JP2013177263A - 結晶育成用反応容器 - Google Patents

結晶育成用反応容器 Download PDF

Info

Publication number
JP2013177263A
JP2013177263A JP2012041580A JP2012041580A JP2013177263A JP 2013177263 A JP2013177263 A JP 2013177263A JP 2012041580 A JP2012041580 A JP 2012041580A JP 2012041580 A JP2012041580 A JP 2012041580A JP 2013177263 A JP2013177263 A JP 2013177263A
Authority
JP
Japan
Prior art keywords
crystal growth
reaction vessel
cooling member
solvent
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041580A
Other languages
English (en)
Inventor
Rinzo Kayano
林造 茅野
Mutsuo Ueda
睦男 植田
Toru Ishiguro
徹 石黒
Quanxi Bao
全喜 包
Makoto Saito
真 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Mitsubishi Chemical Corp
Japan Steel Works Ltd
Original Assignee
Tohoku University NUC
Mitsubishi Chemical Corp
Japan Steel Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Mitsubishi Chemical Corp, Japan Steel Works Ltd filed Critical Tohoku University NUC
Priority to JP2012041580A priority Critical patent/JP2013177263A/ja
Publication of JP2013177263A publication Critical patent/JP2013177263A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

【課題】超臨界状態や亜臨界状態で結晶を育成する際に、容器内部の部分的な防食を図ることを可能にする結晶育成用反応容器を提供する。
【解決手段】容器内部で、超臨界状態および/または亜臨界状態の溶媒と原料とを用いて結晶を成長させる結晶育成用反応容器であって、反応容器の内部空間に位置して、容器内部の防食を意図する露出部位を冷却部材20で隙間を有するように覆い、冷却部材20の少なくとも表面部を耐食性、耐熱性に優れた材質とすることで、冷却部材20に接触する高温の溶媒を部分的に冷却し、よって金属ガスケット12などの腐食を生じやすい露出部位の防食を効果的に行うことで、シール性を損なったり、成分の溶出が生じて結晶品質が低下するのを防止し、良質な結晶育成を可能にする。
【選択図】図1

