TWI460323B - 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶 - Google Patents

用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶 Download PDF

Info

Publication number
TWI460323B
TWI460323B TW098118661A TW98118661A TWI460323B TW I460323 B TWI460323 B TW I460323B TW 098118661 A TW098118661 A TW 098118661A TW 98118661 A TW98118661 A TW 98118661A TW I460323 B TWI460323 B TW I460323B
Authority
TW
Taiwan
Prior art keywords
pressure vessel
high pressure
temperature
zone
group iii
Prior art date
Application number
TW098118661A
Other languages
English (en)
Other versions
TW201002880A (en
Inventor
Tadao Hashimoto
Edward Letts
Masanori Ikari
Original Assignee
Sixpoint Materials Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sixpoint Materials Inc filed Critical Sixpoint Materials Inc
Publication of TW201002880A publication Critical patent/TW201002880A/zh
Application granted granted Critical
Publication of TWI460323B publication Critical patent/TWI460323B/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • C30B7/105Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes using ammonia as solvent, i.e. ammonothermal processes
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • C30B7/10Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions by application of pressure, e.g. hydrothermal processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/01Layered products comprising a layer of metal all layers being exclusively metallic
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • C30B29/403AIII-nitrides
    • C30B29/406Gallium nitride
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B35/00Apparatus not otherwise provided for, specially adapted for the growth, production or after-treatment of single crystals or of a homogeneous polycrystalline material with defined structure
    • C30B35/002Crucibles or containers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12014All metal or with adjacent metals having metal particles
    • Y10T428/12028Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, etc.]

