-28 国立大学法人東北大学 半導体デバイス
EP1600930B1 (en) * 2000-10-04 2008-12-17 Panasonic Corporation Display driving method
KR20020038482A (ko) * 2000-11-15 2002-05-23 모리시타 요이찌 박막 트랜지스터 어레이, 그 제조방법 및 그것을 이용한표시패널
JP3997731B2 (ja) * 2001-03-19 2007-10-24 富士ゼロックス株式会社 基材上に結晶性半導体薄膜を形成する方法
JP2002289859A (ja) 2001-03-23 2002-10-04 Minolta Co Ltd 薄膜トランジスタ
JP4662647B2 (ja) * 2001-03-30 2011-03-30 シャープ株式会社 表示装置及びその製造方法
JP2002373867A (ja) * 2001-06-14 2002-12-26 Idemitsu Kosan Co Ltd 半導体素子用導電性薄膜、半導体素子及びそれらの製造方法
JP3925839B2 (ja) 2001-09-10 2007-06-06 シャープ株式会社 半導体記憶装置およびその試験方法
JP4090716B2 (ja) 2001-09-10 2008-05-28 雅司 川崎 薄膜トランジスタおよびマトリクス表示装置
JP4164562B2 (ja) 2002-09-11 2008-10-15 独立行政法人科学技術振興機構 ホモロガス薄膜を活性層として用いる透明薄膜電界効果型トランジスタ
US7061014B2 (en) * 2001-11-05 2006-06-13 Japan Science And Technology Agency Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film
JP4083486B2 (ja) * 2002-02-21 2008-04-30 独立行政法人科学技術振興機構 LnCuO(S,Se,Te)単結晶薄膜の製造方法
JP2003258004A (ja) * 2002-03-07 2003-09-12 Fujitsu Ltd メサ型半導体装置及びその製造方法
US7049190B2 (en) * 2002-03-15 2006-05-23 Sanyo Electric Co., Ltd. Method for forming ZnO film, method for forming ZnO semiconductor layer, method for fabricating semiconductor device, and semiconductor device
JP3933591B2 (ja) 2002-03-26 2007-06-20 淳二 城戸 有機エレクトロルミネッセント素子
US7339187B2 (en) 2002-05-21 2008-03-04 State Of Oregon Acting By And Through The Oregon State Board Of Higher Education On Behalf Of Oregon State University Transistor structures
JP2004022625A (ja) * 2002-06-13 2004-01-22 Murata Mfg Co Ltd 半導体デバイス及び該半導体デバイスの製造方法
US7105868B2 (en) * 2002-06-24 2006-09-12 Cermet, Inc. High-electron mobility transistor with zinc oxide
US7067843B2 (en) * 2002-10-11 2006-06-27 E. I. Du Pont De Nemours And Company Transparent oxide semiconductor thin film transistors
JP4166105B2 (ja) 2003-03-06 2008-10-15 シャープ株式会社 半導体装置およびその製造方法
JP2004273732A (ja) 2003-03-07 2004-09-30 Sharp Corp アクティブマトリクス基板およびその製造方法
JP4108633B2 (ja) 2003-06-20 2008-06-25 シャープ株式会社 薄膜トランジスタおよびその製造方法ならびに電子デバイス
US7262463B2 (en) * 2003-07-25 2007-08-28 Hewlett-Packard Development Company, L.P. Transistor including a deposited channel region having a doped portion
US7291967B2 (en) 2003-08-29 2007-11-06 Semiconductor Energy Laboratory Co., Ltd. Light emitting element including a barrier layer and a manufacturing method thereof
US7492090B2 (en) * 2003-09-19 2009-02-17 Semiconductor Energy Laboratory Co., Ltd. Display device and method for manufacturing the same
JP4556616B2 (ja) 2003-10-28 2010-10-06 住友ベークライト株式会社 ポジ型感光性樹脂組成物、該ポジ型感光性樹脂組成物を用いた半導体装置及び表示素子、並びに半導体装置及び表示素子の製造方法
US7297977B2 (en) 2004-03-12 2007-11-20 Hewlett-Packard Development Company, L.P. Semiconductor device