Description

本発明は、ソルボサーマル法による結晶製造方法に利用することができる結晶育成用反応容器に関するものである。
ソルボサーマル法は超臨界状態および/または亜臨界状態の溶媒を用いた結晶製造方法の総称であり、使用する溶媒の種類によりハイドロサーマル法(水熱合成法)やアモノサーマル法(安熱合成法)などと称される。ソルボサーマル法は、原料、溶媒、種結晶および鉱化剤等を含んだ高温高圧の系に温度差を設け、この温度差により溶媒への原料の結晶溶解度の差を利用して結晶成長を行うものである。例えば、固体状の鉱化剤を用い、アンモニアなどの窒素含有溶媒を用いて窒化ガリウムに代表される周期表第13族元素窒化物などの結晶成長を行うアモノサーマル法等によって結晶性に優れた結晶を製造することができる。
ソルボサーマル法で結晶性の良い単結晶成長を行うためには、原料が溶媒によって十分に溶解され結晶の適切な成長速度を維持する必要がある。原料の溶解と結晶の成長速度を維持するためには反応容器内に原料および溶媒を挿入し、高温高圧の超臨界または亜臨界環境に保持することが必要となり、反応容器にはこの温度、圧力に耐える耐熱性、工業的に容器製造が可能となる材料強度、溶媒の反応に耐える耐食性が必要となる(特許文献1、2参照)。反応容器の材質としては特許文献3に記載のニッケル・クロム系合金またはニッケル・クロム・モリブデン系合金の使用が望ましいとされている。
最近ではこのような反応容器を用いて、結晶の育成速度向上のため、臭化アンモニウムまたはヨウ化アンモニウムをアンモニア中に溶解させ、実用的な速度で結晶を成長させる技術が開発されている(特許文献4参照)。
しかしながら上記の反応雰囲気においては反応容器材料からの腐食による結晶品質の低下が懸念されており反応容器からの腐食を防止する耐食材料の採用または容器構造の最適化が必要である。容器構造部材の材質として、特許文献5に示されるようにタングステンなどはアンモニアに対する耐食性に優れていることが明らかとなっているが、結晶の触媒作用を有するため、容器構造部材に結晶が付着して容器のつまりなどの原因となることが指摘されている。また、特許文献6に示されるようにジルコニウムやチタンもアンモニアに対する優れた耐食性を示すことが知られているが、一方ではアンモニア中の水素と水素化物を形成し、脆化を引き起こすことも公知の事実として知られており、本材質としては適さない。
従来の反応容器において、結晶の育成速度向上のためには容器内溶媒の高温、高圧化は避けられず、また鉱化剤としてアンモニアに臭化アンモニウムおよびヨウ化アンモニウムを溶解させることで反応容器構造材料にとってはより厳しい腐食環境になる可能性がある。この対策としてアンモニアに接する反応容器の内面は耐食性に優れたタングステン、白金、金、イリジウムなどで被覆するライニング施工をすることにより腐食を抑制する対策が採られている。
特開2007−290921号公報 特開2008−120672号公報 特開2007−56320号公報 特開2011−32154号公報 特開2010−222152号公報 特開2010−155751号公報
しかし、各種ライニング施工を行うことにより容器製造コストの上昇につながっている。また容器開口部のシール構造においては反応容器と同様の耐食性とガスケットとしての必要強度を確保するためにニッケル・クロム系合金またはニッケル・クロム・モリブデン系合金製の金属ガスケットを使用するが、このガスケットにおいては上述のタングステン、白金、金、イリジウムなどの各種耐食材料をライニング材として用いると、反応容器開口部のシール性に支障をきたし、使用中のアンモニアの漏出により安定した結晶育成が不可能となるばかりか、安全面での問題がある。したがって金属ガスケットは、上述のタングステン、白金、金、イリジウムなどの各種耐食材料をライニングしないで使用しなければならず、金属ガスケットが高温のアンモニアと接して主としてニッケルが溶出し、結晶の品質を劣化させる問題がある。
この発明は上記のような従来技術の課題を解決するためになされたものであり、容器内部に冷却部材を配置することで結晶育成時に高温の溶媒を部分的に冷却して容器内部の防食を図ることができる結晶育成用反応容器を提供することを目的とする。
すなわち、本発明の結晶育成用反応容器のうち第1の本発明は、容器内部で、超臨界状態および/または亜臨界状態の溶媒と原料とを用いて結晶を成長させる結晶育成用反応容器であって、当該反応容器の内部空間に位置して、前記溶媒を部分的に冷却する冷却部材を有することを特徴とする。
上記本発明によれば、冷却部材が反応容器の内部空間に位置することで冷却部材に接触している溶媒を部分的に冷却し、高温の溶媒によって腐食が進む部位の防食を図ることができる。
第2の本発明の結晶育成用反応容器は、前記第1の本発明において、前記冷却部材は、当該容器内部の防食を意図する露出部位に接触する前記溶媒の温度を低下させるものであることを特徴とする。
上記本発明によれば、防食を図りたい露出部位を冷却部材によって冷却して確実に防食することができる。
第3の本発明の結晶育成用反応容器は、前記第2の本発明において、前記冷却部材は、前記露出部位と隙間を有して該露出部位を覆うように位置していることを特徴とする。