Description

用於生長第III族氮化物結晶之高壓容器及使用高壓容器生長第III族氮化物結晶之方法及第III族氮化物結晶
本發明係關於在高壓氨中用以生長以Bx Aly Gaz In1-x-y-z N(0≦x,y,z≦1)表示之第III族氮化物結晶之高壓容器,該氮化物譬如氮化鎵、氮化硼、氮化銦、氮化鋁及其固熔體。本發明亦關於生長第III族氮化物結晶之方法,及所生長之第III族氮化物結晶。
相關申請案之前後參照
本申請案係主張關於2008年6月4日提出申請之美國申請案序號61/058,910之優先權益,其標題為"用於生長第Iii族氮化物結晶之高壓容器及使用高壓容器生長第Iii族氮化物結晶之方法及第III族氮化物結晶",發明人Tadao Hashimoto、Edward Letts及Masanori Ikari,其全部內容係併於本文供參考,猶如完全於下文提出一般。
本申請案亦關於下列美國專利申請案:由Kenji Fujito、Tadao Hashimoto及Shuji Nakamura於2005年7月8日提出申請之PCT利用性專利申請案序號US2005/024239,其標題為"使用熱壓鍋在超臨界氨中生長第III族-氮化物結晶之方法 ",律師案件目錄編號30794.0129-WO-01(2005-339-1);由Tadao Hashimoto、Makoto Saito及Shuji Nakamura於2007年4月6日提出申請之美國利用性專利申請案序號11/784,339,其標題為"關於在超臨界氨中生長大表面積氮化鎵結晶之方法及大表面積氮化鎵結晶 ",律師案件目錄編號30794.179-US-U1(2006-204),此申請案係依美國專利法第119(e)款第35條,主張由Tadao Hashimoto、Makoto Saito及Shuji Nakamura於2006年4月7日提出申請之美國臨時專利申請案序號60/790,310之權益,其標題為"關於在超臨界氨中生長大表面積氮化鎵結晶之方法及大表面積氮化鎵結晶 ",律師案件目錄編號30794.179-US-P1(2006-204);由Tadao Hashimoto與Shuji Nakamura於2007年9月19日提出申請之美國利用性專利申請案序號60/973,602,其標題為"氮化鎵塊狀結晶及其生長方法 ",律師案件目錄編號30794.244-US-P1(2007-809-1);由Tadao Hashimoto於2007年10月25日提出申請之美國利用性專利申請案序號11/977,661,其標題為"關於在超臨界氨與氮之混合物中生長第III族-氮化物結晶之方法及藉以生長之第III族-氮化物結晶 ",律師案件目錄編號30794.253-US-U1(2007-774-2)。
由Tadao Hashimoto、Edward Letts、Masanori Ikari於2008年2月25日提出申請之美國利用性專利申請案序號61/067,117,其標題為"關於產生第III族-氮化物晶圓之方法及第III族-氮化物晶圓 ",律師案件目錄編號62158-30002.00。
該申請案全部均併於本文供參考。
(註:本專利申請案係參考數件刊物與專利,如以括弧內之編號例如[x]所表示者。此等刊物與專利之清單可參閱標題為"參考資料"之段落)。
氮化鎵(GaN)及其相關第III族合金係為各種光-電子與電子裝置之關鍵材料,譬如發光二極體(LED)、雷射二極體(LD)、微波功率電晶體及日盲光偵測器。目前LED係被廣泛使用於手機、指示器、顯示器,而LD係被使用於資料儲存磁碟驅動器。但是,大部份此等裝置係以外延方式在異質基材上生長,譬如藍寶石與碳化矽,因為與此等異質外延基材比較,GaN晶圓為極端地昂貴。第III族-氮化物之異質外延生長會造成高度有缺陷或甚至龜裂之薄膜,其係阻礙高階光學與電子裝置,譬如用於一般照明之高亮度LED或高功率微波電晶體之實現。
為解決因異質外延所造成之基本問題,利用自大塊第III族氮化物結晶鑄錠所切片之單晶第III族氮化物晶圓是有用的。對大部份裝置而言,單晶GaN晶圓係為有利的,因其相對較容易控制晶圓之導電性,且GaN晶圓將提供與裝置層之最小晶格/熱失配。但是,由於高熔點及在高溫下之高氮蒸氣壓,故難以生長GaN結晶鑄錠。使用熔融態Ga之生長方法,譬如高壓高溫合成[1,2]與鈉助熔劑[3,4],已被提出以生長GaN結晶,但是在熔融態Ga中所生長之結晶形狀會變成薄小片狀體,因為熔融態Ga具有氮之低溶解度與氮之低擴散係數。
氨熱方法,其係為使用高壓氨作為溶劑之溶劑熱方法,已証實真實塊狀GaN之成功生長[5-10]。此項新技術能夠生長大GaN結晶鑄錠,因為作為流體媒質使用之高壓氨具有來源材料譬如GaN多晶體或金屬Ga之高溶解度,並可達成溶解先質之高輸送速度。主要有三種途徑以在超臨界氨中生長GaN;一種在單一反應器中使用氨鹼性溶液,伴隨著外部加熱之方法,如在[6-10]中所揭示者,與一種在Pt-內襯之單一反應器中,使用氨酸性溶液,伴隨著外部加熱之方法,如在[11]中所揭示者,及一種使用超臨界氨,使用裝在高壓反應器中之囊管與內部加熱器之方法,如在[12]中所揭示者。後述兩種方法在擴大反應器規模上具有缺點。對於氨酸性途徑,在大尺度壓力容器中使用Pt-內襯係為極端地昂貴。至於內部囊管,操作大於2"直徑之囊管反應器於結構上係極具挑戰性。因此,使用鹼性礦物化劑之氨熱生長係為大量生產大塊GaN之最實用途徑。如在文獻[6,13-16]中所揭示者,GaN在超臨界氨鹼性溶液中具有逆行溶解度。因此,在使用鹼性礦物化劑之習用氨熱生長中,營養物區帶之溫度係被設定低於結晶化作用區帶。除了此溫度設定之外,鹼性氨熱方法在許多方面係異於其他溶劑熱方法,譬如石英與氧化鋅之熱水生長。由於此項差異,故不直接應用溶劑熱方法以生長第III族氮化物結晶,而需要更多改良,以實現藉由氨熱方法大量生產GaN晶圓。
首先,現代化之氨熱方法[6-10]係缺少可擴大性以進入工業生產,因十分難以獲得足夠大之超合金材料以建造高壓容器。由於第III族氮化物具有高熔解溫度或解離溫度,故結晶生長係比藉由溶劑熱方法所生長之其他材料需要相對較高溫度。例如,石英與氧化鋅(ZnO)兩者係在約300-400℃下,藉由水熱法生長。另一方面,在氨熱方法中GaN之典型生長溫度為450-600℃[6-10]。再者,吾人之實驗証實在550 ℃或較高下生長係為獲得高品質結晶典型上所需要。因此,Ni-Cr為基礎之可析出硬化(或老化可硬化)超合金,譬如Rene-41(Haynes R-41或Pyromet 41)、Inconel 720(Pyromet 720)、Inconel 718(Pyromet 718)及Waspaloy A,必須使用於容器材料。此等超合金係經鍛造,以獲得小尺寸、密緻晶粒結構,其係對允許溶劑成為超臨界之條件提供必要抗張強度。但是,若被加工片塊之固體尺寸(譬如其厚度)變得太大,則高抗張強度所必須之晶粒結構不能藉由鍛造獲得。這是因為鍛造壓力在鍛造過程期間總是自表面施加,且若加工大小超過某一大小,則在材料內部部份上之晶粒大小傾向於不受影響。在鍛造/冷卻過程期間之龜裂對大直徑棒亦為深遠。此等問題係限制Ni-Cr為基礎之可析出硬化超合金之可採用大小。在Rene-41之情況下,關於棒之最高可採用外徑為12英吋,惟關於剛鑄造(意即未經鍛造)棒之最高可採用外徑係大於12英吋。
對GaN單晶之商業化生產應用氨熱方法之另一個障礙為所生長結晶之普通品質。目前,其純度、透明性及結構品質並不足供商業使用。特定言之,氧濃度係在1020 公分-3 之譜。此高含量之氧伴隨著Ga空位係被認為是藉由氨熱方法所生長GaN之褐色之起源。所生長之結晶亦顯示多重晶粒在生長平面中。
就上文所提及之限制而論,本專利係揭示數種新穎概念,以實現藉由氨熱方法實際上可用於第III族氮化物結晶生產之高壓容器。本專利亦揭示新穎方式,以改良藉由氨 熱方法所生長之第III族氮化物結晶之純度、透明性及結構品質。
本發明係揭示適用於第III族-氮化物材料之氨熱生長之新穎高壓容器。此容器係製自譬如超合金棒或小鋼坯之原料,目前當被併入高壓容器中時,於大小上受限。可達到最大可能高壓容器之多區帶高壓容器係經揭示。
容器可具有一或多個夾具以密封容器。夾具可由金屬或合金形成,於夾具中具有晶粒流動在徑向上。此型態使得該容器能夠在大小上遠大於現今之容器。
高壓容器可藉由限制流動裝置(譬如擋板)被區分成至少三個區域。在此項具體實施例中,容器具有營養物區域,其中營養物,譬如多晶GaN或其他進料,係被溶解或供應。容器亦具有結晶化作用區域,其中第III族-氮化物材料係被結晶在晶種材料上。容器亦具有緩衝區域在營養物區域與結晶化作用區域之間,一或多個冷卻區帶鄰近結晶化作用區帶及/或營養物區帶,且在夾具附近,或兩者。
本發明亦揭示新穎程序,以生長具有經改良純度、透明性及結構品質之結晶。裝填含鹼金屬之礦物化劑,具有對氧與水份之最低曝露,直到高壓容器裝滿氨為止。在處理步驟期間降低氧污染之數種方法係經提出。種晶之逆蝕刻與改良結構品質之新穎溫度爬升方案亦經揭示。
此外,本發明係揭示一種降低多晶GaN在壓力容器之內部表面上之寄生沉積,同時視情況改良結構品質,而不會 降低生長速率之方法。由於GaN在使用鹼性礦物化劑之氨熱生長中之逆行溶解度,故在結晶化作用區域中之溫度係以習用方式被設定高於營養物區域中之溫度。但是,吾人發現GaN可藉由設定結晶化作用區域之溫度稍低於營養物區域之溫度而生長。利用此關於生長之"逆"溫度設定,GaN在反應器壁上之寄生沉積係被大為降低。再者,所生長結晶之結構品質係經改良,而不會犧牲生長速率。
發明詳述
概論
本發明係提供一種設計,以達成適合藉由氨熱方法大量生產第III族-氮化物結晶之高壓容器。使用有限大小之可取得Ni-Cr為基礎之可析出硬化超合金,提出創新設計,以使容器大小達到最大程度。生長經改良品質之第III族氮化物結晶之方法亦經提出。
在一種情況中,本發明係提供用於第III族-氮化物結晶性鑄錠之氨熱生長之反應器。此反應器具有:界定小室之本體;與用於密封反應器末端之第一個夾具,其中第一個夾具係由金屬或合金形成,於夾具中具有晶粒流動在徑向上。
在另一種情況中,用於第III族-氮化物結晶性鑄錠之氨熱生長之反應器具有:界定小室之本體;用於加熱反應器之營養物區域之第一個加熱器;用於加熱反應器之結晶化作用區域之第二個加熱器;選自緩衝區域與末端區域之第三個區域;及至少一個分隔反應器之結晶化作用區域與營養物區域或結晶化作用區域與末端區域之擋板,其中緩衝區域當存在時之資格評定係藉由多個擋板所界定,該擋板包括第一端擋板與相反端擋板,於其間具有一或多個選用擋板。且自多個擋板之第一端擋板至相反端擋板之距離為反應器內徑之至少1/5;及當末端區域存在時,反應器進一步包括第一個夾具在末端區域上。
任何本文中所述之反應器可在末端處具有單一開口。或者,任何本文中所述之反應器可具有兩個或多個開口,在反應器本體之每一端上具有一個開口。反應器可為大致上圓柱形,或反應器可以另一種形狀形成,譬如球形或半球形。
如本文中所討論之反應器可具有緩衝區域及/或一或多個冷卻末端區域。
關於反應器之夾具,譬如位在末端區域中之夾具,可由金屬或合金形成,於夾具中具有晶粒流動在徑向上。夾具可由超合金譬如Ni-Cr超合金形成。或者,夾具可由高強度鋼形成。
當反應器係經設計以生長具有在超臨界氨中之逆行溶解度之氮化鎵結晶時,反應器可具有第一個加熱器,其係經設計以保持反應器之營養物區域在接近但大於反應器結晶化作用區域中之反應器溫度之溫度下。
反應器可經設計,以致第一個加熱器係保持營養物區域大於結晶化作用區域之溫度不超過約20℃。
任何反應器可具有用於密封反應器第二端之第二個夾具。第二個夾具可相同於上文所討論之第一個夾具。
夾具可以兩個或三個或更多個片塊形成,以致夾具可被拆開,且自反應器移除。片塊可藉由與夾具相同材料所形成之螺栓固定在一起。
用於第III族-氮化物結晶性鑄錠之氨熱生長之反應器亦可具有界定小室之本體;及在包封物中之礦物化劑,其中包封物為氧-與水-不可透過材料,其能夠於反應器中,在生長條件下破裂。
如下文更詳細討論者,包封物可為在礦物化劑上之金屬或合金塗層,其會於反應器中,在結晶生長條件下軟化或熔解。
包封物可替代地或另外包括水-與氧-不可透過容器,其會於反應器中,在結晶生長條件下破裂。
容器可具有含包封物且在結晶生長條件下具有遠低於反應器內壓力之壓力之小室,以致當反應器達到操作壓力與溫度時,在容器上之壓力係超過其降服強度。
任何本文中所揭示之反應器可使用氨鹼性超臨界溶液或氨酸性超臨界溶液操作。礦物化劑可因此為鹼性或酸性。此種礦物化劑係為此項技藝中所習知。
亦揭示於本文中者為一種形成第III族-氮化物結晶性材料之方法。此方法包括:提供實質上不含氧與水之礦物化劑至氨熱生長反應器之反應室將該室抽空在該室中生長第III族-氮化物結晶性材料。
於本文中所揭示之任何方法可包括在反應室中提供氧吸氣劑。
一種形成氮化鎵結晶性材料之方法可包括在反應器之營養物區域中加熱包含多晶GaN之營養物
在反應器之結晶化作用區域中加熱晶種材料
使多晶GaN溶解於超臨界氨中
使經溶解之GaN沉積於晶種材料上,以生長氮化鎵結晶性材料
其中營養物區域之溫度係大於但接近結晶化作用區域之溫度。
在此種方法中,於營養物區域與結晶化作用區域間之溫度上差異,在使已溶解GaN沉積於晶種材料上之行為期間可不超過約50、40、30、25、20、15或10℃。
本文中所討論之任何方法可進一步包括在生長結晶性材料之行為前逆蝕刻營養物。
反應器與方法係更詳細地討論於下文。
技術描述
由於在鍛造材料上有大小限制,故現今不可能獲得各種金屬或合金之大直徑棒,譬如適合第III族-氮化物結晶性材料之氨熱生長之壓力容器可自其製成之可析出硬化Ni-Cr為基礎之超合金。例如,剛鑄造之R-41小鋼坯之最高直徑為17英吋,且此小鋼坯係在製造反應器之前被鍛造(例如圓形鍛造,其中鍛造壓力係沿著徑向施加)成12-英吋直徑棒。此係為在最新技術中所鍛造棒之最高直徑,且係意謂高壓容 器之最高外徑可接近12英吋。但是,此最高直徑不能使用現有方法實現,因亦必須自鍛造金屬或合金形成用於高壓容器之夾具。
關於此規模之高壓容器,夾具型閉合為較安全且更實用,此係由於增加之覆蓋負荷所致(意即在該條件下施加至蓋之力存在於氨熱結晶生長中)。螺桿型閉合對具有內徑大於2英吋之高壓容器並不實用,因為螺帽需要太多螺紋以致不能保持覆蓋負荷。
但是,由於夾具直徑必須大於高壓容器之外徑,故高壓容器之最高外徑係被夾具直徑所限制。例如使用R-41,12英吋之夾具直徑會造成具有4-6英吋外徑與2-3英吋內徑之高壓容器。雖然吾人可以此種高壓容器製造GaN之2-英吋晶圓,但生產率不夠大以與其他生長方法譬如氫化物氣相磊晶法(HVPE)競爭。
實例1