US7282782B2 (en) * 2004-03-12 2007-10-16 Hewlett-Packard Development Company, L.P. Combined binary oxide semiconductor device
US7145174B2 (en) * 2004-03-12 2006-12-05 Hewlett-Packard Development Company, Lp. Semiconductor device
US20070194379A1 (en) 2004-03-12 2007-08-23 Japan Science And Technology Agency Amorphous Oxide And Thin Film Transistor
US7037794B2 (en) * 2004-06-09 2006-05-02 International Business Machines Corporation Raised STI process for multiple gate ox and sidewall protection on strained Si/SGOI structure with elevated source/drain
US7211825B2 (en) * 2004-06-14 2007-05-01 Yi-Chi Shih Indium oxide-based thin film transistors and circuits
JP2006100760A (ja) * 2004-09-02 2006-04-13 Casio Comput Co Ltd 薄膜トランジスタおよびその製造方法
US7285501B2 (en) * 2004-09-17 2007-10-23 Hewlett-Packard Development Company, L.P. Method of forming a solution processed device
JP4700317B2 (ja) 2004-09-30 2011-06-15 株式会社半導体エネルギー研究所 表示装置の作製方法
US7298084B2 (en) * 2004-11-02 2007-11-20 3M Innovative Properties Company Methods and displays utilizing integrated zinc oxide row and column drivers in conjunction with organic light emitting diodes
US7863611B2 (en) * 2004-11-10 2011-01-04 Canon Kabushiki Kaisha Integrated circuits utilizing amorphous oxides
WO2006051995A1 (en) * 2004-11-10 2006-05-18 Canon Kabushiki Kaisha Field effect transistor employing an amorphous oxide
US7791072B2 (en) * 2004-11-10 2010-09-07 Canon Kabushiki Kaisha Display
US7829444B2 (en) * 2004-11-10 2010-11-09 Canon Kabushiki Kaisha Field effect transistor manufacturing method
US7453065B2 (en) * 2004-11-10 2008-11-18 Canon Kabushiki Kaisha Sensor and image pickup device
US7872259B2 (en) * 2004-11-10 2011-01-18 Canon Kabushiki Kaisha Light-emitting device
EP2453480A2 (en) * 2004-11-10 2012-05-16 Canon Kabushiki Kaisha Amorphous oxide and field effect transistor
JP5138163B2 (ja) * 2004-11-10 2013-02-06 キヤノン株式会社 電界効果型トランジスタ
KR20060064388A (ko) * 2004-12-08 2006-06-13 삼성전자주식회사 박막 트랜지스터, 이의 제조 방법, 이를 갖는 표시장치 및표시장치의 제조 방법
US7579224B2 (en) * 2005-01-21 2009-08-25 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a thin film semiconductor device
TWI390735B (zh) * 2005-01-28 2013-03-21 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
TWI412138B (zh) * 2005-01-28 2013-10-11 Semiconductor Energy Lab 半導體裝置,電子裝置,和半導體裝置的製造方法
US7858451B2 (en) * 2005-02-03 2010-12-28 Semiconductor Energy Laboratory Co., Ltd. Electronic device, semiconductor device and manufacturing method thereof
US7948171B2 (en) * 2005-02-18 2011-05-24 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