上記本発明によれば、冷却部材で隙間を有するように防食を意図する露出部位を覆うことで露出部位周辺の溶媒を冷却するとともに隙間を確保することで溶媒の対流を損なうことなく結晶成長を円滑に進行させることができる。また、該隙間を確保することで冷却部材の取り出しや設置が容易になり、結晶育成後に結晶を取り出したり、新たな原料を挿入するために容器を開放した作業を容易に行うことができる。
第4の本発明の結晶育成用反応容器は、前記第3の本発明において、前記冷却部材は、前記露出部分を越えて容器内壁と隙間を有して伸長し、伸長側端部が前記隙間にある溶媒よりも高温側の前記溶媒に接触することを特徴とする。
上記本発明によれば、露出部位に限らず、高温側の溶媒側に冷却部材を伸長させることで露出部位周辺の溶媒を効果的に冷却する。
第5の本発明の結晶育成用反応容器は、前記第4の本発明において、前記伸長長さは、前記隙間にある前記溶媒の温度が前記高温側の前記溶媒よりも温度低下して前記露出部分に接触する溶媒の温度が所望の温度域に低下する長さを有していることを特徴とする。
上記本発明によれば、伸長側端部から露出部位の周辺に至る温度分布によって露出部位に接触する溶媒の温度を露出部位の耐食性を損なわない所望の温度域にまで低下させる。この伸長長さが長くなるほど伸長側端部と露出部位周辺との温度差が大きくなる。ただし、余りに長くなると反応領域を小さくするので望ましくない。
第6の本発明の結晶育成用反応容器は、前記第5の本発明において、前記所望の温度域が500℃以下であることを特徴とする。
上記本発明によれば、露出部位の高温腐食を効果的に防止することができる。
第7の本発明の結晶育成用反応容器は、前記第2〜第4の本発明のいずれかにおいて、前記露出部位は、当該容器の接合部分に設けられた金属ガスケットであることを特徴とする。
上記本発明によれば、材料選定に制約があり、腐食を生じやすい金属ガスケットの防食を効果的に図ることができる。
第8の本発明の結晶育成用反応容器は、前記第7の本発明において、前記金属ガスケットは、当該容器内壁面の材質と異なる材質からなることを特徴とする。
上記本発明によれば、金属ガスケットは、シール性やガスケットとしての強度などを考慮した材料設計となり、耐食性を重視する容器内壁面との材質に相違が生じる。
第9の本発明の結晶育成用反応容器は、前記第1〜8の本発明のいずれかにおいて、内部に空間を有する容器本体と、該容器本体の内部壁面の少なくとも一部に設けられ、前記容器本体よりも相対的に耐食性および耐熱性に優れたライニングとを有し、
前記冷却部材は少なくとも前記溶媒に接触する表面部が前記容器本体よりも相対的に耐食性および耐熱性に優れた材質で構成されていることを特徴とする。
上記本発明によれば、容器本体は、結晶製造条件に必要な強度、耐熱性、耐食性を考慮した材料設計を行うことができ、溶媒と接触するライニングでは耐食性、耐熱性を特に考慮した材料設計を行うことができる。さらに冷却部材は、少なくとも、溶媒に接触する表面部で耐食性、耐熱性を特に考慮した材料設計を行うことができる。冷却部材は、前記材料設計によって全体を構成してもよく、表面部のみを前記材料設計による材質とすることができる。冷却部材は、中実材、中空材のいずれであってもよい。
第10の本発明の結晶育成用反応容器は、前記第9の本発明において、前記冷却部材は、前記容器本体に伝熱可能に接合または一体化していることを特徴とする。
上記本発明によれば、容器本体への伝熱によって冷却部材における冷却能を簡単な構造で得ることができる。なお、本発明としては冷媒を用いた接触的な冷却を行うことも可能である。
第11の本発明の結晶育成用反応容器は、前記第10の本発明において、前記接合または一体化がされている部分の断面積は、該部分を含む前記冷却部材の平面積よりも小さくなっており、前記冷却部材は、前記接合または一体化がされている部分を除いて、前記容器本体または前記ライニングと間隙を有していることを特徴とする。
上記本発明によれば、伝熱性を確保する断面積を確保するとともに、接合または一体化のための部分が必要以上に大きくなることで溶媒の対流性を損なうことを回避することができる。
第12の本発明の結晶育成用反応容器は、前記第9〜11の本発明のいずれかにおいて、前記容器本体が筒状からなり、前記冷却部材が筒内面に沿った周面形状を有し、周面先端が閉止面になっていることを特徴とする。
上記本発明によれば、冷却部材の周面外側に適度な間隙を確保することができる。また、周面先端が閉止面となっていることで前記間隙以外での溶媒の侵入を遮断することができ、冷却部材による冷却効果を高めることができる。
第13の本発明の結晶育成用反応容器は、前記第12の本発明において、前記容器本体が、蓋部と有底の筒状部とからなり、前記蓋部と前記筒状部との間に金属ガスケットが介設されて前記金属ガスケット内面が前記内部空間に露出しており、前記冷却部材が前記蓋部側に位置して前記金属ガスケット内面を覆っていることを特徴とする。
上記本発明によれば、腐食によるシール性の毀損や金属ガスケット成分の溶出を効果的に防止することができる。
第14の本発明の結晶育成用反応容器は、前記第12または13の本発明において、前記容器本体内面またはライニング内面と前記冷却部材周面とが、2〜10mmの間隙を有していることを特徴とする。