為解決上文所提及之問題,係尋求獲得較大夾具之數種方法,且吾人已發現能夠藉由沿著縱向鍛造剛鑄造之小鋼坯,以例如可析出硬化Ni-Cr為基礎之超合金或其他金屬或合金製造大直徑圓盤。使用此方法,將17-英吋剛鑄造之小鋼坯沿著縱向鍛造,以形成20-英吋直徑、1-呎厚圓盤。此鍛造製程經常會產生方向性微結構(晶粒流動),其係決定材料之抗張強度。
用以建造本體與蓋之圓形棒之晶粒流動典型上係沿著縱向,然而用以建造夾具之圓盤之晶粒流動係沿著徑向。雖然吾人可預期具有徑向晶粒流動而非軸向晶粒流動之圓盤在使用期間不具有足夠抗張強度以可信賴地夾住蓋至反應器本體,但此差異對於高壓容器之可靠性不具有顯著衝擊,只要高壓容器係經設計具有足夠安全係數即可。使用此方法,吾人設計具有11.5"外徑、4.75"內徑及大於47.5"高度之高壓容器。由於高壓容器之高度很大,故必須從兩端鑽孔,以在反應容器內形成小室。因此,高壓容器可能需要兩個蓋,在各末端上一個。在此情況中之夾具直徑為20",且厚度為12",其係確保足夠強度,以在結晶生長期間握住蓋。大夾具,譬如其可由兩個或多個夾具區段形成,其係例如被螺栓在一起,以形成最後完成之夾具。
大反應器,譬如上文所討論者,係提供較大機會,以改良反應器中所生長之較大直徑結晶之品質。熱氨係在高壓容器之內部循環,並轉移熱。為建立較佳溫度分布,可使用限制流動擋板。不像習用氨熱反應器,本發明之高壓容器可裝有限制流動擋板,以冷卻底部區域(於圖1中之11)。依此方式,密封物與夾具周圍之溫度係被保持低於結晶化作用區域之溫度,以改良可靠性。此外,此溫度分佈係防止GaN在底部蓋上之沒有必要沉澱作用。
大反應器設計亦允許大緩衝區域被併入結晶化作用區域與營養物區域之間。此緩衝區域可包括多個擋板,其中在擋板中之孔洞或開口係偏離相鄰擋板中之孔洞或開口。
此等擋板會增加緩衝區域內之平均停留時間,同時提供相對較停滯流動之一些區域及渦旋流動之其他區域,供氨通過擋板間之區域。在較大直徑反應器中從營養物區域至結晶化作用區域之平均流率,亦可小於較小直徑反應器中從營養物區域至結晶化作用區域之平均流率。
對於經設計以提供較低溫度在營養物區域中及較高溫度在結晶化作用區域中之反應器,緩衝區域亦可主要或唯一地位於鄰近營養物區域之加熱器之位置,以利用例如GaN在超臨界氨中之逆行溶解度。或者,緩衝區域可延伸過結晶化作用區帶之加熱器,以提供超臨界氨之較早期加熱或冷卻,以致當氨溶液遭遇晶種材料時,該溶液較可能在所要之溫度下。
過飽和氨在結晶化作用區域中供應之較緩慢氨流動,伴隨著其在緩衝劑區帶中之增加停留時間,可因此增加生長速率,如實例3中所示。
當高壓容器之大小增加時,總內部體積會變大。因此,重要的是,減輕可能之爆炸危險。在此實例中之相當爆炸能量係經估計為高達9磅TNT。在此實例中,吾人設計具有1/2英吋厚鋼壁之爆炸限制封閉物(於圖1中之12)。一件重要事情為在高壓容器中之氨可藉由高壓閥(於圖1中之13)之遠距操作而被釋出。此閥可經由機械、電或氣動方式被遠距操作。
實例2
實現大直徑高壓容器之另一種方法係為使用高強度鋼,用於夾具材料。雖然關於高強度鋼(譬如4140)之最高實際溫度為550℃,但最高可採用大小係為足夠大以製造用於具有12-英吋外徑之高壓容器之夾具。於此情況中,必須特別留心以控制夾具溫度。在具有一或多個擋板以阻礙氨流動之反應器中之末端區域,係允許氨在末端區域中冷卻,降低在該區域中之反應器溫度,及允許夾具由譬如高強度鋼之材料形成,此鋼在其他情況下可能不會被使用以形成夾具。而且,由於鋼係易被鹼性氨腐蝕,故在氨滲漏之情況下,適當抗腐蝕塗層係為最好。
實例3
在此實例中,具有內徑為1英吋之高壓容器係藉由具有一或多個在結晶化作用區域與營養物區域間之緩衝區域,被使用以說明提高之生長速率。不像實例1、2,此高壓容器僅在一個側面上具有開口端。高壓容器之小室係被區分成數個區域。從底部至頂部,有一個結晶化作用區域、數個緩衝區域及一個營養物區域。GaN結晶係以2個緩衝區域、5個緩衝區域及8個緩衝區域生長,並比較於各條件中之生長速率。首先,高壓容器係裝填4克NaNH2 ,種晶係自具有55毫米長支柱之限制流動擋板(第一個擋板)懸垂。為產生緩衝區域,將具有18毫米支柱之2個限制流動擋板、具有18毫米支柱之5個限制流動擋板或具有10毫米支柱之8個限制流動擋板固定在第一個擋板上方(意即對於最初兩種條件產生具有18毫米高度之緩衝區域,而對於最後條件產生具有10毫米高度之緩衝區域)。所有擋板均具有1/4"孔洞在中央,且總開口為約14%。在此情況中之擋板孔洞並未彼此偏離。於此等擋板之上方,放置含有10克多晶GaN之Ni籃子,並將高壓容器以蓋密封。所有此等裝填步驟均在充填氮之手套箱中進行。在手套箱中之氧與水份濃度係被保持為低於1 ppm。接著,將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。首先,將高壓容器以渦輪分子泵抽氣降壓,以達成壓力低於1 x 10-5 毫巴。
對於使用2、5及8個緩衝區域之條件,在此實例中之實際壓力個別為2.0 x 10-6 、2.4 x 10-6 及1.4 x 10-6 毫巴。依此方式,移除高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將容器轉移至兩個區帶爐子。將高壓容器加熱至結晶化作用區帶之575℃,及對於營養物區帶為510℃。於7天後,釋出氨,並打開高壓容器。關於使用2、5及8個緩衝區域之條件之生長速率係個別為每天65、131及153微米。生長速率係隨著在結晶化作用區域與營養物區域間之緩衝區域之增加數目而增加。關於提高生長速率之一項原因為當緩衝區域增加時,氨之對流流動變得較緩慢。另一項原因為藉由限制在營養物區域與結晶化作用區域間之熱交換而造成較大溫差。因此,預期調整擋板之開口、改變擋板上孔洞之位置、調整緩衝區域之高度,對於生長速率具有類似作用。為有效地提高生長速率,一般期望保持緩衝區域之高度大於高壓容器內徑之1/5,以致產生足夠空間,以促進氨之停滯/渦旋流動。
技術描述
此處係提出改良藉由氨熱方法所生長GaN之純度、透明性及結構品質之數種方法。下述實例係幫助說明所請求發明之其他原理,如前述實例一樣。
實例4 在此實例中,具有內徑為1英吋之高壓容器係用以說明氨熱生長步驟,在氨充填之前使用高真空抽氣。不像實例1、2,此高壓容器僅在一個側面上具有開口端。所有必要來源及內部組件,包括10克被保持在Ni籃子中之多晶GaN營養物、0.3毫米厚單晶GaN晶種及三個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用4克NaNH2 作為礦物化劑。將礦物化劑裝填至高壓容器中之後,裝載三個擋板以及晶種與營養物。於密封高壓容器之後,將其取出手套箱。然後,將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器在110℃下加熱,並以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為2.0 x 10-6 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子。將高壓容器加熱。結晶化作用區域係被保持在575℃下,而營養物區域係被保持在510℃下。於7天後,釋出氨,並打開高壓容器。所生長之結晶顯示深褐色(於圖2中之頂部取樣),且以次級離子質譜術(SIMS)所度量之氧濃度為1.2-2.8 x 1020 公分-3 。在此實例中,高壓容器之抽氣與加熱不會幫助氧降低。這是因為NaNH2 礦物化劑含有顯著量之氧/水份,如下一實例中所示。使礦物化劑之氧/水份含量降至最低後,高壓容器之抽氣與加熱係為必須,以使此製程中之氧之可能來源降至最低。
實例5
在此實例中,具有內徑為1英吋之高壓容器係用以說明氨熱生長步驟,在氨充填之前,使用Na礦物化劑,伴隨著高真空抽氣。不像實例1、2,此高壓容器在一個側面上具有開口端。所有必要來源及內部組件,包括10克被保持在Ni籃子中之多晶GaN營養物、0.3毫米厚單晶GaN晶種及六個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用2.3克Na方塊作為礦物化劑。將Na之表面"剝離",以移除氧化物層。但是,即使在手套箱中,剛製成之表面係在數秒內改變顏色,其表示Na表面之瞬間氧化作用。將礦物化劑裝填至高壓容器中之後,裝載六個擋板以及晶種與營養物。於密封高壓容器後,將其取出手套箱。接著,將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器在室溫下以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為1.5 x 10-6 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子。將高壓容器加熱。結晶化作用區域係被保持在575℃下,而營養物區域係被保持在510℃下。於7天後,釋出氨,並打開高壓容器。所生長結晶之呈色係經改良(於圖2中,得自頂部之第二個試樣)。藉次級離子質譜術(SIMS)所度量之氧濃度為0.7-2.0 x 1019 公分-3 ,其係比實例4中之試樣較低含量超過一個數量級。使用具有低氧/水份含量之礦物化劑,伴隨著將高壓容器抽氣,係顯示為重要的,以使結晶中之氧濃度降至最低。
實例6
如實例5中所示,降低礦物化劑之氧/水份含量對於改良GaN之純度係為重要的。如實例5中所解釋,Na表面係被迅速地氧化,即使在手套箱中亦然。因此,重要的是,減少Na或鹼金屬礦物化劑之外露表面。Na之氧化作用係藉由在Ni坩堝中熔解Na而被降低。將加熱板引進實例5中所提及之手套箱內,以將Ni坩堝在氧與水份經控制之環境下加熱。於移除Na之表面氧化物層後,將其放置在已於加熱板上加熱之Ni坩堝中。當Na熔解時,其表面係完全接觸在坩堝之底部與壁上。將Ni箔放置在Na之頂部表面上,以使Na之外露表面降至最低。由於Ni坩堝為足夠小以配合熱壓鍋,且Ni在生長環境中為安定的,故可將含有Na之Ni坩堝直接裝載於高壓容器中。依此方式,Na之大部份表面係以Ni覆蓋,因此Na之氧化作用係被降至最低。在超臨界氨中為安定之任何金屬可被使用於坩堝材料。典型金屬包括Ni、V、Mo、Ni-Cr超合金等。
實例7
覆蓋鹼金屬之新表面之另一種方法係為使用中空金屬管件穿透鹼金屬餅。此方式,鹼金屬之側壁係自動地以管件內壁覆蓋,因此減少曝露至環境之表面積。例如,與Ni箔呈三明治狀之平板形Na可經由在切割平板之頂部或底部表面後,立即貼附Ni箔而製成。雖然平板之側壁並未被覆蓋,但以Ni管件穿透Na平板可產生具有連接至Ni之側壁及以Ni箔覆蓋之頂部與底部表面之Na餅。依此方式,鹼金屬礦物化劑之氧/水份含量可被大大地降低。
實例8
當高壓容器變大時,不可能將礦物化劑裝填至手套箱中之高壓容器內。因此,必須採用替代程序,以避免礦物化劑之曝露至氧/水份。一種方法係為使用會在高壓下龜裂之氣密容器。此處為該程序之一項實例。將礦物化劑裝填至手套箱中之氣密容器內。若使用鹼金屬,則其可以實例6中所解釋之方式熔解與固化。然後,在大氣下,於高壓容器中裝載氣密容器及所有其他必要零件與材料。在密封高壓容器之後,將其抽氣降壓,並加熱,以將殘留氧/水份抽空。將氨添加在高壓容器中,且將高壓容器加熱,以生長結晶。當內部氨壓力超過氣密容器之龜裂壓力時,礦物化劑係被釋入氨中。依此方式,可將礦物化劑添加至氨中,而不會使彼等曝露至氧與水份。
實例9 為進一步降低氧濃度,在密封高壓容器之後及在添加氨之前,移除高壓容器中之氧,係為有效。一種實用程序係為在高壓容器中抽氣與回填還原氣體。還原氣體,譬如氨與氫,係與殘留氧在高壓容器中反應,並形成水蒸汽。因此,將高壓容器加熱,以增強還原方法,係為更有效。
實例10
在此實例中,具有內徑為1英吋之高壓容器係用以說明氨熱生長步驟,使用Ce添加作為氧吸氣劑。不像實例1、2,此高壓容器在一個側面上具有開口端。所有必要來源及內部組件,包括5克被保持在Ni籃子中之多晶GaN營養物、0.4毫米厚單晶GaN晶種及六個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用2.4克Na作為礦物化劑。將礦物化劑裝填至高壓容器中之後,裝載六個擋板以及晶種與營養物。接著添加0.4克Ce粉末。於密封高壓容器後,將其取出手套箱。將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為2.6 x 10-6 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子。將高壓容器加熱。首先,結晶化作用區域之爐子係被保持在510℃下,而營養物區域係被保持在550℃下,歷經24小時。已發現此逆溫度設定對於改良結晶品質係為有利,如實例15中所示。接著,結晶化作用區域與營養物區域之溫度係被設定為575與510℃,以供生長。於4天後,釋出氨,並打開高壓容器。所生長之結晶顯示帶黃色(於圖2中之中間試樣),其表示透明性之改良。
當添加0.1克Ca團塊代替Ce時,所生長之結晶為半透明,具有微黃褐色(於圖2中之底部試樣),其表示透明性之改良。隨著添加含有Al、Mn或Fe之氧吸氣劑,可預期類似結果。
實例11
在此實例中,具有內徑為1英吋之高壓容器係用以說明氨熱生長步驟,使用B添加作為界面活性劑。不像實例1、2,此高壓容器在一個側面上具有開口端。所有必要來源及內部組件,包括5克被保持在Ni籃子中之多晶GaN營養物、一個0.4毫米厚單晶GaN晶種及六個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用2.4克Na作為礦物化劑。將礦物化劑裝填至高壓容器中之後,裝載六個擋板以及晶種與營養物。接著添加0.1克BN小片狀體。於密封高壓容器之後,將其取出手套箱。將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為1.8 x 10-6 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子。將高壓容器加熱。首先,結晶化作用區域之爐子係被保持在510℃下,而營養物區域係被保持在550℃下,歷經24小時。已發現此逆溫度設定對於改良結晶品質係為有利,如實例15中所示。接著,結晶化作用區域與營養物區域之溫度係被設定為575與510℃,以供生長。於4天後,釋出氨,並打開高壓容器。所生長之結晶顯示較淡褐色(於圖2中,得自底部之第二個試樣),其顯示透明性之改良。與使用習用氨熱生長者比較[5],結構品質亦經改良。得自(002)與(201)平面之X-射線擺動曲線之半極大值處之全寬度(FWHM)係個別為295與103反正割。此等數目係為約5倍小於參考資料[5]中所報告之結晶。隨著添加含有In、Zn、Sn或Bi之界面活性劑,可預期類似結果。