US20060197092A1 (en) * 2005-03-03 2006-09-07 Randy Hoffman System and method for forming conductive material on a substrate
US8681077B2 (en) * 2005-03-18 2014-03-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, and display device, driving method and electronic apparatus thereof
WO2006105077A2 (en) 2005-03-28 2006-10-05 Massachusetts Institute Of Technology Low voltage thin film transistor with high-k dielectric material
US7645478B2 (en) 2005-03-31 2010-01-12 3M Innovative Properties Company Methods of making displays
US8300031B2 (en) 2005-04-20 2012-10-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device comprising transistor having gate and drain connected through a current-voltage conversion element
JP2006344849A (ja) 2005-06-10 2006-12-21 Casio Comput Co Ltd 薄膜トランジスタ
US7691666B2 (en) 2005-06-16 2010-04-06 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7402506B2 (en) * 2005-06-16 2008-07-22 Eastman Kodak Company Methods of making thin film transistors comprising zinc-oxide-based semiconductor materials and transistors made thereby
US7507618B2 (en) 2005-06-27 2009-03-24 3M Innovative Properties Company Method for making electronic devices using metal oxide nanoparticles
KR100711890B1 (ko) * 2005-07-28 2007-04-25 삼성에스디아이 주식회사 유기 발광표시장치 및 그의 제조방법
JP4767616B2 (ja) * 2005-07-29 2011-09-07 富士フイルム株式会社 半導体デバイスの製造方法及び半導体デバイス
JP2007059128A (ja) * 2005-08-23 2007-03-08 Canon Inc 有機el表示装置およびその製造方法
JP4850457B2 (ja) 2005-09-06 2012-01-11 キヤノン株式会社 薄膜トランジスタ及び薄膜ダイオード
JP4981283B2 (ja) 2005-09-06 2012-07-18 キヤノン株式会社 アモルファス酸化物層を用いた薄膜トランジスタ
JP5116225B2 (ja) * 2005-09-06 2013-01-09 キヤノン株式会社 酸化物半導体デバイスの製造方法
JP2007073705A (ja) * 2005-09-06 2007-03-22 Canon Inc 酸化物半導体チャネル薄膜トランジスタおよびその製造方法
JP4280736B2 (ja) * 2005-09-06 2009-06-17 キヤノン株式会社 半導体素子
KR100729043B1 (ko) * 2005-09-14 2007-06-14 삼성에스디아이 주식회사 투명 박막 트랜지스터 및 그의 제조방법
JP5078246B2 (ja) 2005-09-29 2012-11-21 株式会社半導体エネルギー研究所 半導体装置、及び半導体装置の作製方法
EP1998373A3 (en) * 2005-09-29 2012-10-31 Semiconductor Energy Laboratory Co, Ltd. Semiconductor device having oxide semiconductor layer and manufacturing method thereof
JP5064747B2 (ja) 2005-09-29 2012-10-31 株式会社半導体エネルギー研究所 半導体装置、電気泳動表示装置、表示モジュール、電子機器、及び半導体装置の作製方法
JP5037808B2 (ja) * 2005-10-20 2012-10-03 キヤノン株式会社 アモルファス酸化物を用いた電界効果型トランジスタ、及び該トランジスタを用いた表示装置
KR101103374B1 (ko) * 2005-11-15 2012-01-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 반도체장치
US7998372B2 (en) 2005-11-18 2011-08-16 Idemitsu Kosan Co., Ltd. Semiconductor thin film, method for manufacturing the same, thin film transistor, and active-matrix-driven display panel
JP5376750B2 (ja) 2005-11-18 2013-12-25 出光興産株式会社 半導体薄膜、及びその製造方法、並びに薄膜トランジスタ、アクティブマトリックス駆動表示パネル