上記本発明によれば、効果的な溶媒の冷却がなされるとともに、冷却部材の取り出しや配置が容易となり、また、溶媒の対流が良好になされる。
前記間隙が2mm未満であると、冷却部材の取り出し、配置が難しくなり、溶媒の対流も損なわれるようになる。また、10mmを越えると、冷却部材による溶媒の冷却効果が十分でなくなる。
第15の本発明の結晶育成用反応容器は、前記第9〜14の本発明のいずれかにおいて、前記容器本体が、鉄基合金、ニッケル基合金、コバルト基合金のいずれか、またはこれらを組み合わせた合金であることを特徴とする。
上記本発明によれば、容器本体に要求される特性が得られる。
第16の本発明の結晶育成用反応容器は、前記第9〜15の本発明のいずれかにおいて、前記ライニングが、タングステン、白金、金、イリジウム、モリブデンのいずれか、またはこれらを組み合わせた合金からなることを特徴とする。
上記本発明によれば、ライニングに要求される特性が得られる。
第17の本発明の結晶育成用反応容器は、前記第9〜16の本発明のいずれかにおいて、前記冷却部材の少なくとも前記溶媒に接触する表面部が、タングステン、白金、金、イリジウム、モリブデンのいずれか、またはこれらを組み合わせた合金からなることを特徴とする。
上記本発明によれば、冷却部材に必要とされる耐食性や耐熱性が優れたものとなる。
第18の本発明の結晶育成用反応容器は、前記第1〜17の本発明のいずれかにおいて、前記冷却部材は、前記溶媒を部分的に冷却する側の表面に、表面積を拡大する凹凸形状を有することを特徴とする。
上記本発明によれば、溶媒を冷却する効果を高めることができる。凹凸形状は、線状、点状など特に形状が限定されるものではない。凹凸形状は高さ方向において2〜20mmとするのが望ましい。2mm未満では、表面積拡大効果が十分でなく、20mmを越えると前記隙間が大きくなる部分ができて冷却効果が不均一になる。
なお、凹凸形状は、溶媒を部分的に冷却する側の表面の全面に形成してもよく、また、一部に形成してもよい。また、露出部位を覆う部分では、冷却効果を均等にするように凹凸形状を設けないようにしてもよい。
第19の本発明の結晶育成用反応容器は、前記第18の本発明において、前記凹凸形状は、溝加工、孔加工、ネジ加工、シボ加工のいずれかまたは組み合わせにより加工されたものであることを特徴とする。
上記本発明によれば、一般的な加工方法により表面積を加工する凹凸形状を形成することができる。
以上のように、この発明によればシール部近傍などの溶媒の温度を下げて腐食を抑制することで、ガスケットなどの容器部材からの合金元素の溶出を抑制し、育成結晶中の不純物が低減されることで、より高品質な結晶を育成することが可能となる。また反応容器内表面の耐食材料のライニングを一部省略できる可能性があり、反応容器の製造コストの削減に寄与できる。また別部材の表面のみに耐食材料をライニングすることでこの別部材そのものの製造コストを削減することができ、反応容器の大型化も可能となる。
本発明の一実施形態における結晶育成用反応容器であって、蓋部が位置する上部側の詳細構造を示す図である。 同じく、冷却部材の長さ、隙間を説明する図である。 同じく、冷却部材の構造の変更例を示す正面図および平面図である。 同じく、冷却部材の外周面の凹凸形状の変更例を示す正面図および断面図である。 従来の結晶育成用反応容器を示す概略図である。 同じく、蓋部が位置する上部側の詳細構造を示す図である。
以下、この発明の一実施形態を図に基づいて説明する。
図5はソルボサーマル法における一般的な結晶製造装置の概略を示すものであり、細部は省略している。
結晶育成用反応容器1は、縦に配置され、高さ方向中央にバッフル板2が配置されて内部空間が上方の結晶成長領域1aと下方の原料充填領域1bに区画されている。結晶成長領域1aに種結晶100が配置され、原料充填領域1bに原料101が配置されて結晶の育成がなされる。
結晶育成用反応容器1の外周外側には、周状に電気炉3が配置され、結晶育成用反応容器1には熱電対4が取り付けられている。
また、結晶育成用反応容器には、導管5が接続され、該導管5にはバルブ6が介設されている。また、導管5には、導管5内の圧力を測定する圧力計7が設けられている。
結晶育成用反応容器1は、熱電対4で温度を測定しつつ電気炉3で加熱する。内部空間は、高温高圧の系として容器の上部と下部とで温度差を設け、この温度差により溶媒への原料の結晶溶解度の差を利用して結晶成長を行うものである。また結晶育成用反応容器1には電気炉3による加熱領域に対して、容器内の熱を外部に逃がすために十分な非加熱部を有している。
上記結晶育成用反応容器1の上部詳細を図6に示す。
結晶育成用反応容器1は、有底筒状の容器本体筒状部10と、容器本体蓋部11とを有しており、容器本体筒状部10の筒部上面部と容器本体蓋部11の縁部下面部との間に金属ガスケット12を介在させて、外周側からクランプ13で固定されている。容器本体筒状部10と容器本体蓋部11とで容器本体が構成される。
容器本体筒状部10および容器本体蓋部11の内面には、下層ライニング14が被覆され、下層ライニング14の上層に上層ライニング15が被覆されている。