實例12
在此實例中,具有內徑為1英吋之高壓容器係用以說明氨熱生長步驟,使用Mg添加作為氧吸氣劑。不像實例1、2,此高壓容器在一個側面上具有開口端。所有必要來源及內部組件,包括5克被保持在Ni籃子中之多晶GaN營養物、0.4毫米厚單晶GaN晶種及六個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用2.4克Na作為礦物化劑。如實例6中所解釋,使Na熔解於Ni坩堝中,以Ni箔加蓋,及固化。將0.1克Mg添加在Ni箔上方之Ni坩堝中。將Ni坩堝裝載至高壓容器中後,裝載六個擋板,伴隨著晶種與營養物。於密封高壓容器後,將其取出手套箱。將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為1.4 x 10-7 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子。將高壓容器加熱。對於最初24小時,僅起動營養物區域之爐子,並保持在550℃下,同時保持結晶化作用區域之爐子關閉,以逆蝕刻晶種之表面。已發現此逆溫度設定對於改良結晶品質係為有利,如實例15中所示。接著,結晶化作用區域與營養物區域之溫度係被設定為590與575℃,以供生長。於9天後,釋出氨,並打開高壓容器。所生長之結晶顯示幾乎透明,如圖3中所示。因此,在此製程中降低氧污染,係極有效改良結晶之透明性。
實例13
種晶係經常藉由將大塊GaN以金屬線鋸切片,接著拋光而製成。在藉由此等切片與拋光程序所產生晶種之表面上有一個傷害層。為改良GaN之結構品質,必須移除此傷害層。此外,以物理方式或化學方式被吸附在晶種表面上之不純物可以逆蝕刻移除。在此實例中,具有內徑為1英吋之高壓容器係用以說明氨熱高壓容器中之晶種之逆蝕刻。不像實例1、2,此高壓容器在一個側面上具有開口端。GaN種晶係藉由將結晶化作用區域之溫度設定低於營養物區域之溫度而被逆蝕刻。所有必要來源及內部組件,包括10克被保持在Ni籃子中之多晶GaN營養物、一個0.4毫米厚單晶GaN晶種及六個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用4克NaNH2 作為礦物化劑。將礦物化劑裝填至高壓容器中後,裝載六個擋板以及晶種與營養物。於密封高壓容器後,將其取出手套箱。接著,將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器在125℃下加熱,並以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為1.8 x 10-6 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子。將高壓容器加熱。結晶化作用區域之爐子係被保持關閉,而營養物區域係被保持在550℃下。在結晶化作用區域中所度量之實際溫度為366℃。保持溫差大於50℃,以避免由於濃度梯度所致之GaN沉積在晶種上,係為極重要。於24小時後,釋出氨,並打開高壓容器。種晶係被逆蝕刻達36微米,其係足以移除藉由切片與拋光所產生之傷害層。
實例13
雖然GaN在高於大約400℃之溫度下具有逆行溶解度,但是溶解度對於低於大約400℃之溫度具有正常(意即正)依賴性。因此,可藉由設定結晶化作用區帶低於400℃,且保持結晶化作用區帶之溫度高於其他區帶之溫度,而逆蝕刻種晶。重要的是,保持營養物區域之溫度至少50℃低於結晶化作用區域,以避免由於濃度梯度所致之GaN沉積在晶種上。
實例14
種晶係經常藉由將大塊GaN以金屬線鋸切片,接著拋光而製成。在藉由此等切片與拋光程序所產生晶種之表面上有一個傷害層。為改良GaN之結構品質,必須移除此傷害層。此外,以物理方式或化學方式被吸附在晶種表面上之不純物可經由逆蝕刻移除。在此實例中,於氨熱生長之前,種晶係在個別反應器中被逆蝕刻。將具有厚度為大約0.4毫米之種晶裝填在爐子反應器中,其可使氨、氯化氫、氫及氮流動。在此實例中,種晶係在氯化氫、氫及氮之混合物中被蝕刻。氯化氫、氫及氮之流率個別為25 sccm、60 sccm及1.44 slm。對於800、985、1000、1050℃,蝕刻速率為7、21、35及104微米/小時。因此,高於800℃之逆蝕刻係獲得表面層之足夠移除。
實例15
吾人已發現所生長結晶之結構品質係在起始溫度爬升期間利用逆溫度條件而被改良。在此實例中,具有內徑為1英吋之高壓容器係用以說明在生長之最初階段中逆溫度設定之作用。不像實例1、2,此高壓容器在一個側面上具有開口端。所有必要來源及內部組件,包括10克被保持在Ni籃子中之多晶GaN營養物、0.4毫米厚單晶GaN晶種及三個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。使用4克NaNH2 作為礦物化劑。將礦物化劑裝填至高壓容器中之後,裝載三個擋板以及晶種與營養物。於密封高壓容器之後,將其取出手套箱。接著,將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器在120℃下加熱,並以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為1.5 x 10-6 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約40克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子,並加熱。結晶化作用區域之爐子係被保持在510℃下,而營養物區域係被保持在550℃下,歷經6小時。接著,結晶化作用區域與營養物區域之溫度係被設定為575與510℃,以供生長。於7天後,釋出氨,並打開高壓容器。所生長之結晶具有厚度為大約1毫米。與使用習用氨熱生長者[5]比較,結構品質係經改良。得自(002)與(201)平面之X-射線擺動曲線之半極大值處之全寬度(FWHM)個別為169與86反正割。
實例16
吾人已發現在生長期間設定結晶化作用溫度稍低於營養物溫度會顯著地降低多晶GaN於反應器內部表面上之寄生沉積。雖然GaN在超臨界氨鹼溶液中具有逆行溶解度,如在參考資料[6,13-16]中所揭示者,但吾人已發現GaN結晶生長會發生,即使使用逆溫度條件亦然。再者,所生長結晶之結構品質係經改良,不會犧牲生長速率。
具有內徑為1英吋之高壓容器係用以說明在生長期間逆溫度設定之作用。不像實例1、2,此高壓容器在一個側面上具有開口端。所有必要來源及內部組件,包括10克被保持在Ni籃子中之多晶GaN營養物、0.47毫米厚單晶GaN晶種及六個限制流動擋板,係與高壓容器一起被裝載至手套箱中。將手套箱充填氮,且氧與水份濃度係被保持為低於1 ppm。由於礦物化劑係與氧及水份具反應性,故將礦物化劑一直儲存於手套箱中。如實例6中所解釋之已在Ni坩堝中固化且以Ni箔加蓋之2.6克Na係作為礦物化劑使用。將Ni坩堝裝載至高壓容器中之後,裝載六個擋板以及晶種與營養物籃子。於密封高壓容器後,將其取出手套箱。接著,將高壓容器連接至氣體/真空系統,其可將容器抽氣降壓,以及供應NH3 至容器。將高壓容器以渦輪分子泵抽空,以達成壓力低於1 x 10-5 毫巴。在充填氨前之實際壓力為9.5 x 10-8 毫巴。依此方式,移除在高壓容器內壁上之殘留氧與水份。然後,使高壓容器以液態氮急冷,並使NH3 在高壓容器中凝結。將大約44克NH3 裝填在高壓容器中。於關閉高壓容器之高壓閥後,將其轉移至兩個區帶爐子,並加熱。對於最初24小時,結晶化作用區帶與營養物區帶之爐子係經爬升,且個別被保持在360℃與570℃下。如實例15中所解釋,此逆溫度設定係確保晶種之逆蝕刻。接著,將結晶化作用區帶加熱,並在約10分鐘內保持至535℃,並使營養物區域於24小時內自570℃冷卻降至540℃。預期營養物區域之緩慢冷卻會降低在最初生長階段中GaN之突然沉澱作用。於營養物區域之溫度變成540℃後,將此逆溫度設定(意即對於結晶化作用區域為535℃,而對於營養物區域為540℃)再保持3天。然後,釋出氨,開啟反應器,及冷卻。所生長之結晶具有厚度為大約1.2毫米。平均生長速率為0.183毫米/天。相較於使用習用氨熱生長者[5],結構品質係經改良。得自(002)與(201)平面之X-射線擺動曲線之半極大值處之全寬度(FWHM)個別為56與153反正割。而且,寄生沉積為約0.3克,其係大於相較於習用溫度設定所降低之50%。
優點與改良事項
所揭示之改良事項係使得能夠經由氨熱生長大量生產高 品質GaN晶圓。利用新穎高壓容器設計,吾人可使具有可採用Ni-Cr為基礎之可析出硬化超合金大小限制之高壓容器達到最大程度。在生長系統中降低氧污染之程序係確保高純度GaN晶圓。少量添加劑,譬如Ce、Ca、Mg、Al、Mn、Fe、B、In、Zn、Sn、Bi,係幫助改良結晶品質。種晶之原位或外部逆蝕刻係為移除傷害層及得自GaN晶種之任何所吸附不純物之有效方式。此外,逆溫度設定,即使是針對生長方案,亦有利於降低多晶GaN在反應器內部表面上之寄生沉積,及改良結構品質。此等技術係幫助改良第III族氮化物結晶與晶圓之品質。
可能修正
雖然較佳具體實施例係描述兩區帶加熱器,但熱區帶可被區分成大於兩個,以獲得有利溫度分佈型態。
雖然較佳具體實施例係描述GaN之生長作為一項實例,但其他第III族-氮化物結晶可被使用於本發明中。第III族-氮化物材料可包括至少一種第III族元素B、Al、Ga及In。
雖然較佳具體實施例係描述使用多晶GaN營養物,但其他來源形式,譬如金屬Ga、非晶質GaN、胺化鎵、亞胺鎵,可被使用於本發明中。
於較佳具體實施例中,係提出特定生長設置。但是,符合本文中所述條件之其他構造或設計將具有與此等實例相同之利益。
雖然在較佳具體實施例中之實例係解釋處理步驟,其中NH3 係於高溫下被釋出,但NH3 亦可於高壓容器被冷卻之後釋出,只要螺桿之停止不動不會發生即可。
本發明較佳具體實施例之前文描述已針對說明與描述之目的被提出。並不意欲為毫無遺漏或將本發明限制於所揭示之明確形式。鑒於上述陳述內容,許多修正與變型是可能的。所意欲的是,本發明之範圍並不受限於此詳細說明,而是受限於隨文所附之請求項。
參考資料
下列參考資料係併於本文供參考:
[1].S.Porowski,氮化物半導體之MRS網際網路期刊,Res.4S1,(1999)G1.3。
[2]T.Inoue,Y.Seki,O.Oda,S.Kurai,Y.Yamada及T.Taguchi,Phys.Stat.Sol.(b),223(2001)第15頁。
[3]M.Aoki,H.Yamane,M.Shimada,S.Sarayama及F.J.DiSalvo,J.Cryst.Growth 242(2002)第70頁。
[4]T.Iwahashi,F.Kawamura,M.Morishita,Y.Kai,M.Yoshimura,Y.Mori及T,Sasaki,J.Cryst Growth 253(2003)第1頁。
[5]T.Hashimoto,F.Wu,J.S.Speck,S.Nakamura,Jpn.J.Appl.Phys.46(2007)L889。
[6]R.Dwiliski,R.Doradziski,J.Garczyski,L.Sierzputowski,Y.Kanbara,美國專利6,656,615。
[7]R.Dwiliski,R.Doradziski,J.Garczyski,L.Sierzputowski,Y.Kanbara,美國專利7,132,730。
[8]R.Dwiliski,R.Doradziski,J.Garczyski,L.Sierzputowski,Y.Kanbara,美國專利7,160,388。
[9]K.Fujito,T.Hashimoto,S.Nakamura,國際專利申請案號PCT/US2005/024239,WO07008198。
[10]T.Hashimoto,M.Saito,S.Nakamura,國際專利申請案號PCT/US2007/008743,WO07117689。亦參閱2007年4月6日提出申請之US20070234946,美國專利申請案序號11/784,339。
[11]S.Kawabata,A.Yoshikawa,JP 2007-290921。
[12]M.P.D'Evelyn,K.J.Narang,美國專利6,398,867 B1。
[13]D.Peter,J.Cryst.Crowth,104(1990)411。
[14]T.Hashimoto,K.Fujito,B.A.Haskell,P.T.Fini,J.S.Speck及S.Nakamura,J.Cryst.Growth 275(2005)e525。
[15]M.Callahan,B.G.Wang,K.Rakes,D.Bliss,L.Bouthillette,M.Suscavage,S.Q.Wang,J.Mater.Sci.41(2006)1399。
[16]T.Hashimoto,M.Saito,K.Fujito,F.Wu,J.S.Speck,S.Nakamura,J.Cryst.Growth 305(2007)311。
上文各參考資料係以其全文併入供參考,猶如完全提出於本文一般,且特別是關於使用氨熱方法及使用此等氮化鎵基材之製造方法之描述。
1...高壓容器
2...蓋
3...夾具
4...墊片
5...結晶化作用區域之加熱器
6...溶解區域之加熱器
7...限制流動擋板
8...營養物籃子
9...營養物
10...種晶
11...限制流動擋板
12...爆炸限制封閉物
13...閥
14...排氣管
15...操作閥之裝置
現在參考附圖,其中同樣參考編號係在全文中表示相應之部份:圖1為本發明中之高壓容器之示意圖。
在圖中,各編號表示下列:
1.高壓容器
2.蓋
3.夾具
4.墊片
5.結晶化作用區域之加熱器
6.溶解區域之加熱器
7.限制流動擋板
8.營養物籃子
9.營養物
10.種晶
11.限制流動擋板
12.爆炸限制封閉物
13.閥
14.排氣管
15.操作閥之裝置
圖2為依礦物化劑與添加劑而定,比較呈色之照片。
圖3為使用Mg添加劑之GaN結晶之照片。
1...高壓容器
2...蓋
3...夾具
4...墊片
5...結晶化作用區域之加熱器
6...溶解區域之加熱器
7...限制流動擋板
8...營養物籃子
9...營養物
10...種晶
11...限制流動擋板
12...爆炸限制封閉物
13...閥
14...排氣管
15...操作閥之裝置