JP5250929B2 (ja) 2005-11-30 2013-07-31 凸版印刷株式会社 トランジスタおよびその製造方法
TWI292281B (en) * 2005-12-29 2008-01-01 Ind Tech Res Inst Pixel structure of active organic light emitting diode and method of fabricating the same
US7867636B2 (en) * 2006-01-11 2011-01-11 Murata Manufacturing Co., Ltd. Transparent conductive film and method for manufacturing the same
JP4977478B2 (ja) * 2006-01-21 2012-07-18 三星電子株式会社 ZnOフィルム及びこれを用いたTFTの製造方法
US7576394B2 (en) * 2006-02-02 2009-08-18 Kochi Industrial Promotion Center Thin film transistor including low resistance conductive thin films and manufacturing method thereof
US7977169B2 (en) * 2006-02-15 2011-07-12 Kochi Industrial Promotion Center Semiconductor device including active layer made of zinc oxide with controlled orientations and manufacturing method thereof
JP5196813B2 (ja) * 2006-03-20 2013-05-15 キヤノン株式会社 アモルファス酸化物膜をゲート絶縁層に用いた電界効果型トランジスタ
KR20070101595A (ko) 2006-04-11 2007-10-17 삼성전자주식회사 ZnO TFT
JP2007286150A (ja) 2006-04-13 2007-11-01 Idemitsu Kosan Co Ltd 電気光学装置、並びに、電流制御用tft基板及びその製造方法
US20070252928A1 (en) 2006-04-28 2007-11-01 Toppan Printing Co., Ltd. Structure, transmission type liquid crystal display, reflection type display and manufacturing method thereof
JP5364242B2 (ja) * 2006-04-28 2013-12-11 株式会社半導体エネルギー研究所 半導体装置の作製方法
US8900970B2 (en) 2006-04-28 2014-12-02 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing a semiconductor device using a flexible substrate
JP5135709B2 (ja) 2006-04-28 2013-02-06 凸版印刷株式会社 薄膜トランジスタ及びその製造方法
EP2020686B1 (en) 2006-05-25 2013-07-10 Fuji Electric Co., Ltd. Thin film transistor and its production method
KR100801961B1 (ko) 2006-05-26 2008-02-12 한국전자통신연구원 듀얼 게이트 유기트랜지스터를 이용한 인버터
JP5028033B2 (ja) 2006-06-13 2012-09-19 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
WO2007148601A1 (ja) 2006-06-19 2007-12-27 Panasonic Corporation 薄膜トランジスタおよびその製造方法ならびにそれを用いた電子機器
US8048473B2 (en) * 2006-07-04 2011-11-01 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing display device
JP4609797B2 (ja) * 2006-08-09 2011-01-12 Nec液晶テクノロジー株式会社 薄膜デバイス及びその製造方法
JP4999400B2 (ja) * 2006-08-09 2012-08-15 キヤノン株式会社 酸化物半導体膜のドライエッチング方法
JP5127183B2 (ja) * 2006-08-23 2013-01-23 キヤノン株式会社 アモルファス酸化物半導体膜を用いた薄膜トランジスタの製造方法
JP4332545B2 (ja) * 2006-09-15 2009-09-16 キヤノン株式会社 電界効果型トランジスタ及びその製造方法
JP5164357B2 (ja) * 2006-09-27 2013-03-21 キヤノン株式会社 半導体装置及び半導体装置の製造方法
JP4274219B2 (ja) * 2006-09-27 2009-06-03 セイコーエプソン株式会社 電子デバイス、有機エレクトロルミネッセンス装置、有機薄膜半導体装置
KR100790761B1 (ko) 2006-09-29 2008-01-03 한국전자통신연구원 인버터
US7622371B2 (en) * 2006-10-10 2009-11-24 Hewlett-Packard Development Company, L.P. Fused nanocrystal thin film semiconductor and method