下層ライニング14は、ニッケル・クロムまたはニッケル・クロム・モリブデン系合金で構成され、上層ライニング15は、白金、金、タングステン、イリジウム、モリブデンのいずれか、またはこれらを組み合わせた合金などで構成されている。金属ガスケット12は、シール性を考慮して別の材質で構成されている。
次に、特許文献1、2に示されている結晶の育成方法を以下に説明する。
まず結晶育成用反応容器1内に図5に示すように育成の元となる種結晶、窒素元素を含有する溶媒、周期表13族金属元素を含む原料物質、および鉱化剤を入れて封止する。これらの材料を反応容器内に導入するのに先だって、反応容器内は脱気しておいてもよい。また、材料の導入時には、窒素ガスなどの不活性ガスを流通させてもよい。
結晶育成用反応容器1内への種結晶の装填は、通常は原料物質および鉱化剤を充填する際に同時または充填後に装填する。種結晶は、結晶育成用反応容器1内表面を構成するライニングと同様の貴金属製の治具に固定することが好ましい。装填後には、必要に応じて加熱脱気をしてもよい。
超臨界状態または亜臨界状態にする結晶育成用反応容器1内の温度範囲は、下限値が通常150℃以上、好ましくは200℃以上、特に好ましくは300℃以上であり、上限値が通常800℃以下、好ましくは700℃以下、特に好ましくは600℃以下である。好ましい温度範囲は150〜800℃、より好ましくは200〜700℃、さらに好ましくは300〜600℃である。また、オートクレーブ内の圧力範囲は、下限値が通常20MPa以上、好ましくは30MPa以上、さらに好ましくは50MPa以上、特に好ましくは80MPa以上であり、上限値が通常500MPa以下、好ましくは400MPa以下、さらに好ましくは300MPa以下、特に好ましくは200MPa以下である。好ましい圧力範囲は、20〜500MPaより好ましくは50〜300MPa、さらに好ましくは80〜200MPaである。この状態で反応容器1を数時間から数百日保持することで結晶育成用反応容器1の下部と上部の温度差により結晶育成用反応容器1内に下部から上部への対流が生じ、下部に配置した原料物質101の溶解と上部の種結晶100からの結晶成長が生じる。結晶育成用反応容器1上部も下部に比べて温度が低いが、上記記載の超臨界、亜臨界状態であり、結晶育成用反応容器1の容器本体筒状部10と容器本体蓋部11とのシール部近傍も同様の状態となっている。
結晶育成用反応容器1内部は、上記のように超臨界または亜臨界状態のアンモニア雰囲気となり、特にシール性の点から白金、金、イリジウム、タングステン、モリブデンなどの耐食材料のライニングが難しい金属ガスケット12からの腐食による溶媒への不純物の混入および結晶品質の低下が問題となる。
次に、本発明の結晶育成用反応容器を図1、2に基づいて説明する。なお、上記結晶育成用反応容器と同様の構成については同一の符号を付しており、全体構造は、図5と同様であり、上部詳細について説明する。
結晶育成用反応容器1は、有底円筒状の容器本体筒状部10と、容器本体蓋部11とを有しており、容器本体筒状部10の筒壁上面部と容器本体蓋部11の縁部下面部との間に金属ガスケット12を介在させて、外周側からクランプ13で固定している。
容器本体筒状部10および容器本体蓋部11の内面には、下層ライニング14が被覆され、下層ライニング14の上層に上層ライニング15が被覆されている。
容器本体筒状部10および容器本体蓋部11は、鉄基合金、ニッケル基合金、コバルト基合金のいずれか、またはこれらを組み合わせた合金で構成され、下層ライニング14は、ニッケル・クロムまたはニッケル・クロム・モリブデン系合金で構成され、上層ライニング15は、白金、金、タングステン、イリジウム、モリブデンなどで構成されている。金属ガスケット12は、強度やシール性を考慮してニッケル・クロム系合金またはニッケル・クロム・モリブデン系合金で構成されている。
さらに、本発明の実施形態では、容器本体蓋部11の下面側に円柱状の冷却部材20が配置されている。冷却部材20は、上面側に小径の連結部21が突設されており、その上部側が容器本体蓋部11の下方側に設けた取付け穴11aに挿入されて固定されている。
なお冷却部材20は、容器本体筒状部10の内面に沿った周面形状を有している。
また、冷却部材20の外周面には、下部側に円環状の溝22が軸方向に間隔を置いて複数形成されていて冷却部材20外周面の表面積の拡大が図られている。冷却部材20は、容器本体筒状部10よりも耐食性、耐熱性に優れた材料で構成されており、例えば、上層ライニング15に使用されている材料を使用することができる。すなわち、白金、金、タングステン、イリジウム、モリブデンのいずれか、またはこれらを組み合わせた合金など冷却部材20の材料として使用することができる。
冷却部材20は、外周面と上層ライニング13内周面との間に小隙間30を有しており、さらに、冷却部材20の連結部21を除く上面と容器本体蓋部11の上層ライニング15内面との間に小隙間31を有している。小隙間30、31は、図2に示すように隙間量Gを有している。また、冷却部材20は、図2に示すように軸方向長さLを有している。この結果、冷却部材20は、小隙間30を有して金属ガスケット12の露出部位を覆っており、さらに、露出部位を越えて下方に伸長し、下端閉止面が結晶成長領域1bに露出している。