Claims (33)

  1. 一種具有小室且適合生長第III族氮化物結晶之圓柱形高壓容器,其包括主體與兩個蓋,在主體之各末端上一個蓋,主體係由可析出硬化Ni-Cr為基礎之超合金製成,沿著垂直方向具有其最長尺寸,其內徑大於2英吋,其最小外徑大於4英吋,其主體之垂直長度大於5倍內徑,且進一步包括下列特徵:(a)高壓容器之小室係以限制流動擋板,沿著垂直方向被區分成至少三個區域,其包含最接近該兩個蓋之區域及結晶化作用區域;(b)該結晶化作用區域係位於該等最接近該兩個蓋之區域之間,並於結晶生長期間,經設計以保持在高於該等最接近該兩個蓋之區域之溫度;(c)該最接近該兩個蓋之區域於結晶生長期間,經設計以保持在比其他區域較低之溫度下;(d)及適於包括含有第III族營養物之營養物區域係位於結晶化作用區域之上方。
  2. 如請求項1之圓柱形高壓容器,其進一步包括下列特徵;(a)主體係由鍛造圓形棒或鍛造中空棒所製成,其中主要鍛造壓力係沿著原始小鋼坯之徑向施加;(b)在兩端上之兩個蓋係以夾具閉合;(c)夾具係由可析出硬化Ni-Cr為基礎超合金之鍛造圓盤所製成,其中主要鍛造壓力係沿著原始小鋼坯之縱向施加。
  3. 如請求項1之圓柱形高壓容器,其進一步包括下列特徵;(a)主體係由鍛造圓形棒或鍛造中空棒所製成,其中主要鍛造壓力係沿著原始小鋼坯之徑向施加;(b)在兩端上之兩個蓋係以夾具閉合;(c)夾具係由合金鋼所製成,且容器係經設計以在結晶生長期間提供夾具溫度低於550℃。
  4. 如請求項1之圓柱形高壓容器,其進一步包括下列特徵;(a)主體係由鍛造圓形棒或鍛造中空棒所製成,其中晶粒流動係沿著原始小鋼坯之縱向;(b)在兩端上之兩個蓋係以夾具閉合;(c)夾具係由可析出硬化Ni-Cr為基礎超合金之鍛造圓盤所製成,其中晶粒流動係沿著原始小鋼坯之徑向。
  5. 如請求項1-4中任一項之圓柱形高壓容器,其中係產生一或多個緩衝空間,具有限制流動擋板在結晶化作用區域與營養物區域之間。
  6. 如請求項5之圓柱形高壓容器,其中緩衝空間之高度為高壓容器內徑之至少1/5。
  7. 如請求項1-4中任一項之圓柱形高壓容器,其中用於結晶化作用區域之加熱器係經設計以提供溫度大於550℃。
  8. 如請求項1-4中任一項之圓柱形高壓容器,其中至少高壓容器與加熱器係被容納在爆炸限制封閉物中,其中壁厚係大於1/2英吋。
  9. 如請求項8之圓柱形高壓容器,其中氨可藉由自爆炸限制封閉物外部遠距操作爆炸限制封閉物內部之閥而被釋出。
  10. 一種以曝露鹼金屬礦物化劑於最低之氧與水份之方式生長第III族氮化物結晶之方法,其包括;(a)將第III族-氮化物種晶裝填在高壓容器之結晶化作用區域中,及含第III族之營養物來源在該高壓容器之營養物區域中;(b)自該鹼金屬礦物化劑移除表面氧化物層,以曝露該礦物化劑之新表面;(c)以金屬層覆蓋該鹼金屬礦物化劑之新表面,以形成金屬覆蓋之鹼金屬礦物化劑;(d)將該金屬覆蓋之鹼金屬礦物化劑裝填在該高壓容器中;(e)密封高壓容器;(f)將高壓容器抽空至壓力低於1 x 10-5 毫巴;(g)以氨充填高壓容器;(h)使結晶化作用區域之溫度爬升高於500℃;(i)保持(h)中所述之溫度條件,歷經足夠時間,以生長結晶;(j)釋出氨,以停止結晶生長;及(k)開封高壓容器。
  11. 如請求項10之方法,其中步驟(c)係涉及熔解鹼金屬礦物化劑,並使該鹼金屬礦物化劑在金屬容器中固化。
  12. 如請求項10之方法,其中金屬層含有Ni。
  13. 如請求項10之方法,其中鹼金屬為Na。
  14. 如請求項10之方法,其中請求項之10之步驟(c)係利用氣密 容器進行,將該容器在氧與水份經控制之環境中充填礦物化劑,且當高壓容器藉由加熱而自行加壓時,此容器會釋出礦物化劑。
  15. 如請求項10之方法,其中將高壓容器充填還原氣體,並至少一次連續地抽氣至壓力低於1 x 10-5 毫巴。
  16. 如請求項15之方法,其中將高壓容器在請求項15中所述之步驟期間加熱。
  17. 如請求項15之方法,其中還原氣體含有氨。
  18. 如請求項15之方法,其中還原氣體含有氫。
  19. 如請求項10之方法,其中除了礦物化劑以外,係添加含有至少一種Ce、Ca、Mg、Al、Mn及Fe之添加劑。
  20. 如請求項10之方法,其中除了礦物化劑以外,係添加含有至少一種B、In、Zn、Sn及Bi之添加劑。
  21. 如請求項10-20中任一項之方法,其中第III族-氮化物種晶係在步驟(h)中開始結晶生長之前被逆蝕刻。
  22. 如請求項21之方法,其中第III族氮化物種晶係藉由保持營養物區域之溫度高於400℃而被逆蝕刻,且在請求項10之步驟(h)中開始結晶生長之前,於結晶化作用區域中之溫度係被保持至少50℃低於營養物區域之溫度。
  23. 如請求項21之方法,其中第III族氮化物種晶係藉由保持結晶化作用區域之溫度低於400℃而被逆蝕刻,且在請求項10之步驟(h)中開始結晶生長之前,於結晶化作用區域中之溫度係被保持至少50℃高於營養物區域之溫度。
  24. 如請求項21之方法,其中第III族氮化物種晶係在請求項10 之步驟(a)之前,在高於800℃之溫度下,於含有蝕刻氣體之大氣中以熱方式被逆蝕刻,該氣體選自氟化氫、氟、氯化氫、氯、溴化氫、溴、碘化氫、碘、氨及氫。
  25. 如請求項21之方法,其中第III族氮化物種晶係被逆蝕刻達大於1微米。
  26. 如請求項10-20中任一項之方法,其中在請求項10之步驟(h)中開始結晶生長之前,結晶化作用區域之溫度係被保持低於營養物區域之溫度。
  27. 如請求項26之方法,其中請求項26中之步驟之延續時間係超過1小時。
  28. 如請求項10-20中任一項之方法,其中係使用氨鹼溶液,且在請求項10之步驟(i)期間,結晶化作用區域之溫度係被設定在於或低於營養物區域之溫度。
  29. 如請求項28之方法,其中在結晶化作用區域與營養物區域間之溫差係低於30℃。
  30. 一種使用圓柱形高壓容器生長第III族氮化物結晶之方法,該容器具有至少一個結晶化作用區域與一個營養物區域,藉由一或多個限制流動擋板分隔,此方法包括:(a)將第III族-氮化物種晶裝填在結晶化作用區域中,及含第III族之來源在營養物區域中;(b)將含鹼金屬之礦物化劑裝填至高壓容器中,其方式是該礦物化劑具有對氧或水份之最低曝露;(c)密封高壓容器;(d)將高壓容器抽空至壓力低於1 x 10-5 毫巴; (e)以氨充填高壓容器;(f)逆蝕刻種晶,其方式是保持營養物區域之溫度高於400℃,且在結晶化作用區域中之溫度係被保持至少50℃低於營養物區域之溫度;(g)使結晶化作用區域之溫度爬升高於500℃;(h)保持(g)中所述之溫度條件,歷經足夠長之時間,以生長結晶;(i)釋出氨,以停止結晶生長;(j)開封高壓容器。
  31. 如請求項30之方法,其中種晶係在步驟(f)中被逆蝕刻達大於1微米。
  32. 一種使用圓柱形高壓容器生長第III族氮化物結晶之方法,該容器具有至少一個結晶化作用區域與一個營養物區域,藉由一或多個限制流動擋板分隔,此方法包括:(a)將第III族-氮化物種晶裝填在結晶化作用區域中,及含第III族之來源在營養物區域中;(b)將含鹼金屬之礦物化劑裝填至高壓容器中,其方式是該礦物化劑具有對氧或水份之最低曝露;(c)密封高壓容器;(d)將高壓容器抽空至壓力低於1 x 10-5 毫巴;(e)以氨充填高壓容器;(f)逆蝕刻種晶,其方式是保持結晶化作用區域之溫度低於400℃,且在結晶化作用區域中之溫度係被保持至少50℃高於營養物區域之溫度; (g)使結晶化作用區域之溫度爬升高於500℃;(h)保持(g)中所述之溫度條件,歷經足夠長之時間,以生長結晶;(i)釋出氨,以停止結晶生長;(j)開封高壓容器。
  33. 如請求項32之方法,其中種晶係在步驟(f)中被逆蝕刻達大於1微米。
TW098118661A 2008-06-04 2009-06-04 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶 TWI460323B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US5891008P 2008-06-04 2008-06-04