KR100829570B1 (ko) * 2006-10-20 2008-05-14 삼성전자주식회사 크로스 포인트 메모리용 박막 트랜지스터 및 그 제조 방법
US7772021B2 (en) * 2006-11-29 2010-08-10 Samsung Electronics Co., Ltd. Flat panel displays comprising a thin-film transistor having a semiconductive oxide in its channel and methods of fabricating the same for use in flat panel displays
JP2008140984A (ja) 2006-12-01 2008-06-19 Sharp Corp 半導体素子、半導体素子の製造方法、及び表示装置
JP2008140684A (ja) * 2006-12-04 2008-06-19 Toppan Printing Co Ltd カラーelディスプレイおよびその製造方法
KR101146574B1 (ko) * 2006-12-05 2012-05-16 캐논 가부시끼가이샤 산화물 반도체를 이용한 박막 트랜지스터의 제조방법 및 표시장치
JP5305630B2 (ja) * 2006-12-05 2013-10-02 キヤノン株式会社 ボトムゲート型薄膜トランジスタの製造方法及び表示装置の製造方法
WO2008069255A1 (en) 2006-12-05 2008-06-12 Canon Kabushiki Kaisha Method for manufacturing thin film transistor using oxide semiconductor and display apparatus
KR101363555B1 (ko) * 2006-12-14 2014-02-19 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 그 제조 방법
US8514165B2 (en) * 2006-12-28 2013-08-20 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device
KR101303578B1 (ko) * 2007-01-05 2013-09-09 삼성전자주식회사 박막 식각 방법
US8207063B2 (en) * 2007-01-26 2012-06-26 Eastman Kodak Company Process for atomic layer deposition
TWI478347B (zh) 2007-02-09 2015-03-21 Idemitsu Kosan Co A thin film transistor, a thin film transistor substrate, and an image display device, and an image display device, and a semiconductor device
KR101312259B1 (ko) * 2007-02-09 2013-09-25 삼성전자주식회사 박막 트랜지스터 및 그 제조방법
KR100851215B1 (ko) * 2007-03-14 2008-08-07 삼성에스디아이 주식회사 박막 트랜지스터 및 이를 이용한 유기 전계 발광표시장치
JP2008276211A (ja) * 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置およびパターニング方法
JP2008276212A (ja) 2007-04-05 2008-11-13 Fujifilm Corp 有機電界発光表示装置
US7795613B2 (en) 2007-04-17 2010-09-14 Toppan Printing Co., Ltd. Structure with transistor
KR101325053B1 (ko) 2007-04-18 2013-11-05 삼성디스플레이 주식회사 박막 트랜지스터 기판 및 이의 제조 방법
KR20080094300A (ko) 2007-04-19 2008-10-23 삼성전자주식회사 박막 트랜지스터 및 그 제조 방법과 박막 트랜지스터를포함하는 평판 디스플레이
KR101334181B1 (ko) 2007-04-20 2013-11-28 삼성전자주식회사 선택적으로 결정화된 채널층을 갖는 박막 트랜지스터 및 그제조 방법
WO2008133345A1 (en) * 2007-04-25 2008-11-06 Canon Kabushiki Kaisha Oxynitride semiconductor
JP2008277326A (ja) 2007-04-25 2008-11-13 Canon Inc アモルファス酸化物半導体、半導体デバイス及び薄膜トランジスタ
KR100982395B1 (ko) 2007-04-25 2010-09-14 주식회사 엘지화학 박막 트랜지스터 및 이의 제조방법
US8591514B2 (en) * 2007-05-02 2013-11-26 Arthrex, Inc. Retrograde cutter with rotating blade
JP5294651B2 (ja) 2007-05-18 2013-09-18 キヤノン株式会社 インバータの作製方法及びインバータ
KR20090002841A (ko) 2007-07-04 2009-01-09 삼성전자주식회사 산화물 반도체, 이를 포함하는 박막 트랜지스터 및 그 제조방법
TWI464510B (zh) 2007-07-20 2014-12-11 Semiconductor Energy Lab 液晶顯示裝置