以下に、本実施形態の作用について説明する。なお、反応時の温度や圧力、反応時間は、先に説明したものと同様である。
結晶育成用反応容器1内では、結晶成長領域1bで超臨界または亜臨界もしくはこれらが混在し、高温、高圧の状態になる。
冷却部材20は、下面側が結晶成長領域1b側の高温の溶媒に接触するものの、上端側が容器本体蓋部11に伝熱可能に接合されており、外部環境に露出する容器本体蓋部11による冷却効果が得られ、上部側ほど低い温度となる温度分布を有するに至る。これにより冷却部材20に接触する溶媒は、小隙間30、31において冷却部材20によって冷却され、金属ガスケット12の露出部位に接触する溶媒の温度も低下して、金属ガスケット12に対する高温腐食が軽減される。この結果、金属ガスケット12の溶損などが防止され、また、金属ガスケット12の成分が溶出して溶媒に不純物として取り込まれることもなく、良質な結晶成長がなされる。
なお、上記隙間量Gは、本発明としては特に限定されるものではない。ただし、あまりに隙間が小さいと容器本体蓋部11を容器本体筒状部10から取り外したり、取り付けたりする際に冷却部材20と容器本体筒状部10とが干渉して作業がしづらい。また、隙間が小さいことにより結晶育成中に小隙間30、31で溶媒の対流が生じにくく、結晶の育成を阻害する。また、隙間量Gが大きすぎると、小隙間30、31にある溶媒を冷却部材20によって冷却する作用が損なわれ、金属ガスケット12に対する防食効果が小さくなる。これらのため、隙間量Gは、2〜10mmとするのが望ましい。
また、冷却部材20は、下端面が結晶成長領域1bに伸長しており、結晶育成に際し、高温側の溶媒に接触する。一方、上端側は容器本体蓋部11に伝熱可能に接合されており、容器本体蓋部11側から冷却される。このため冷却部材20は、軸方向において下端側がより高温となる温度分布を有するに至る。金属ガスケット12の露出部位周辺の溶媒は、この温度分布に依存して結晶成長領域1bにある溶媒よりも低温となる。このため、冷却部材20の軸方向長さLが十分にないと、露出部位周辺の溶媒温度が十分に低下しない。冷却部材20の軸方向長さを十分に有することで露出部位周辺の溶媒温度を十分に低くして防食を確実にすることができる。その温度は、金属ガスケットの材質によっても相違し、本発明としては特に限定されるものではないが、例えば500℃以下が望ましい。さらには、超臨界または亜臨界以下の温度にまで低下させることも可能である(アンモニアの臨界点は、温度:406.6K、圧力11.3MPa)。
なお、上記実施形態では、金属ガスケットに対する防食を図るものとして説明をしたが、容器本体内面に対する防食効果が得られるため、容器本体内面に設けるライニングの面積低減やライニング材の低コスト材料への変更などの目的として冷却部材を配置することも可能である。
また、上記実施形態では、冷却部材が円柱材で構成されているものとして説明したが、少なくとも溶媒に接触する表面にライニングを施したものであってもよい。図3(a)は、円柱状の基材201の外周面および下面にライニング202を施した冷却部材200を示すものである。冷却部材200の上部に位置する突部201aを容器本体蓋部への接合に用いることができる。この例では、ライニング202に容器本体よりも耐食性、耐熱性に優れる材料を用い、基材201には、これら特性が劣るものの低コストのものを用いることができ、また、より伝熱性に優れた材料を用いることもできる。基材201を円筒状に形成してもよい。
図3(b)に示す冷却部材210は、全体を有底の円筒形状に形成したものであり、上部に突部210aを有している。円筒形状とすることで、耐食性、耐熱性に優れた材料を使用する際に、その使用量を低減することができる。
また、前記実施形態では、冷却部材の表面に表面積を拡大する凹凸形状を有している。その他の例を図4に基づいて説明する。
図4(a)の冷却部材220には、環状の溝221が外周面に形成されており、溝221は、下端に達している。
図4(b)の冷却部材230には、外周面に穴231が分散して形成されており、穴は軸方向および周方向に一定間隔で整列している。
図4(c)の冷却部材240は、ねじ加工によって外周面に螺条241が形成されている。
図4(d)の冷却部材250は、シボ加工によって外周面に凸部251が分散して形成されている。凸部251は軸方向および周方向に一定間隔で整列されている。
なお、上記の加工方法が例示であり、本発明としては加工方法が限定されるものではなく、凹凸の形状も任意である。
なお、上記各実施形態では、冷却部材は蓋材に接合するものとして説明したが、蓋材などの容器本体と一体化しているものであってもよい。
以上、本発明について上記各実施形態に基づいて説明をしたが、本発明は上記実施形態の内容に限定されるものではなく、本発明の範囲を逸脱しない限りは適宜の変更が可能である。
1 結晶育成用反応容器
1a 結晶成長領域
1b 原料充填領域
10 容器本体筒状部
11 容器本体蓋部
12 金属ガスケット
14 下層ライニング
15 上層ライニング
20 冷却部材
21 連結部
22 溝
200 冷却部材
201 基部
202 ライニング
210 冷却部材
220 冷却部材
221 溝
230 冷却部材
231 穴
240 冷却部材
241 螺条
250 冷却部材
251 凸部