Publications (2)

Publication Number Publication Date
TW201002880A TW201002880A (en) 2010-01-16
TWI460323B true TWI460323B (zh) 2014-11-11

Family

ID=41059761

Family Applications (1)

Application Number Title Priority Date Filing Date
TW098118661A TWI460323B (zh) 2008-06-04 2009-06-04 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶

Country Status (5)

Country Link
US (6) US8236267B2 (zh)
EP (2) EP2291551B1 (zh)
JP (4) JP5631746B2 (zh)
TW (1) TWI460323B (zh)
WO (1) WO2009149300A1 (zh)

Families Citing this family (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2549594A1 (fr) 2003-12-02 2005-06-23 Institut Pasteur Nouvelle souche de coronavirus associe au sras et ses applications
US9518340B2 (en) 2006-04-07 2016-12-13 Sixpoint Materials, Inc. Method of growing group III nitride crystals
US8357243B2 (en) 2008-06-12 2013-01-22 Sixpoint Materials, Inc. Method for testing group III-nitride wafers and group III-nitride wafers with test data
US9670594B2 (en) 2006-04-07 2017-06-06 Sixpoint Materials, Inc. Group III nitride crystals, their fabrication method, and method of fabricating bulk group III nitride crystals in supercritical ammonia
US8764903B2 (en) 2009-05-05 2014-07-01 Sixpoint Materials, Inc. Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
US20150275391A1 (en) * 2006-04-07 2015-10-01 Sixpoint Materials, Inc. High pressure reactor for supercritical ammonia
WO2009108700A1 (en) * 2008-02-25 2009-09-03 Sixpoint Materials, Inc. Method for producing group iii nitride wafers and group iii nitride wafers
DE102009003296B4 (de) * 2008-05-22 2012-11-29 Ngk Insulators, Ltd. Herstellungsverfahren für einen N-leitenden Galliumnitrid-basierten Verbindungshalbleiter
TWI460323B (zh) 2008-06-04 2014-11-11 Sixpoint Materials Inc 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶
TWI460322B (zh) 2008-06-04 2014-11-11 Sixpoint Materials Inc 藉由氨熱生長法自初始第iii族氮化物種產生具改良結晶度之第iii族氮化物晶體之方法
WO2010045567A1 (en) * 2008-10-16 2010-04-22 Sixpoint Materials, Inc. Reactor design for growing group iii nitride crystals and method of growing group iii nitride crystals
US20100111808A1 (en) * 2008-11-05 2010-05-06 The Regents Of The University Of California Group-iii nitride monocrystal with improved crystal quality grown on an etched-back seed crystal and method of producing the same
US8574525B2 (en) * 2008-11-07 2013-11-05 The Regents Of The University Of California Using boron-containing compounds, gasses and fluids during ammonothermal growth of group-III nitride crystals
WO2010060034A1 (en) * 2008-11-24 2010-05-27 Sixpoint Materials, Inc. METHODS FOR PRODUCING GaN NUTRIENT FOR AMMONOTHERMAL GROWTH
JP5147092B2 (ja) * 2009-03-30 2013-02-20 豊田合成株式会社 Iii族窒化物半導体の製造方法
DE102009016137B4 (de) * 2009-04-03 2012-12-20 Sicrystal Ag Herstellungsverfahren für einen versetzungsarmen AlN-Volumeneinkristall und versetzungsarmes einkristallines AlN-Substrat
JP2011153052A (ja) * 2010-01-28 2011-08-11 Asahi Kasei Corp 窒化物単結晶の製造方法
JP2011153056A (ja) * 2010-01-28 2011-08-11 Asahi Kasei Corp アンモニア雰囲気に接する圧力容器
JP2011153055A (ja) * 2010-01-28 2011-08-11 Asahi Kasei Corp 窒化物単結晶の製造方法
WO2012176318A1 (ja) * 2011-06-23 2012-12-27 旭化成株式会社 窒化物単結晶の製造方法及びそれに用いるオートクレーブ
JPWO2012176318A1 (ja) * 2011-06-23 2015-02-23 旭化成株式会社 窒化物単結晶の製造方法及びそれに用いるオートクレーブ
JP2013091596A (ja) * 2011-10-24 2013-05-16 Mitsubishi Chemicals Corp 窒化物結晶の製造方法
JP2013177263A (ja) * 2012-02-28 2013-09-09 Japan Steel Works Ltd:The 結晶育成用反応容器
CN102581577B (zh) * 2012-03-26 2014-01-01 苏州先端稀有金属有限公司 一种制造籽晶夹头的方法
CN104781456B (zh) * 2012-08-24 2018-01-12 希波特公司 掺杂铋的半绝缘第iii族氮化物晶片和其制造方法
KR101895035B1 (ko) 2012-08-28 2018-09-04 식스포인트 머터리얼즈 인코퍼레이티드 3족 질화물 웨이퍼 및 그의 제조 방법
WO2014051692A1 (en) 2012-09-25 2014-04-03 Sixpoint Materials, Inc. Method of growing group iii nitride crystals
EP2900850B1 (en) 2012-09-26 2018-11-14 SixPoint Materials, Inc. Fabrication method of group iii nitride wafers and testing method thereof
WO2015153737A1 (en) * 2014-04-01 2015-10-08 Sixpoint Materials, Inc. High pressure reactor for supercritical ammonia and method for producing crystalline group iii nitride
PL231548B1 (pl) * 2014-09-11 2019-03-29 Ammono Spolka Akcyjna Sposób wytwarzania monokrystalicznego azotku zawierającego gal
JP6474920B2 (ja) 2015-06-25 2019-02-27 シックスポイント マテリアルズ, インコーポレイテッド 高圧反応器および超臨界アンモニア中のiii族窒化物結晶の成長方法
US10378087B2 (en) 2015-12-09 2019-08-13 General Electric Company Nickel base super alloys and methods of making the same
US10174438B2 (en) * 2017-03-30 2019-01-08 Slt Technologies, Inc. Apparatus for high pressure reaction
WO2019157313A1 (en) 2018-02-09 2019-08-15 Sixpoint Materials, Inc. Low-dislocation bulk gan crystal and method of fabricating same
US11767609B2 (en) 2018-02-09 2023-09-26 Sixpoint Materials, Inc. Low-dislocation bulk GaN crystal and method of fabricating same
US10577679B1 (en) 2018-12-04 2020-03-03 General Electric Company Gamma prime strengthened nickel superalloy for additive manufacturing
CN110670118B (zh) * 2019-10-23 2021-12-10 上海玺唐半导体科技有限公司 一种晶体生长装置以及晶体生长方法
CN111304732A (zh) * 2020-03-27 2020-06-19 上海玺唐半导体科技有限公司 晶体生长装置、热等静压设备及晶体生长方法
US11296202B2 (en) 2020-04-01 2022-04-05 Taiwan Semiconductor Manufacturing Co., Ltd. Memory chip structure having GAA transistors with different threshold voltages and work functions for improving performances in multiple applications
CN112557136B (zh) * 2020-11-16 2023-05-23 上海大学 多元合金扩散偶装置及多元合金扩散系数测定实验方法
US11742800B2 (en) 2021-11-19 2023-08-29 Sixpoint Materials, Inc. Terahertz Gunn oscillator using gallium nitride
CN114438582A (zh) * 2022-01-11 2022-05-06 武汉大学 用于提高氨热法氮化镓晶体生长速度的反应釜结构

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080102016A1 (en) * 2006-10-25 2008-05-01 The Regents Of The University Of California Method for growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group III-nitride crystals grown thereby