US20110006297A1 (en) * 2007-12-12 2011-01-13 Idemitsu Kosan Co., Ltd. Patterned crystalline semiconductor thin film, method for producing thin film transistor and field effect transistor
JP5215158B2 (ja) * 2007-12-17 2013-06-19 富士フイルム株式会社 無機結晶性配向膜及びその製造方法、半導体デバイス
WO2009093625A1 (ja) * 2008-01-23 2009-07-30 Idemitsu Kosan Co., Ltd. 電界効果型トランジスタ及びその製造方法、それを用いた表示装置、並びに半導体装置
JP4555358B2 (ja) * 2008-03-24 2010-09-29 富士フイルム株式会社 薄膜電界効果型トランジスタおよび表示装置
KR101510212B1 (ko) * 2008-06-05 2015-04-10 삼성전자주식회사 산화물 반도체 박막 트랜지스터의 제조방법
JP4623179B2 (ja) * 2008-09-18 2011-02-02 ソニー株式会社 薄膜トランジスタおよびその製造方法
JP5451280B2 (ja) * 2008-10-09 2014-03-26 キヤノン株式会社 ウルツ鉱型結晶成長用基板およびその製造方法ならびに半導体装置
JP5361651B2 (ja) * 2008-10-22 2013-12-04 株式会社半導体エネルギー研究所 半導体装置の作製方法
KR101638978B1 (ko) * 2009-07-24 2016-07-13 삼성전자주식회사 박막 트랜지스터 및 그 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008105250A1 (en) * 2007-02-28 2008-09-04 Canon Kabushiki Kaisha Thin-film transistor and method of manufacturing same
US20080296568A1 (en) * 2007-05-29 2008-12-04 Samsung Electronics Co., Ltd Thin film transistors and methods of manufacturing the same

Also Published As

Publication number Publication date
US20100219410A1 (en) 2010-09-02
KR20170002357A (ko) 2017-01-06
TWI570933B (zh) 2017-02-11
TW201101490A (en) 2011-01-01
KR20150045971A (ko) 2015-04-29
JP5719945B2 (ja) 2015-05-20
TW201921694A (zh) 2019-06-01
TWI648859B (zh) 2019-01-21
TW202027280A (zh) 2020-07-16
US9064899B2 (en) 2015-06-23
TWI801721B (zh) 2023-05-11
JP2010226101A (ja) 2010-10-07
US8704216B2 (en) 2014-04-22
JP2022179628A (ja) 2022-12-02
JP2015119188A (ja) 2015-06-25
CN101826559B (zh) 2014-11-05
TW201528523A (zh) 2015-07-16
TWI688104B (zh) 2020-03-11
JP5552334B2 (ja) 2014-07-16
CN101826559A (zh) 2010-09-08
JP2022008359A (ja) 2022-01-13
US20170256650A1 (en) 2017-09-07
JP6360874B2 (ja) 2018-07-18
CN104332411A (zh) 2015-02-04
TW201709531A (zh) 2017-03-01
US9997638B2 (en) 2018-06-12
JP2020120119A (ja) 2020-08-06
US9660102B2 (en) 2017-05-23
JP6069404B2 (ja) 2017-02-01
JP2015167242A (ja) 2015-09-24
JP2018152574A (ja) 2018-09-27
JP7447213B2 (ja) 2024-03-11
US20150214383A1 (en) 2015-07-30
CN104332411B (zh) 2017-12-29
US20140199809A1 (en) 2014-07-17
JP6006813B2 (ja) 2016-10-12
JP2017073565A (ja) 2017-04-13
JP6944011B2 (ja) 2021-10-06
JP2014123751A (ja) 2014-07-03
KR20100098306A (ko) 2010-09-06
JP2024059882A (ja) 2024-05-01

Similar Documents

Publication Publication Date Title
JP7447213B2 (ja) 半導体装置
JP6552474B2 (ja) 半導体装置の作製方法
TWI545757B (zh) 半導體裝置和其製造方法
TWI487106B (zh) 半導體裝置及其製造方法
TWI476917B (zh) 半導體裝置和其製造方法
TWI493722B (zh) 半導體裝置,其製造方法,和具有該半導體裝置的電子裝置
TWI502647B (zh) 半導體裝置和其製造方法
TWI476915B (zh) 半導體裝置及其製造方法
TWI485851B (zh) 半導體裝置及其製造方法
TWI501395B (zh) 半導體裝置和其製造方法