Claims (19)

  1. 容器内部で、超臨界状態および/または亜臨界状態の溶媒と原料とを用いて結晶を成長させる結晶育成用反応容器であって、
    当該反応容器の内部空間に位置して、前記溶媒を部分的に冷却する冷却部材を有することを特徴とする結晶育成用反応容器。
  2. 前記冷却部材は、当該容器内部の防食を意図する露出部位に接触する前記溶媒の温度を低下させるものであることを特徴とする請求項1記載の結晶育成用反応容器。
  3. 前記冷却部材は、前記露出部位と隙間を有して該露出部位を覆うように位置していることを特徴とする請求項2に記載の結晶育成用反応容器。
  4. 前記冷却部材は、前記露出部分を越えて容器内壁と隙間を有して伸長し、伸長側端部が前記隙間にある溶媒よりも高温側の前記溶媒に接触することを特徴とする請求項3記載の結晶育成用反応容器。
  5. 前記伸長長さは、前記隙間にある前記溶媒の温度が前記高温側の前記溶媒よりも温度低下して前記露出部分に接触する溶媒の温度が所望の温度域に低下する長さを有していることを特徴とする請求項4記載の結晶育成用反応容器。
  6. 前記所望の温度域が500℃以下であることを特徴とする請求項5記載の結晶育成用反応容器。
  7. 前記露出部位は、当該容器の接合部分に設けられた金属ガスケットであることを特徴とする請求項2〜4のいずれかに記載の結晶育成用反応容器。
  8. 前記金属ガスケットは、当該容器内部壁面の材質と異なる材質からなることを特徴とする請求項7記載の結晶育成用反応容器。
  9. 内部に空間を有する容器本体と、該容器本体の内部壁面の少なくとも一部に設けられ、前記容器本体よりも相対的に耐食性および耐熱性に優れたライニングとを有し、
    前記冷却部材は少なくとも前記溶媒に接触する表面部が前記容器本体よりも相対的に耐食性および耐熱性に優れた材質で構成されていることを特徴とする請求項1〜8のいずれかに記載の結晶育成用反応容器。
  10. 前記冷却部材は、前記容器本体に伝熱可能に接合または一体化していることを特徴とする請求項9記載の結晶育成用反応容器。
  11. 前記接合または一体化がされている部分の断面積は、該部分を含む前記冷却部材の平面積よりも小さくなっており、前記接合または一体化がされている部分を除いて、前記容器本体または前記ライニングと隙間を有していることを特徴とする請求項10記載の結晶育成用反応容器。
  12. 前記容器本体が筒状からなり、前記冷却部材が筒内面に沿った周面形状を有し、周面先端が閉止面になっていることを特徴とする請求項9〜11のいずれかに記載の結晶育成用反応容器。
  13. 前記容器本体が、蓋部と有底の筒状部とからなり、前記蓋部と前記筒状部との間に金属ガスケットが介設されて前記金属ガスケット内面が前記内部空間に露出しており、前記冷却部材が前記蓋部側に位置して前記金属ガスケット内面を覆っていることを特徴とする請求項12記載の結晶育成用反応容器。
  14. 前記容器本体内面またはライニング内面と前記冷却部材周面とが、2〜10mmの隙間を有していることを特徴とする請求項12または13に記載の結晶育成用反応容器。
  15. 前記容器本体が、鉄基合金、ニッケル基合金、コバルト基合金のいずれか、またはこれらを組み合わせた合金であることを特徴とする請求項反9〜14のいずれかに記載の結晶育成用反応容器。
  16. 前記ライニングが、タングステン、白金、金、イリジウム、モリブデンのいずれか、またはこれらを組み合わせた合金からなることを特徴とする請求項9〜15のいずれかに記載の結晶育成用反応容器。
  17. 前記冷却部材の少なくとも前記溶媒に接触する表面部が、タングステン、白金、金、イリジウム、モリブデンのいずれか、またはこれらを組み合わせた合金からなることを特徴とする請求項9〜16のいずれかに記載の結晶育成用反応容器。
  18. 前記冷却部材は、前記溶媒を部分的に冷却する側の表面に、表面積を拡大する凹凸形状を有することを特徴とする請求項1〜17のいずれかに記載の結晶育成用反応容器。
  19. 前記凹凸形状は、溝加工、孔加工、ネジ加工、シボ加工のいずれかまたは組み合わせにより加工されたものであることを特徴とする請求項18記載の結晶育成用反応容器。
JP2012041580A 2012-02-28 2012-02-28 結晶育成用反応容器 Pending JP2013177263A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041580A JP2013177263A (ja) 2012-02-28 2012-02-28 結晶育成用反応容器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041580A JP2013177263A (ja) 2012-02-28 2012-02-28 結晶育成用反応容器