Family Cites Families (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2962838A (en) 1957-05-20 1960-12-06 Union Carbide Corp Method for making synthetic unicrystalline bodies
JPS5749520B2 (zh) * 1974-02-04 1982-10-22
JPS5241855A (en) 1975-09-30 1977-03-31 Toshiba Corp Ac constant current power circuit
US4396529A (en) 1978-11-13 1983-08-02 Nordson Corporation Method and apparatus for producing a foam from a viscous liquid
DE3480721D1 (de) 1984-08-31 1990-01-18 Gakei Denki Seisakusho Verfahren und vorrichtung zur herstellung von einkristallen.
US5679152A (en) 1994-01-27 1997-10-21 Advanced Technology Materials, Inc. Method of making a single crystals Ga*N article
JP3735921B2 (ja) 1996-02-07 2006-01-18 三菱ウェルファーマ株式会社 GPIb・脂質複合体およびその用途
JPH10125753A (ja) 1996-09-02 1998-05-15 Murata Mfg Co Ltd 半導体のキャリア濃度測定方法、半導体デバイス製造方法及び半導体ウエハ
US6309595B1 (en) * 1997-04-30 2001-10-30 The Altalgroup, Inc Titanium crystal and titanium
CN1175473C (zh) 1997-10-30 2004-11-10 住友电气工业株式会社 GaN单晶衬底及其制造方法
US5942148A (en) 1997-12-24 1999-08-24 Preston; Kenneth G. Nitride compacts
WO1999066565A1 (en) 1998-06-18 1999-12-23 University Of Florida Method and apparatus for producing group-iii nitrides
JP3592553B2 (ja) 1998-10-15 2004-11-24 株式会社東芝 窒化ガリウム系半導体装置
US20010047751A1 (en) 1998-11-24 2001-12-06 Andrew Y. Kim Method of producing device quality (a1) ingap alloys on lattice-mismatched substrates
US6177057B1 (en) 1999-02-09 2001-01-23 The United States Of America As Represented By The Secretary Of The Navy Process for preparing bulk cubic gallium nitride
US6190629B1 (en) 1999-04-16 2001-02-20 Cbl Technologies, Inc. Organic acid scrubber and methods
US6326313B1 (en) 1999-04-21 2001-12-04 Advanced Micro Devices Method and apparatus for partial drain during a nitride strip process step
US6406540B1 (en) 1999-04-27 2002-06-18 The United States Of America As Represented By The Secretary Of The Air Force Process and apparatus for the growth of nitride materials
US6117213A (en) 1999-05-07 2000-09-12 Cbl Technologies, Inc. Particle trap apparatus and methods
US6562124B1 (en) * 1999-06-02 2003-05-13 Technologies And Devices International, Inc. Method of manufacturing GaN ingots
JP4145437B2 (ja) 1999-09-28 2008-09-03 住友電気工業株式会社 単結晶GaNの結晶成長方法及び単結晶GaN基板の製造方法と単結晶GaN基板
US6398867B1 (en) 1999-10-06 2002-06-04 General Electric Company Crystalline gallium nitride and method for forming crystalline gallium nitride
US6441393B2 (en) 1999-11-17 2002-08-27 Lumileds Lighting U.S., Llc Semiconductor devices with selectively doped III-V nitride layers
JP4627830B2 (ja) 1999-12-20 2011-02-09 株式会社フルヤ金属 超臨界水酸化分解処理装置の反応容器及び反応容器の製造方法
US6596079B1 (en) 2000-03-13 2003-07-22 Advanced Technology Materials, Inc. III-V nitride substrate boule and method of making and using the same
JP2001345268A (ja) 2000-05-31 2001-12-14 Matsushita Electric Ind Co Ltd 半導体製造装置及び半導体の製造方法
JP3968968B2 (ja) 2000-07-10 2007-08-29 住友電気工業株式会社 単結晶GaN基板の製造方法
JP4374156B2 (ja) 2000-09-01 2009-12-02 日本碍子株式会社 Iii−v族窒化物膜の製造装置及び製造方法
US6858882B2 (en) 2000-09-08 2005-02-22 Sharp Kabushiki Kaisha Nitride semiconductor light-emitting device and optical device including the same
US7053413B2 (en) 2000-10-23 2006-05-30 General Electric Company Homoepitaxial gallium-nitride-based light emitting device and method for producing
AU2002219978A1 (en) 2000-11-30 2002-06-11 Kyma Technologies, Inc. Method and apparatus for producing miiin columns and miiin materials grown thereon
JP2002217118A (ja) 2001-01-22 2002-08-02 Japan Pionics Co Ltd 窒化ガリウム膜半導体の製造装置、排ガス浄化装置、及び製造設備
EP1381718A4 (en) 2001-03-30 2008-05-21 Technologies And Devices Inter METHOD AND APPARATUS FOR THE DEVELOPMENT OF SUBMICRONIC GROUP III NITRIDE STRUCTURES USING HVPE TECHNIQUES
MY141883A (en) 2001-06-06 2010-07-16 Ammono Sp Zoo Process and apparatus for obtaining bulk mono-crystalline gallium-containing nitride
US6860948B1 (en) 2003-09-05 2005-03-01 Haynes International, Inc. Age-hardenable, corrosion resistant Ni—Cr—Mo alloys
US20060011135A1 (en) 2001-07-06 2006-01-19 Dmitriev Vladimir A HVPE apparatus for simultaneously producing multiple wafers during a single epitaxial growth run
US20070032046A1 (en) 2001-07-06 2007-02-08 Dmitriev Vladimir A Method for simultaneously producing multiple wafers during a single epitaxial growth run and semiconductor structure grown thereby
US7501023B2 (en) 2001-07-06 2009-03-10 Technologies And Devices, International, Inc. Method and apparatus for fabricating crack-free Group III nitride semiconductor materials
US7169227B2 (en) 2001-08-01 2007-01-30 Crystal Photonics, Incorporated Method for making free-standing AIGaN wafer, wafer produced thereby, and associated methods and devices using the wafer
US7105865B2 (en) 2001-09-19 2006-09-12 Sumitomo Electric Industries, Ltd. AlxInyGa1−x−yN mixture crystal substrate
ATE452999T1 (de) 2001-10-26 2010-01-15 Ammono Sp Zoo Substrat für epitaxie
JP4131101B2 (ja) 2001-11-28 2008-08-13 日亜化学工業株式会社 窒化物半導体素子の製造方法
US7017514B1 (en) 2001-12-03 2006-03-28 Novellus Systems, Inc. Method and apparatus for plasma optimization in water processing
JP4513264B2 (ja) 2002-02-22 2010-07-28 三菱化学株式会社 窒化物単結晶の製造方法
US7063741B2 (en) 2002-03-27 2006-06-20 General Electric Company High pressure high temperature growth of crystalline group III metal nitrides
JP3803788B2 (ja) 2002-04-09 2006-08-02 農工大ティー・エル・オー株式会社 Al系III−V族化合物半導体の気相成長方法、Al系III−V族化合物半導体の製造方法ならびに製造装置
TWI274735B (en) 2002-05-17 2007-03-01 Ammono Sp Zoo Bulk single crystal production facility employing supercritical ammonia
JP4416648B2 (ja) 2002-05-17 2010-02-17 アンモノ・スプウカ・ジ・オグラニチョノン・オドポヴィエドニアウノシツィオン 発光素子の製造方法
US7601441B2 (en) 2002-06-24 2009-10-13 Cree, Inc. One hundred millimeter high purity semi-insulating single crystal silicon carbide wafer
US7316747B2 (en) 2002-06-24 2008-01-08 Cree, Inc. Seeded single crystal silicon carbide growth and resulting crystals
PL225422B1 (pl) 2002-06-26 2017-04-28 Ammono Spółka Z Ograniczoną Odpowiedzialnością Sposób otrzymywania objętościowych monokryształów azotku zawierającego gal
KR101030068B1 (ko) 2002-07-08 2011-04-19 니치아 카가쿠 고교 가부시키가이샤 질화물 반도체 소자의 제조방법 및 질화물 반도체 소자
WO2004053206A1 (en) 2002-12-11 2004-06-24 Ammono Sp. Z O.O. Process for obtaining bulk monocrystalline gallium-containing nitride
US7387677B2 (en) 2002-12-11 2008-06-17 Ammono Sp. Z O.O. Substrate for epitaxy and method of preparing the same
US7786503B2 (en) 2002-12-27 2010-08-31 Momentive Performance Materials Inc. Gallium nitride crystals and wafers and method of making
US7638815B2 (en) 2002-12-27 2009-12-29 Momentive Performance Materials Inc. Crystalline composition, wafer, and semi-conductor structure
JP5159023B2 (ja) 2002-12-27 2013-03-06 モーメンティブ・パフォーマンス・マテリアルズ・インク 窒化ガリウム結晶、ホモエピタキシャル窒化ガリウムを基材とするデバイス、及びその製造方法
US7859008B2 (en) * 2002-12-27 2010-12-28 Momentive Performance Materials Inc. Crystalline composition, wafer, device, and associated method
US7098487B2 (en) 2002-12-27 2006-08-29 General Electric Company Gallium nitride crystal and method of making same
JP2004284876A (ja) 2003-03-20 2004-10-14 Rikogaku Shinkokai 不純物含有窒化ガリウム粉体およびその製造方法
JP2004342845A (ja) 2003-05-15 2004-12-02 Kobe Steel Ltd 微細構造体の洗浄装置
US7309534B2 (en) 2003-05-29 2007-12-18 Matsushita Electric Industrial Co., Ltd. Group III nitride crystals usable as group III nitride substrate, method of manufacturing the same, and semiconductor device including the same
JP4433696B2 (ja) 2003-06-17 2010-03-17 三菱化学株式会社 窒化物結晶の製造方法
JP2005011973A (ja) * 2003-06-18 2005-01-13 Japan Science & Technology Agency 希土類−鉄−ホウ素系磁石及びその製造方法
US7170095B2 (en) 2003-07-11 2007-01-30 Cree Inc. Semi-insulating GaN and method of making the same
US7125801B2 (en) 2003-08-06 2006-10-24 Matsushita Electric Industrial Co., Ltd. Method of manufacturing Group III nitride crystal substrate, etchant used in the method, Group III nitride crystal substrate, and semiconductor device including the same
WO2005034301A1 (ja) 2003-09-25 2005-04-14 Matsushita Electric Industrial Co., Ltd. 窒化物半導体素子およびその製造方法
JP2005119893A (ja) 2003-10-14 2005-05-12 Matsushita Electric Ind Co Ltd 無機組成物およびその製造方法並びにそれを用いたiii族元素窒化物の製造方法。
US7009215B2 (en) 2003-10-24 2006-03-07 General Electric Company Group III-nitride based resonant cavity light emitting devices fabricated on single crystal gallium nitride substrates
JP2005191530A (ja) 2003-12-03 2005-07-14 Sumitomo Electric Ind Ltd 発光装置
US20070196942A1 (en) 2003-12-26 2007-08-23 Yusuke Mori Method for producing group III nitride crystal, group III nitride crystal obtained by such method, and group III nitride substrate using the same
JP4304276B2 (ja) * 2004-03-31 2009-07-29 独立行政法人産業技術総合研究所 高圧装置の効率的な断熱方法及び装置
EP1583190B1 (en) 2004-04-02 2008-12-24 Nichia Corporation Nitride semiconductor laser device
CN100535200C (zh) 2004-04-27 2009-09-02 松下电器产业株式会社 Ⅲ族元素氮化物结晶制造装置以及ⅲ族元素氮化物结晶制造方法
US7432142B2 (en) 2004-05-20 2008-10-07 Cree, Inc. Methods of fabricating nitride-based transistors having regrown ohmic contact regions
US7303632B2 (en) 2004-05-26 2007-12-04 Cree, Inc. Vapor assisted growth of gallium nitride
EP1769105B1 (en) * 2004-06-11 2014-05-14 Ammono S.A. Bulk mono-crystalline gallium nitride and method for its preparation
JP2006069827A (ja) * 2004-08-31 2006-03-16 Kyocera Kinseki Corp 人工水晶の製造方法
PL371405A1 (pl) 2004-11-26 2006-05-29 Ammono Sp.Z O.O. Sposób wytwarzania objętościowych monokryształów metodą wzrostu na zarodku
JP4276627B2 (ja) * 2005-01-12 2009-06-10 ソルボサーマル結晶成長技術研究組合 単結晶育成用圧力容器およびその製造方法
US7704324B2 (en) * 2005-01-25 2010-04-27 General Electric Company Apparatus for processing materials in supercritical fluids and methods thereof
KR100914941B1 (ko) 2005-03-14 2009-08-31 니뽄 가이시 가부시키가이샤 산화 용이성 또는 흡습 용이성 물질의 용기 및 산화 용이성또는 흡습 용이성 물질의 가열 및 가압 처리 방법
US7316746B2 (en) 2005-03-18 2008-01-08 General Electric Company Crystals for a semiconductor radiation detector and method for making the crystals
US20060210800A1 (en) 2005-03-21 2006-09-21 Irene Spitsberg Environmental barrier layer for silcon-containing substrate and process for preparing same
JP5364368B2 (ja) 2005-04-21 2013-12-11 エイオーネックス・テクノロジーズ・インコーポレイテッド 基板の製造方法
KR100700082B1 (ko) 2005-06-14 2007-03-28 주식회사 실트론 결정 성장된 잉곳의 품질평가 방법
EP1739213B1 (de) 2005-07-01 2011-04-13 Freiberger Compound Materials GmbH Vorrichtung und Verfahren zum Tempern von III-V-Wafern sowie getemperte III-V-Halbleitereinkristallwafer
WO2007008198A1 (en) 2005-07-08 2007-01-18 The Regents Of The University Of California Method for growing group iii-nitride crystals in supercritical ammonia using an autoclave
EP1775356A3 (en) 2005-10-14 2009-12-16 Ricoh Company, Ltd. Crystal growth apparatus and manufacturing method of group III nitride crystal
KR20070042594A (ko) 2005-10-19 2007-04-24 삼성코닝 주식회사 편평한 측면을 갖는 a면 질화물 반도체 단결정 기판
KR101351498B1 (ko) 2005-12-20 2014-01-15 모멘티브 퍼포먼스 머티리얼즈 인크. 결정성 조성물, 소자 및 관련 방법
JP2007197302A (ja) 2005-12-28 2007-08-09 Sumitomo Electric Ind Ltd Iii族窒化物結晶の製造方法および製造装置
US7691658B2 (en) 2006-01-20 2010-04-06 The Regents Of The University Of California Method for improved growth of semipolar (Al,In,Ga,B)N
EP1984545A4 (en) 2006-02-17 2013-05-15 Univ California PROCESS FOR THE PRODUCTION OF N-TYPE SEMIPOLAR OPTOELECTRONIC DEVICES (AL, IN, GA, B)
JP5454828B2 (ja) * 2006-03-06 2014-03-26 三菱化学株式会社 超臨界溶媒を用いた結晶製造方法および結晶製造装置
JP4968708B2 (ja) * 2006-03-06 2012-07-04 日本碍子株式会社 窒化物単結晶の製造方法
JP5454829B2 (ja) * 2006-03-06 2014-03-26 三菱化学株式会社 超臨界溶媒を用いた結晶製造方法および結晶製造装置
TWI299896B (en) * 2006-03-16 2008-08-11 Advanced Semiconductor Eng Method for forming metal bumps
CA2645459A1 (en) 2006-03-22 2007-10-04 The Procter & Gamble Company Aerosol product comprising a foaming concentrate composition comprising particulate materials
JP5187848B2 (ja) 2006-03-23 2013-04-24 日本碍子株式会社 単結晶の製造方法
JP5382900B2 (ja) 2006-03-29 2014-01-08 公益財団法人鉄道総合技術研究所 液状化による地中構造物の浮き上がり防止方法
US8764903B2 (en) 2009-05-05 2014-07-01 Sixpoint Materials, Inc. Growth reactor for gallium-nitride crystals using ammonia and hydrogen chloride
JP2009533303A (ja) 2006-04-07 2009-09-17 ザ リージェンツ オブ ザ ユニバーシティ オブ カリフォルニア 大表面積窒化ガリウム結晶の成長
US8357243B2 (en) 2008-06-12 2013-01-22 Sixpoint Materials, Inc. Method for testing group III-nitride wafers and group III-nitride wafers with test data
JP2007290921A (ja) 2006-04-26 2007-11-08 Mitsubishi Chemicals Corp 窒化物単結晶の製造方法、窒化物単結晶、およびデバイス
US20080083970A1 (en) 2006-05-08 2008-04-10 Kamber Derrick S Method and materials for growing III-nitride semiconductor compounds containing aluminum
WO2007149487A2 (en) 2006-06-21 2007-12-27 The Regents Of The University Of California Opto-electronic and electronic devices using n-face or m-plane gan substrate prepared with ammonothermal growth
JP4462251B2 (ja) 2006-08-17 2010-05-12 日立電線株式会社 Iii−v族窒化物系半導体基板及びiii−v族窒化物系発光素子
JP5129527B2 (ja) 2006-10-02 2013-01-30 株式会社リコー 結晶製造方法及び基板製造方法
US20080111144A1 (en) 2006-11-15 2008-05-15 The Regents Of The University Of California LIGHT EMITTING DIODE AND LASER DIODE USING N-FACE GaN, InN, AND AlN AND THEIR ALLOYS
JP2008127252A (ja) 2006-11-22 2008-06-05 Hitachi Cable Ltd 窒化物半導体インゴット及びこれから得られる窒化物半導体基板並びに窒化物半導体インゴットの製造方法
US8585820B2 (en) 2006-11-22 2013-11-19 Soitec Abatement of reaction gases from gallium nitride deposition
EP2066496B1 (en) 2006-11-22 2013-04-10 Soitec Equipment for high volume manufacture of group iii-v semiconductor materials
US7749325B2 (en) 2007-01-22 2010-07-06 Sumitomo Electric Industries, Ltd. Method of producing gallium nitride (GaN) independent substrate, method of producing GaN crystal body, and method of producing GaN substrate
TWI480435B (zh) 2007-09-19 2015-04-11 Univ California 氮化鎵塊狀晶體(bulk crystals)及其生長方法
WO2009047894A1 (ja) 2007-10-09 2009-04-16 Panasonic Corporation Iii族窒化物結晶基板の製造方法、iii族窒化物結晶基板、iii族窒化物結晶基板を用いた半導体装置
WO2009108700A1 (en) 2008-02-25 2009-09-03 Sixpoint Materials, Inc. Method for producing group iii nitride wafers and group iii nitride wafers
TWI460322B (zh) 2008-06-04 2014-11-11 Sixpoint Materials Inc 藉由氨熱生長法自初始第iii族氮化物種產生具改良結晶度之第iii族氮化物晶體之方法
TWI460323B (zh) 2008-06-04 2014-11-11 Sixpoint Materials Inc 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶
WO2010045567A1 (en) 2008-10-16 2010-04-22 Sixpoint Materials, Inc. Reactor design for growing group iii nitride crystals and method of growing group iii nitride crystals
WO2010060034A1 (en) 2008-11-24 2010-05-27 Sixpoint Materials, Inc. METHODS FOR PRODUCING GaN NUTRIENT FOR AMMONOTHERMAL GROWTH