Publications (1)

Publication Number Publication Date
JP2013177263A true JP2013177263A (ja) 2013-09-09

Family

ID=49269354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041580A Pending JP2013177263A (ja) 2012-02-28 2012-02-28 結晶育成用反応容器

Country Status (1)

Country Link
JP (1) JP2013177263A (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039321A (ja) * 2005-07-01 2007-02-15 Mitsubishi Chemicals Corp 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
JP2011513180A (ja) * 2008-06-04 2011-04-28 シックスポイント マテリアルズ, インコーポレイテッド Iii族窒化物結晶を成長させるための高圧ベッセル、ならびに高圧ベッセルおよびiii族窒化物結晶を用いてiii族窒化物結晶を成長させる方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007039321A (ja) * 2005-07-01 2007-02-15 Mitsubishi Chemicals Corp 超臨界溶媒を用いた結晶製造方法、結晶成長装置、結晶およびデバイス
JP2011513180A (ja) * 2008-06-04 2011-04-28 シックスポイント マテリアルズ, インコーポレイテッド Iii族窒化物結晶を成長させるための高圧ベッセル、ならびに高圧ベッセルおよびiii族窒化物結晶を用いてiii族窒化物結晶を成長させる方法

Similar Documents

Publication Publication Date Title
US7704324B2 (en) Apparatus for processing materials in supercritical fluids and methods thereof
US8709371B2 (en) Method for growing group III-nitride crystals in supercritical ammonia using an autoclave
JP5887344B2 (ja) 高温及び高圧で材料を処理する装置
Malkowski et al. Acidic ammonothermal growth of gallium nitride in a liner-free molybdenum alloy autoclave
CN111593398A (zh) 一种氮化镓单晶生长装置及生长方法
CN101305107B (zh) Ni基耐腐蚀合金和由该合金制成的用于超临界氨反应器的耐腐蚀元件
JP2013177263A (ja) 結晶育成用反応容器
KR102597332B1 (ko) 반응 장치 및 트리클로로실란의 제조 방법
CN110475914B (zh) 晶体制造用压力容器
JP6345497B2 (ja) ガス流通管の取付具及び気相成長装置
JP5128874B2 (ja) 縦型熱処理装置
JP6119200B2 (ja) 結晶の製造方法および収納容器
JP2014040345A (ja) ガスシール方法
JP2013112605A (ja) 反応容器の再生方法、再生反応容器、および、結晶の製造方法
KR20140108885A (ko) 열박음을 통한 단결정 성장용 압력용기
JP2007238401A (ja) 半導体結晶の製造方法並びに原料半導体棒保持具及び原料半導体棒
JP2018083738A (ja) 単結晶成長装置、単結晶成長方法及び単結晶
JP6877948B2 (ja) 酸化物を金属基材から除去する方法および装置
JP2013060360A (ja) 窒化物結晶の製造方法
WO2019098348A1 (ja) 流動床方式反応装置
JP6356004B2 (ja) 反応容器の密閉構造、および基板処理装置
JP2002286013A (ja) 高温高圧機器構成部品
KR20120140279A (ko) 단결정 성장용 압력용기
CN111304732A (zh) 晶体生长装置、热等静压设备及晶体生长方法
JP2005298252A (ja) 化合物半導体単結晶の製造装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150722

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160302