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080102016A1 (en) * 2006-10-25 2008-05-01 The Regents Of The University Of California Method for growing group III-nitride crystals in a mixture of supercritical ammonia and nitrogen, and group III-nitride crystals grown thereby

Also Published As

Publication number Publication date
EP2291551A1 (en) 2011-03-09
US20130216845A1 (en) 2013-08-22
EP2291551B1 (en) 2018-04-25
EP3330413B1 (en) 2020-09-09
US20120304917A1 (en) 2012-12-06
WO2009149300A1 (en) 2009-12-10
US20100068118A1 (en) 2010-03-18
EP3330413A1 (en) 2018-06-06
JP2011513180A (ja) 2011-04-28
TW201002880A (en) 2010-01-16
JP2011042567A (ja) 2011-03-03
US20130206057A1 (en) 2013-08-15
JP5296024B2 (ja) 2013-09-25
US20160010238A1 (en) 2016-01-14
JP5296023B2 (ja) 2013-09-25
US8236267B2 (en) 2012-08-07
US20160002817A1 (en) 2016-01-07
JP5631746B2 (ja) 2014-11-26
JP5740116B2 (ja) 2015-06-24
US8420041B2 (en) 2013-04-16
JP2011042568A (ja) 2011-03-03
JP2011042566A (ja) 2011-03-03
US10087548B2 (en) 2018-10-02

Similar Documents

Publication Publication Date Title
TWI460323B (zh) 用於生長第iii族氮化物結晶之高壓容器及使用高壓容器生長第iii族氮化物結晶之方法及第iii族氮化物結晶
JP4541935B2 (ja) 窒化物結晶の製造方法
JP5377521B2 (ja) Iii族窒化物ウェハーを試験する方法および試験データを伴うiii族窒化物ウェハー
US20070234946A1 (en) Method for growing large surface area gallium nitride crystals in supercritical ammonia and lagre surface area gallium nitride crystals
JP5213899B2 (ja) 窒化物結晶の製造方法
WO2012176318A1 (ja) 窒化物単結晶の製造方法及びそれに用いるオートクレーブ
JP5751182B2 (ja) 窒化物結晶の製造方法、反応容器および結晶製造装置
JP2013014502A (ja) 窒化物結晶の製造方法、窒化物結晶およびその製造装置
JP2015059077A (ja) 窒化物結晶の製造方法、反応容器および結晶製造装置